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R-matrix theory of nuclear reactions

1. General definitions: types of reactions, cross sections, etc.

2. Reaction models (basics)

1. Single-channel potential/optical model (as simple as possible)

2. Phase-shift method

3. Generalizations (Coulomb, numerical calculation, spins, multichannel, 

absorption)

3. Reaction models (advanced)

1. The CDCC method (Continuum Discretized Coupled Channel)

2. Technical aspects: R-matrix, Lagrange meshes

3. The Eikonal method
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4. Structure models for light nuclei

1. Clustering in nuclei

2. Non-microscopic models

3. Microscopic cluster models

5. Recent applications

1. CDCC (11Be+64Zn, 9Be+208Pb, 7Li+208Pb)

2. Eikonal (three-body breakup, microscopic eikonal)

6. Nuclear astrophysics: brief overview

7. Conclusion
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General context: 

• Two-body systems

• Low energies (E ≲ Coulomb barrier),  few open channels (one)

• Low masses (A ≲ 15-20)  

• Low level densities (≲ a few levels/MeV)

• Reactions with neutrons AND charged particles

1. Introduction

Main questions to be addressed: determine the choice of the method

A. Type of reactions

• Elastic, inelastic, transfer, etc.

B. Energy range

• Partial wave expansion

• Number of open channels  influences the absorption

C. Level densities
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A. Different types of reactions

1. Elastic collision : entrance channel=exit channel

A+B  A+B:   Q=0

2. Inelastic collision ;Q≠ϬͿ

A+B  A*+B  (A*=excited state)

A+B  A+B*

etc..

3. Transfer reactions

A+B  C+D

A+B  C+D+E

etĐ…

4. Radiative capture reactions 

A+B C + g

5. Breakup: main tool to investigate exotic nuclei

1. Introduction
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B. Energy

Low energies (~ Coulomb barrier)

E

r

V

Partial-wave expansion

• Only a few partial waves contribute

ℓ > Ͳ

ℓ = Ͳ

a+16O

p+19F

d+18F

n+19Ne

20Ne

Single-channel calculation (no absorption)

1. Introduction
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No partial-wave expansion (high E)

• Many partial waves

E

r

V

High energies

a+16O

p+19F

d+18F

n+19Ne

20Ne

Many open channels absorption important

1. Introduction
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C. Level density

11C+p: Low level density (typical of exotic nuclei)

p+19F

19F+p: High level density (typical of stable nuclei)

 different models

1. Introduction
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Various models

r

V

ℓ=0

ℓ>0

Z1Z2e2/r

Barrier energy

RB~A1
1/3+A2

1/3

VB~Z1Z2e2/RB

Below the barrier

Very few ℓ values

R matrix, GCM

Far above the barrier

(Too) many ℓ values

 no partial wave expansion

ex: Eikonal, semi-classic

Near the barrier

Limited ℓ values partial wave expansion

ex: Optical model, CDCC, DWBA, etc.

Nucleus-nucleus potential

Nuclear

Astrophysics

1. Introduction
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2. Single-channel potential/optical model
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Scheme of the collision (elastic scattering) 

Before collision

After collision

q

Center-of-mass system

1

2

1

2

2. Single-channel optical model
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A. Definitions

Schrödinger equation: ܪȲ �૚, �૛, … �� = Ȳܧ �૚, �૛, … �� with ܧ > Ͳ: scattering states

• A-body equation (microscopic models) ܪ =  ௜ ௜ܶ + ଵଶ ௜,௝ ௜ܸ௝ሺ ࢏� − �࢐ሻ

• Optical model: internal structure of the nuclei is neglected

the particles interact by a potential

absorption simulated by the imaginary part = optical potentialܪȲሺ�ሻ = − ℏଶʹߤ ȟ + ܸ � Ȳሺ�ሻ = Ȳሺ�ሻܧ
• Additional assumptions: elastic scattering

no Coulomb interaction

spins zero

2. Single-channel optical model

r

r
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Two contributions to the optical potential: nuclear ேܸሺݎሻ and Coulomb ஼ܸሺݎሻ
Typical nuclear potential: ேܸሺݎሻ (short range, attractive)

• examples: Gaussian ேܸ ݎ = − ଴ܸ exp − ଴ݎ/ݎ ଶ
Woods-Saxon: ேܸ ݎ = − ௏బଵ+ex୮ �−�బ�

• parameters are fitted to experiment

• no analytical solution of the Schrödinger equation
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Woods-Saxon potentialݎ଴ =range (~sum of the radii)�= diffuseness (~0.5 fm)

Figure: ଴ܸ=50 MeV, ݎ଴=5 fm, � = Ͳ.ͷ fm

2. Single-channel optical model
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Coulomb potential: long range, repulsive

• « point-point » potential : ஼ܸ ݎ = ௓భ௓మ௘మ௥
• « point-sphere » potential : (radius ܴ஼)

஼ܸ ݎ = ܼଵܼଶ݁ଶݎ f�r ݎ ൒ ܴ஼
஼ܸ ݎ = ܼଵܼଶ݁ଶʹܴ஼ ͵ − ஼ݎܴ ଶ f�r ݎ ൑ ܴ஼

Total potential : ܸ ݎ = ேܸ ݎ + ஼ܸ ݎ : presents a maxium at the Coulomb barrier

• radius ݎ = ܴ஻
• height ܸ ܴ஻ = ஻ܧ

2. Single-channel optical model



14

B. General solution Ȳሺ�ሻܪ = − ℏଶʹߤ ȟ + ܸ � Ȳሺ�ሻ = Ȳሺ�ሻܧ
with Ȳ � = Φ ݎ + Ȳ௦௖௔௧௧ሺݎሻ (Φሺ�ሻ corresponds to ܸሺݎሻ=0)

At large distances : Ȳሺ�ሻ → ܣ ݁௜࢑⋅� + � ߠ ௘�ೖ�௥ (with z along the beam axis)

where: �=wave number: �ʹ = ܣℏଶ/ܧ�ʹ =amplitude (scattering wave function is not normalized)� ߠ =scattering amplitude (length)

2. Single-channel optical model

Incoming plane wave

Outgoing spherical wave
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C. Cross sections

q solid angle dW

Cross section:
ௗ�ௗஐ = � ߠ ଶ, � = ∫ ௗ�ௗஐ݀ȳ

• Cross section obtained from the asymptotic part of the wave function

General problem for scattering states: the wave function must be known up to large 

distances

• ͞Direct͟ pƌoďleŵ: deteƌŵiŶe s from the potential

• ͞Inverse͟ pƌoďleŵ : deteƌŵiŶe the poteŶtial V fƌoŵ s
• Angular distribution: E fixed, q variable

• Excitation function: q variable, E fixed,

2. Single-channel optical model
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Main issue: determining the scattering amplitude � ߠ (and wave function Ȳ � )

• Method 1: partial wave expansion: Ȳ � =  ௟௠Ȳ௟ ݎ ௟ܻ௠ ,ߠ �
o Must be determined for each partial wave ݈ phase-shit method

o At low energies, few partial waves

o � ߠ determined by the long-range part of Ȳ �
• Method 2: Formal theory- Lippman-Schwinger equation � ߠ = − ଶఓସగℏమ ∫ expሺ−݅�ݎ′ c�s ሻܸߠ �′ Ȳ �′ ݀�′

• equivalent to the Schrödinger equation

• ܸሺ�ሻ has a short range Ȳ � is not necessary at large distances

• approximations: valid if ܸሺݎሻ is small or ܧ is large

o Born approximation : Ȳ � = expሺ݅࢑ ⋅ �ሻ
o Eikonal approximation Ȳ � = expሺ݅࢑ ⋅ �ሻ Ȳ �

2. Single-channel optical model
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3. Phase-shift method: potential model



18

3. Phase-shift method: potential model

• Goal: solving the Schrodinger equation− ℏଶʹߤ ȟ + ܸ � Ȳሺ�ሻ = Ȳሺ�ሻܧ
with a partial-wave expansionȲ � =  ℓ,௠ ℓݑ ݎݎ ܻℓ௠ሺȳ௥ሻ ܻℓ௠כሺȳ௞ሻ

• Simplifying assumtions

• neutral systems (no Coulomb interaction)

• spins zero

• single-channel calculations  elastic scattering

• Generalizations briefly illustrated in the next section
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• The wave function is expanded asȲ � = ℓ,௠ ℓݑ ݎݎ ܻℓ௠ሺȳ௥ሻ ܻℓ௠כሺȳ௞ሻ
• This provides the Schrödinger equation for each partial wave (ȳ௞ = Ͳ → � = Ͳ)

− ℏଶʹߤ ݀ଶ݀ݎଶ − ℓ ℓ + ͳݎଶ ℓݑ + ܸ ݎ ℓݑ = ℓݑܧ
• Large distances :  ݎ → ∞, ܸ ݎ → Ͳݑℓ′′ − ℓ ℓ + ͳݎଶ ℓݑ + �ଶݑℓ = Ͳ Bessel equati�Ω → ℓݑ ݎ = ℓ݆ݎ ݎ� , ℓ݊ݎ ݎ�
• Remarks

– must be solved for all ݈ values

– at low energies: few partial waves in the expansion

– at small ℓݑ :ݎ ݎ → ℓ+ଵݎ

3. Phase-shift method: Definition, cross section
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For small x: ݆௟ � → ௫೗ଶ௟+ଵ ‼݊௟ � → − ଶ௟−ଵ ‼௫೗+భ
For large x: ݆௟ � → ଵ௫ siΩሺ� − ሻ݊௟ʹ/ߨ݈ � → − ଵ௫ c�sሺ� − ሻʹ/ߨ݈

Examples: ݆଴ � = si୬ ௫௫ , ݊଴ � = − c୭s ௫௫

3. Phase-shift method: Definition, cross section

At large distances: ݑℓሺݎሻ is a linear combination of ℓ݆ݎ ݎ� aΩd ℓ݊ݎ ℓݑݎ� ݎ → ௟ܥ ݎ ݆ℓ ݎ� − taΩ ℓߜ × ݊ℓ ݎ�
With ℓߜ = phase shift (information about the potential): 

If V=0  ℓߜ = Ͳ
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Derivation of the elastic cross section

• Identify the asymptotic behavioursȲሺ�ሻ → ܣ ݁௜࢑⋅� + � ߠ ௘�ೖ�௥Ȳ � →  ℓܥℓ ݆ℓ ݎ� − taΩ ℓߜ × ݊ℓ ݎ� ܻℓ଴ሺȳ௥ሻ ଶℓ+ଵସగ
• Provides coefficients  ܥℓ and scattering amplitude � �ߠ ,ߠ ܧ = ଵଶ௜௞ ℓ=଴∞ ሺʹℓ + ͳሻሺexpሺʹ݅ߜℓሺܧሻሻ − ͳሻ ℓܲሺc�s ሻௗ�ሺఏ,ாሻௗஐߠ = � ,ߠ ܧ ଶ
• Integrated cross section (neutral systems only)� = ∞ଶ ℓ=଴�ߨ ʹℓ + ͳ siΩଶ ℓߜ
• In practice, the summation over ℓ is limited to some ℓ௠௔௫

3. Phase-shift method: Definition, cross section
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 factorization of the dependences in ܧ and q
low energies: small number of ℓ values (ߜℓ → Ͳ when ℓ increases)

high energies: large number ( alternative methods)

General properties of the phase shifts

1. The phase shift (and all derivatives) are continuous functions of ܧ
2. The phase shift is known within np: exp ߜ݅ʹ = expሺʹ݅ ߜ + ߨ݊ ሻ
3. Levinson theorem• ܧℓሺߜ = Ͳሻ is arbitrary

• ℓߜ Ͳ − ℓߜ ∞ = Nߨ, where N is the number of bound states in partial wave ℓ
• Example: p+n, ℓ = Ͳ: ߜ଴ Ͳ − ଴ߜ ∞ = ߨ (bound deuteron)ℓ = ͳ: ߜଵ Ͳ − ଵߜ ∞ = Ͳ (no bound state for ℓ = ͳ)

3. Phase-shift method: Definition, cross section݀�ሺߠ, ሻ݀ȳܧ = � ,ߠ ܧ ଶ with � ,ߠ ܧ = ͳ݅ʹ� ℓ=଴∞ ሺʹℓ + ͳሻሺexpሺʹ݅ߜℓሺܧሻሻ − ͳሻ ℓܲሺc�s ሻߠ
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• Example: hard sphere (radius a) 

• continuity at ݎ = � ݆ℓ �� − taΩ ℓߜ × ݊ℓ �� = Ͳ taΩ ℓߜ = ௝ℓ ௞௔௡ℓ ௞௔ ଴ߜ = −��

At low energies: ሻܧℓሺߜ → − ௞௔ మℓ+భଶℓ+ଵ ‼ ଶ௟−ଵ ‼ , in general: ߜℓሺܧሻ ∼ �ଶℓ+ଵ
 Strong difference between ℓ = Ͳ (no barrier) et ℓ ≠ Ͳ (centrifugal barrier)

3. Phase-shift method: example

V(r)

ra
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example : a+n phase shift ℓ = Ͳ
consistent with the hard sphere (� ∼ ʹ.ʹ fm)

3. Phase-shift method: example
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Resonances: ߜோ ܧ ≈ ataΩ Γଶ ா�−ா = Breit-Wigner approximation

ER=resonance energyG=resonance width

p
3p/4

p/4

p/2

d(E)

ER ER+G/2ER-G/2
E

• Narrow resonance: G small

• Broad resonance: G large

• Bound states: G =0 (ܧோ < Ͳ)

3. Phase-shift method: resonances
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Cross section�ሺܧሻ = గ௞మ ℓ ʹℓ + ͳ exp ℓߜ݅ʹ − ͳ ଶ maximum for ߜ = గଶ
Near the resonance: � ܧ ≈ ସగ௞మ ʹℓோ + ͳ Γమ/ସா�−ா మ+Γమ/ସ, where ℓோ=resonant partial wave

ER

s G

E

In practice:

• Peak not symmetric (G depends on E)

• « Background » neglected (other ℓ values)

• Differences with respect to Breit-Wigner

3. Phase-shift method: resonances
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Example: n+12C

Ecm=1.92 MeVG= 6 keV

Comparison of 2 typical times: 

a. Lifetime of the resonance: �ோ = ℏ/Ȟ ≈ ଵଽ଻ଷ.ଵ଴మయ×଺.ଵ଴−య ≈ ͳ.ͳ × ͳͲ−ଵଽݏ
b. Interaction time without resonance: �ேோ = ݒ/݀ ≈ ͷ.ʹ × ͳͲ−ଶଶݏ tNR<< tR

3. Phase-shift method: resonances
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3. Phase-shift method: resonances

Narrow resonances

• Small particle width

• long lifetime

• can be approximetly treated by neglecting the asymptotic behaviour of the wave

function

proton width=32 keV

 can be described in a bound-state 

approximation
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Broad resonances

• Large particle width

• Short lifetime

• asymptotic behaviour of the wave function is important

 rigorous scattering theory

 bound-state model complemented by other tools (complex scaling, etc.)

3. Phase-shift method: resonances

ground state unstable: G=120 keV

very broad resonance: G=1990 keV
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4. Generalizations

• Extension to charged systems

• Numerical calculation

• Optical model (high energies  absorption)

• Extension to multichannel problems
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Generalization 1: charged systems

Scattering energy E

ܧ ب :஻ܧ weak coulomb effects (ܸ negligible with respect to ܧ(ܧ < ஻: strong coulomb effectsܧ (ex: nuclear astrophysics)

4. Generalizations



32

A. Asymptotic behaviour

Neutral systems

− ℏଶʹߤ ȟ + ேܸሺݎሻ − ܧ Ȳ � = ͲȲ � → expሺ݅࢑ ⋅ �ሻ + � ߠ exp ݎݎ�݅
Charged systems

− ℏଶʹߤ ȟ + ேܸሺݎሻ + ܼଵܼଶ݁ଶݎ − ܧ Ȳ � = Ͳ
Ȳ �→ exp ݅࢑ ⋅ � + ݅� lΩሺ࢑ ⋅ � − +ሻݎ� � ߠ exp ݅ሺ�ݎ − � lΩ ݎ�ʹ ሻݎ
� = ܼଵܼଶ݁ଶℏݒ
• Sommerfeld parameter

• « measurement » of coulomb effects

• Increases at low energies

• Decreases at high energies

4. Generalizations
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B. Phase shifts with the coulomb potential

Neutral system: 
ௗమௗ௥మ − ℓ ℓ+ଵ௥మ + �ଶ ܴℓ = Ͳ

Bessel equation : solutions ݆ℓ ݎ� , ݊ℓሺ�ݎሻ
Charged system: 

ௗమௗ௥మ − ℓ ℓ+ଵ௥మ − ʹ ఎ௞௥ + �ଶ ܴℓ = Ͳ: 

Coulomb equation: solutions ܨℓ �, ݎ� , ℓܩ �, ݎ�
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4. Generalizations
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• Incoming and outgoing functions (complex)ܫℓ �, � = ℓܩ �, � − ℓܨ݅ �, � → ݁−௜ሺ௫−ℓ�మ −ఎ l୬ ଶ௫+�ℓሻ: incoming waveܱℓ �, � = ℓܩ �, � + ℓܨ݅ �, � → ݁௜ሺ௫−ℓ�మ −ఎ l୬ ଶ௫+�ℓሻ: outgoing wave

• Phase-shift definition

o neutral systems ∶ ܴℓ ݎ → ܣݎ ݆ℓ ݎ� − taΩ ℓߜ ݊ℓ ݎ�
o charged systems: ܴℓ ݎ → ܣ ℓܨ �, ݎ� + taΩ ℓߜ ℓܩ �, →ݎ� ሺc�sܤ ℓߜ ℓܨ �, ݎ� + siΩ ℓߜ ℓܩ �, →ݎ� ܥ ℓܫ �, ݎ� − ℓܷܱℓ �, ݎ�

3 equivalent definitions (amplitude is different)

Collision matrix (=scattering matrix)ℓܷ = ݁ଶ௜ఋℓ : module | ℓܷ| = ͳ

4. Generalizations
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Example: hard-sphere potential

ܸ ݎ = ܼͳܼʹ݁ʹݎ ݎ݋� ݎ > �
 ݎ݋� ݎ < �

phase shift: taΩ ℓߜ = − ிℓ ఎ,௞௔ீℓ ఎ,௞௔r

a

V

-540

-360

-180

0

0 0.5 1 1.5 2 2.5

ℓ=Ͳ
ℓ=ʹℓ=ͳ
�=2

�=0

� (��−ͳ) 

�=4 fm

4. Generalizations
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C. Rutherford cross section

For a Coulomb potential (ܸܰ = Ͳ):

• scattering amplitude : �௖ ߠ = − ఎଶ௞ si୬మ ఏ/ଶ ݁ଶ௜ሺ�బ−ఎ l୬ si୬ ఏ/ଶሻ
• Coulomb phase shift for  ℓ = Ͳ: �଴ = arg Ȟ ͳ + ݅�
We get the Rutherford cross section: ݀�஼݀ȳ = �௖ ߠ ଶ = ܼଵܼଶ݁ଶͶܧ siΩଶ ʹ/ߠ ଶ
• Increases at low energies

• Diverges at ߠ = Ͳ no integrated cross section

4. Generalizations
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D. Cross sections with nuclear and Coulomb potentials

• The general defintions� ߠ = ͳ݅ʹ� ℓ=଴∞ ሺʹℓ + ͳሻሺexpሺʹ݅ߜℓሻ − ͳሻ ℓܲሺc�s ሻௗ�ௗஐߠ = � ߠ ଶ
are still valid

• ܲr�bleΨ ∶ very sl�w c�ΩvergeΩce with ℓ
 separation of the nuclear and coulomb phase shiftsߜℓ = ℓேߜ + �ℓ�ℓ = arg Ȟ ͳ + ℓ + ݅�

• Scattering amplitude � ߠ written as � ߠ = �஼ ߠ + �ே ߠ
• �஼ ߠ = ଵଶ௜௞ ℓ=଴∞ ሺʹℓ + ͳሻሺexpሺʹ݅�ℓሻ − ͳሻ ℓܲሺc�s ሻߠ = − ఎଶ௞ si୬మ ఏ/ଶ ݁ଶ௜ሺ�బ−ఎ l୬ si୬ ఏ/ଶሻ

 analytical

• �ே ߠ = ଵଶ௜௞ ℓ=଴∞ ሺʹℓ + ͳሻ expሺʹ݅�ℓሻ ሺexpሺʹ݅ߜℓேሻ − ͳሻ ℓܲሺc�s ሻߠ
 converges rapidly

4. Generalizations
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Total cross section: 
ௗ�ௗஐ = � ߠ ଶ = �஼ ߠ + �ே ߠ ଶ

• Nuclear term dominant at ͳͺͲל
• Coulomb term coulombien dominant at small angles  used to normalize experiments

• Coulomb amplitude strongly depends on the angle   ೏� ೏Ω ೏�� ೏Ω
• Integrated cross section ∫ ௗ�ௗஐdȳ is not defined

System 6Li+58Ni

• ௖௠ܧ = ହ଼଺ସܧ௟௔௕
• Coulomb barrierܧ஻ ∼ ͵ כ ʹͺ כ ͳ.ͶͶ͹ ∼ ͳ͹ MeV
• Below the barrier: � ∼ �஼
• Above ஻ܧ : � is different from �஼

4. Generalizations
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with: 

Numerical solution : discretization N points, with mesh size h

• ௟ݑ Ͳ = Ͳ
• ௟ݑ ℎ = ͳ (or any constant)

• ௟ݑ ʹℎ is determined numerically from ௟ݑ Ͳ and ݑ௟ ℎ (Numerov algorithm)

• ௟ݑ ͵ℎ ௟ݑ…, ܰℎ
• for large r: matching to the asymptotic behaviour  phase shift

Bound states: same idea (but energy is unknown)

Generalization 2: numerical calculation

For some potentials: analytic solution of the Schrödinger equation

In general: no analytical solution  numerical approach

4. Generalizations
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• ܧ < ஻ܧ
• Small amplitude for r small

E=1 MeV

• ܧ ≈ ஻ܧ
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Generalization 3: complex potentials

Goal: to simulate absorption channels

a+16O

p+19F

d+18F

n+19Ne

20Ne

High energies:

• many open channels

• strong absorption 

• potential model extended to complex

potentials (« optical »)

Phase shift is complex: ߜ = ோߜ + ூߜ݅
collision matrix: ܷ = exp ߜ݅ʹ = � exp ோߜ݅ʹ

where � = exp ூߜʹ− < ͳ
Elastic cross section

Reaction cross section: 

4. Generalizations
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In astrophysics, optical potentials are used to compute fusion cross sections

Fusion cross section: includes many channels

Example: 12C+12C: Essentially 20Ne+a, 23Na+p, 23Mg+n channels

 absorption simulated by a complex potential ܸ = ோܸ + ܹ݅

many

states

E

12C+12C

experimental cross section

Satkowiak et al. PRC 26 (1982) 2027

4. Generalizations
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Origin of the complex potential

• Time-dependent Schrödinger equation: ݅ℏ డஏడ௧ = Ȳܪ = ܶ + ܸ Ȳ
is equivalent to (real potential): 

డఘడ௧ + div ࡶ = Ͳ,with ࡶ = ଵఓܴ݁ Ȳכ�Ȳ
 constant current J 

for a complex potential: ܸ = ோܸ + ݅ ூܸ�ݐ�ߩ + div ࡶ = ℏʹ VIߩ
 ூܸ < Ͳ simulates absorption (inelastic, transfer, etc) not explicitly included

Simple interpretation

• Let us assume a constant potential ܸ = − ଴ܸ
 wave function=plane wave Ȳ ∼ exp ݅�଴ݎ ∼ expሺ݅ ଶఓ ா+௏బℏమ ሻݎ Ȳ ଶ = ͳ

• For a complex potential ܸ = − ଴ܸ − ݅ ଴ܹ ( ଴ܹ small)

 wave function Ȳ ∼ exp ݅�଴ݎ expሺ−�ூݎሻ:  Ȳ ଶ ∼ exp −ʹ�ூݎ incoming particles « disappear » (=absorption)

4. Generalizations
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Generalization 4 : system with spins (multichannel) 

• Allows to deal with inelatic, transfer, etc..

• Phase shift (single-channel)  collision (scattering) matrix

A. Quantum numbers

• Good quantum numbers: total angular momentum ܬ and parity ߨ
• Additional indices

• Channel � defined by 2 nuclei with spins ܫଵ, ଶܫ et parités ߨଵ, ଶߨ
• Channel spin ܫ = ଵܫ + ଶܫ
• Relative angular momentum ℓ

with ܬ = ܫ + ℓߨ = ଶߨଵߨ −ͳ ℓ
Examples:

1) a+n ଶ=1/2 ܫ ,ଵ=0ܫ : ℓ ,1/2=ܫ = ܬ| − ଵଶ | or ܬ + ଵଶ : channel number =1

2) p+n ଶ=1/2 ܫ=ଵܫ : ܫ = Ͳ or 1: channel number depends on ܬ

4. Generalizations
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3) Reaction ଺�i + ݌ → ଷ�e + �
• channel 1: ଺�i + +ଶ=1/2ܫ ଵ=1+, spin(p)ܫ spin(6Li) ,݌

• channel 2: ଷ�e + �, spin (3He)=1/2+, spin(�)=0+

 Size of the collision matrix is: 3x3 or 4x4

ߨܬ channel � = ͳ channel � = ʹ +ʹ/ℓͳܫ� ܫ = ͳ/ʹ, ℓ = Ͳܫ = ͵/ʹ, ℓ = ʹ ܫ = ͳ/ʹ, ℓ = Ͳ 3 values

ͳ/ʹ− ܫ = ͳ/ʹ, ℓ = ͳܫ = ͵/ʹ, ℓ = ͳ ܫ = ͳ/ʹ, ℓ = ͳ 3 values

͵/ʹ+ ܫ = ͳ/ʹ, ℓ = ܫʹ = ͵/ʹ, ℓ = Ͳ,ʹ ܫ = ͳ/ʹ, ℓ = ʹ 4 values

͵/ʹ− ܫ = ͳ/ʹ, ℓ = ͳܫ = ͵/ʹ, ℓ = ͳ,͵ ܫ = ͳ/ʹ, ℓ = ͳ 4 values

4. Generalizations
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B. Coupled-channel wave functions

1. Internal wave functions of nuclei 1 and 2 : Φఈூభ௄భగభ and Φఈூమ௄మగమ
2. Coupling of the projectile+target spins: ܫ = ଵܫ ⊕ ଶΦఈூ௄గభగమܫ =  ௄భ௄మ < ܭܫ|ଶܭଶܫଵܭଵܫ >Φఈூభ௄భగభΦఈூమ௄మగమ = Φఈூభగభ ⊗Φఈூమగమ ூ௄
3. Channel function is defined by (ܬ = ℓ⊕ ఈூℓ௃ெగ߮(ܫ ȳ = Φఈூగభగమ ⊗ ℓܻ ȳ ௃ெ
4. Total wave function for given ܬ and ߨ :Ȳ௃ெగ =  ఈூℓ ఈூℓ௃గݑ ݎ ߮ఈூℓ௃ெగ ȳ

Φఈூభ௄భగభ Φఈூమ௄మగమ� = ሺܴ, ȳሻ
4. Generalizations
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4. Total wave function for given ܬ and ߨ :Ȳ௃ெగ =  ఈூℓݑఈூℓ௃గ ݎ ߮ఈூℓ௃ெగ ȳ
5. Radial functions ఈூℓ௃గݑ ݎ are obtained from a set of coupled equations

• Single-channel: − ℏమଶఓ ௗమௗ௥మ − ℓ ℓ+ଵ௥మ ℓݑ + ܸ ݎ ℓݑ = ℓݑܧ
With ௟ݑ ݎ → ℓܫ �, ݎ� − ℓܷܱℓ �, ℓܷݎ� = exp ℓߜ݅ʹ = « matrix » 1x1

• Multichannel

− ℏమଶఓ ௗమௗ௥మ − ℓ ℓ+ଵ௥మ ఈூℓ௃గݑ +  ఈ′ூ′ℓ′ ఈܸூℓ,ఈ′ூ′ℓ′௃గ ݎ ఈ′ூ′ℓ′௃గݑ = ఈூℓ௃గݑܧ
with ఈூℓ௃గݑ ݎ → ℓܫ ݎ ఈఠߜ − ܷఈூℓ,ఈ′ூ′ℓ′௃గ ܱℓ′ ݎ
Collision matrix provides cross sections (several J values are necessary)

4. Generalizations
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Comments on the multichannel system

− ℏమଶఓ ௗమௗ௥మ − ℓ ℓ+ଵ௥మ ఈூℓ௃గݑ + ఈூ′ℓ′ ఈܸூℓ,ఈ′ூ′ℓ′௃గ ݎ ఈ′ூ′ℓ′௃గݑ = ఈூℓ௃గݑܧ
o Standard form of many scattering theories (CDCC, folding, microscopic, 3-body, etc.)

o Theories differ by the calculation of the potentials

o Diagonal and non-diagonal potentials ఈܸூℓ,ఈ′ூ′ℓ′௃గ ݎ
non-diagonal ఈܸூℓ,ఈ′ூ′ℓ′௃గ ݎ → Ͳ for large r

diagonal ఈܸூℓ,ఈூ௟௃గ ݎ → ௓�௓�௘మ௥ for large r

o Main problems

Sometimes: more than 100 channels are included

Long range of the potential  numerical difficulties

o Numerical resolution can be time consuming

2 main methods: Numerov (+ improvements)

R-matrix method

4. Generalizations
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C. Cross sections in a multichannel formalism

One channel:
ௗ�ௗஐ = � ߠ ଶ
� ߠ = ଵଶ௜௞ ℓ=଴∞ ሺʹℓ + ͳሻሺexpሺʹ݅ߜℓሻ − ͳሻ ℓܲሺc�s ሻߠ

Multi channel:
ௗ�ௗஐ ሺ� → �′ሻ =  ௄భ௄మ௄భ′௄మ′ �௄భ௄మ,௄భ′௄మ′ ߠ ଶ
�௄భ௄మ,௄భ′௄మ′ ߠ =  ௃గ ௟ூ,௟′ூ′…ܷఈூℓ,ఈ′ூ′ℓ′௃గ ܻ௟′ሺߠ, Ͳሻ

With: ଶ′=spin orientations in the exit channelܭ′ଵܭଶ=spin orientations in the entrance channelܭଵܭ

Collision matrix

• generalization of d: Uij=hijexp(2idij)

• determines the cross section

4. Generalizations


