Reaction theories – Structure models for light nuclei

P. Descouvemont

Physique Nucléaire Théorique et Physique Mathématique, CP229, Université Libre de Bruxelles, B1050 Bruxelles - Belgium

- 1. General definitions: types of reactions, cross sections, etc.
- 2. Reaction models (basics)
 - 1. Single-channel potential/optical model (as simple as possible)
 - 2. Phase-shift method
 - **3.** Generalizations (Coulomb, numerical calculation, spins, multichannel, absorption)
- 3. Reaction models (advanced)
 - 1. The CDCC method (Continuum Discretized Coupled Channel)
 - 2. Technical aspects: R-matrix, Lagrange meshes
 - 3. The Eikonal method

- 4. Structure models for light nuclei
 - 1. Clustering in nuclei
 - 2. Non-microscopic models
 - 3. Microscopic cluster models
- 5. Recent applications
 - 1. CDCC (11Be+64Zn, 9Be+208Pb, 7Li+208Pb)
 - 2. Eikonal (three-body breakup, microscopic eikonal)
- 6. Nuclear astrophysics: brief overview
- 7. Conclusion

General context:

- Two-body systems
- Low energies (E \leq Coulomb barrier), few open channels (one)
- Low masses (A \lesssim 15-20)
- Low level densities (\lesssim a few levels/MeV)
- Reactions with neutrons AND charged particles

Main questions to be addressed: determine the choice of the method

- A. Type of reactions
 - Elastic, inelastic, transfer, etc.
- B. Energy range
 - Partial wave expansion
 - Number of open channels \rightarrow influences the absorption
- C. Level densities

A. Different types of reactions

1. Elastic collision : entrance channel=exit channel

 $A+B \rightarrow A+B: Q=0$

2. Inelastic collision (Q≠0)

 $A+B \rightarrow A^*+B$ (A*=excited state) $A+B \rightarrow A+B^*$ etc..

3. Transfer reactions

 $A+B \rightarrow C+D$ $A+B \rightarrow C+D+E$ etc...

4. Radiative capture reactions A+B \rightarrow C + γ

5. Breakup: main tool to investigate exotic nuclei

B. Energy

High energies

C. Level density

¹¹C+p: Low level density (typical of exotic nuclei)

¹⁹F+p: **High** level density (typical of stable nuclei)

➔ different models

2. Single-channel potential/optical model

Scheme of the collision (elastic scattering)

Center-of-mass system

A. Definitions

Schrödinger equation: $H\Psi(r_1, r_2, ..., r_A) = E\Psi(r_1, r_2, ..., r_A)$ with E > 0: scattering states

• A-body equation (microscopic models) $H = \sum_i T_i + \frac{1}{2} \sum_{i,j} V_{ij} (r_i - r_j)$

 Optical model: internal structure of the nuclei is neglected the particles interact by a potential absorption simulated by the imaginary part = optical potential

$$H\Psi(\mathbf{r}) = \left(-\frac{\hbar^2}{2\mu}\Delta + V(\mathbf{r})\right)\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

Additional assumptions: elastic scattering

no Coulomb interaction

Two contributions to the optical potential: nuclear $V_N(r)$ and Coulomb $V_C(r)$

Typical nuclear potential: $V_N(r)$ (short range, attractive)

• examples: Gaussian $V_N(r)$ Woods-Saxon: $V_N(r)$

$$V_N(r) = -V_0 \exp(-(r/r_0)^2)$$
$$V_N(r) = -\frac{V_0}{1 + \exp(\frac{r - r_0}{a})}$$

- parameters are fitted to experiment
- no analytical solution of the Schrödinger equation

Woods-Saxon potential r_0 =range (~sum of the radii) a= diffuseness (~0.5 fm)

Figure: V_0 =50 MeV, r_0 =5 fm, a = 0.5 fm

Coulomb potential: long range, repulsive

• « point-point » potential :
$$V_C(r) = \frac{Z_1 Z_2 e^2}{r}$$

• « point-sphere » potential : (radius
$$R_C$$
)
 $V_C(r) = \frac{Z_1 Z_2 e^2}{r}$ for $r \ge R_C$
 $V_C(r) = \frac{Z_1 Z_2 e^2}{2R_C} \left(3 - \left(\frac{r}{R_C}\right)^2\right)$ for $r \le R_C$

Total potential : $V(r) = V_N(r) + V_C(r)$: presents a maxium at the Coulomb barrier

- radius $r = R_B$
- height $V(R_B) = E_B$

B. General solution

$$H\Psi(\mathbf{r}) = \left(-\frac{\hbar^2}{2\mu}\Delta + V(\mathbf{r})\right)\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

with $\Psi(\mathbf{r}) = \Phi(r) + \Psi_{scatt}(r)$ ($\Phi(\mathbf{r})$ corresponds to V(r)=0)

At large distances :
$$\Psi(\mathbf{r}) \rightarrow A\left(e^{i\mathbf{k}\cdot\mathbf{r}} + f(\theta)\frac{e^{ikr}}{r}\right)$$
 (with *z* along the beam axis)
where: k =wave number: $k^2 = 2mE/\hbar^2$
 A =amplitude (scattering wave function is not normalized)
 $f(\theta)$ =scattering amplitude (length)

C. Cross sections

- Cross section obtained from the asymptotic part of the wave function General problem for scattering states: the wave function must be known up to large distances
- "Direct" problem: determine σ from the potential
- "Inverse" problem : determine the potential V from σ
- Angular distribution: E fixed, θ variable
- Excitation function: θ variable, E fixed,

Main issue: determining the scattering amplitude $f(\theta)$ (and wave function $\Psi(r)$)

- Method 1: partial wave expansion: $\Psi(\mathbf{r}) = \sum_{lm} \Psi_l(r) Y_l^m(\theta, \phi)$
 - Must be determined for each partial wave l → phase-shit method
 - At low energies, few partial waves
 - $f(\theta)$ determined by the long-range part of $\Psi(r)$

• Method 2: Formal theory- Lippman-Schwinger equation

$$f(\theta) = -\frac{2\mu}{4\pi\hbar^2} \int \exp(-ikr'\cos\theta) V(\mathbf{r}') \Psi(\mathbf{r}') d\mathbf{r}'$$

- equivalent to the Schrödinger equation
- $V(\mathbf{r})$ has a short range $\rightarrow \Psi(\mathbf{r})$ is not necessary at large distances
- approximations: valid if V(r) is small or E is large
 - Born approximation : $\Psi(\mathbf{r}) = \exp(i\mathbf{k} \cdot \mathbf{r})$
 - Eikonal approximation $\Psi(\mathbf{r}) = \exp(i\mathbf{k} \cdot \mathbf{r})\widehat{\Psi}(\mathbf{r})$

3. Phase-shift method: potential model

3. Phase-shift method: potential model

• Goal: solving the Schrodinger equation

$$\left(-\frac{\hbar^2}{2\mu}\Delta + V(\boldsymbol{r})\right)\Psi(\boldsymbol{r}) = E\Psi(\boldsymbol{r})$$

with a partial-wave expansion

$$\Psi(\mathbf{r}) = \sum_{\ell,m} \frac{u_{\ell}(r)}{r} Y_{\ell}^{m}(\Omega_{r}) Y_{\ell}^{m*}(\Omega_{k})$$

- Simplifying assumtions
 - neutral systems (no Coulomb interaction)
 - spins zero
 - single-channel calculations \rightarrow elastic scattering
- Generalizations briefly illustrated in the next section

- 3. Phase-shift method: Definition, cross section
- The wave function is expanded as

$$\Psi(\mathbf{r}) = \sum_{\ell,m} \frac{u_{\ell}(\mathbf{r})}{r} Y_{\ell}^{m}(\Omega_{r}) Y_{\ell}^{m*}(\Omega_{k})$$

• This provides the Schrödinger equation for each partial wave ($\Omega_k = 0 \rightarrow m = 0$)

$$-\frac{\hbar^2}{2\mu}\left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2}\right)\boldsymbol{u}_{\boldsymbol{\ell}} + V(r)\boldsymbol{u}_{\boldsymbol{\ell}} = E\boldsymbol{u}_{\boldsymbol{\ell}}$$

• Large distances : $r \to \infty, V(r) \to 0$

$$u_{\ell}^{\prime\prime} - \frac{\ell(\ell+1)}{r^2} u_{\ell} + k^2 u_{\ell} = 0 \text{ Bessel equation } \rightarrow u_{\ell}(r) = rj_{\ell}(kr), rn_{\ell}(kr)$$

- Remarks
 - must be solved for all *l* values
 - at low energies: few partial waves in the expansion
 - at small $r: u_\ell(r) \to r^{\ell+1}$

3. Phase-shift method: Definition, cross section

At large distances: $u_{\ell}(r)$ is a linear combination of $rj_{\ell}(kr)$ and $rn_{\ell}(kr)$

$$u_{\ell}(r) \to C_l r \left(j_{\ell}(kr) - \tan \delta_{\ell} \times n_{\ell}(kr) \right)$$

With δ_{ℓ} = phase shift (information about the potential):

If V=0 $\rightarrow \delta_{\ell} = 0$

3. Phase-shift method: Definition, cross section

Derivation of the elastic cross section

• Identify the asymptotic behaviours

$$\Psi(\mathbf{r}) \to A\left(e^{i\mathbf{k}\cdot\mathbf{r}} + f(\theta)\frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{r}\right)$$
$$\Psi(\mathbf{r}) \to \sum_{\ell} C_{\ell} \left(j_{\ell}(kr) - \tan \delta_{\ell} \times n_{\ell}(kr)\right) Y_{\ell}^{0}(\Omega_{r}) \sqrt{\frac{2\ell+1}{4\pi}}$$

• Provides coefficients C_{ℓ} and scattering amplitude $f(\theta)$

$$f(\theta, E) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell + 1) (\exp(2i\delta_{\ell}(E)) - 1) P_{\ell}(\cos\theta)$$
$$\frac{d\sigma(\theta, E)}{d\Omega} = |f(\theta, E)|^2$$

• Integrated cross section (neutral systems only)

$$\sigma = \frac{\pi}{k^2} \sum_{\ell=0}^{\infty} (2\ell + 1) \sin^2 \delta_{\ell}$$

• In practice, the summation over ℓ is limited to some ℓ_{max}

3. Phase-shift method: Definition, cross section

$$\frac{d\sigma(\theta, E)}{d\Omega} = |f(\theta, E)|^2 \text{ with } f(\theta, E) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell + 1)(\exp(2i\delta_{\ell}(E)) - 1) P_{\ell}(\cos\theta)$$

→ factorization of the dependences in *E* and θ low energies: small number of ℓ values ($\delta_{\ell} \rightarrow 0$ when ℓ increases) high energies: large number (→ alternative methods)

General properties of the phase shifts

- 1. The phase shift (and all derivatives) are continuous functions of E
- 2. The phase shift is known within $n\pi : \exp 2i\delta = \exp(2i(\delta + n\pi))$
- 3. Levinson theorem
 - $\delta_{\ell}(E=0)$ is arbitrary
 - $\delta_{\ell}(0) \delta_{\ell}(\infty) = N\pi$, where N is the number of bound states in partial wave ℓ
 - Example: p+n, $\ell = 0: \delta_0(0) \delta_0(\infty) = \pi$ (bound deuteron) $\ell = 1: \delta_1(0) - \delta_1(\infty) = 0$ (no bound state for $\ell = 1$)

3. Phase-shift method: example

• Example: hard sphere (radius a)

•

continuity at
$$r = a \rightarrow j_{\ell}(ka) - \tan \delta_{\ell} \times n_{\ell}(ka) = 0$$
 $\rightarrow \tan \delta_{\ell} = \frac{j_{\ell}(ka)}{n_{\ell}(ka)}$
 $\rightarrow \delta_0 = -ka$

At low energies: $\delta_{\ell}(E) \rightarrow -\frac{(ka)^{2\ell+1}}{(2\ell+1)!!(2l-1)!!}$, in general: $\delta_{\ell}(E) \sim k^{2\ell+1}$

→ Strong difference between $\ell = 0$ (no barrier) et $\ell \neq 0$ (centrifugal barrier)

3. Phase-shift method: example

example : α +n phase shift $\ell = 0$

consistent with the hard sphere ($a \sim 2.2$ fm)

Resonances: $\delta_R(E) \approx \operatorname{atan} \frac{\Gamma}{2(E_R - E)}$ = Breit-Wigner approximation

 E_R =resonance energy Γ =resonance width

Cross section

$$\sigma(E) = \frac{\pi}{k^2} \sum_{\ell} (2\ell + 1) |\exp(2i\delta_{\ell}) - 1|^2 \text{ maximum for } \delta = \frac{\pi}{2}$$

Near the resonance: $\sigma(E) \approx \frac{4\pi}{k^2} (2\ell_R + 1) \frac{\Gamma^2/4}{(E_R - E)^2 + \Gamma^2/4}$, where ℓ_R =resonant partial wave

In practice:

- Peak not symmetric (Γ depends on E)
- « Background » neglected (other ℓ values)
- Differences with respect to Breit-Wigner

Comparison of 2 typical times:

a. Lifetime of the resonance: $\tau_R = \hbar/\Gamma \approx \frac{197}{3.10^{23} \times 6.10^{-3}} \approx 1.1 \times 10^{-19} s$ b. Interaction time without resonance: $\tau_{NR} = d/v \approx 5.2 \times 10^{-22} s \Rightarrow \tau_{NR} << \tau_R$

Narrow resonances

- Small particle width
- long lifetime
- can be approximetly treated by *neglecting the asymptotic behaviour of the wave function*

Broad resonances

- Large particle width
- Short lifetime
- asymptotic behaviour of the wave function is important
 - ightarrow rigorous scattering theory
 - \rightarrow bound-state model complemented by other tools (complex scaling, etc.)

- Extension to charged systems
- Numerical calculation
- Optical model (high energies \rightarrow absorption)
- Extension to multichannel problems

Generalization 1: charged systems

 $E \gg E_B$: weak coulomb effects (*V* negligible with respect to *E*) $E < E_B$: strong coulomb effects (ex: nuclear astrophysics)

A. Asymptotic behaviour

Neutral systems

$$\left(-\frac{\hbar^2}{2\mu}\Delta + V_N(r) - E\right)\Psi(r) = 0$$

$$\Psi(r) \to \exp(i\mathbf{k} \cdot r) + f(\theta)\frac{\exp(ikr)}{r}$$

Charged systems

$$\left(-\frac{\hbar^2}{2\mu}\Delta + V_N(r) + \frac{Z_1Z_2e^2}{r} - E\right)\Psi(r) = 0$$

$$\Psi(r)$$

$$\rightarrow \exp(i\mathbf{k}\cdot\mathbf{r} + i\eta\ln(\mathbf{k}\cdot\mathbf{r} - kr))$$

$$+ f(\theta)\frac{\exp(i(kr - \eta\ln 2kr))}{r}$$

$$\eta = \frac{Z_1Z_2e^2}{\hbar\nu}$$
• Sommerfeld parameter
• « measurement » of coulomb effects

- Increases at low energies
- Decreases at high energies

B. Phase shifts with the coulomb potential

Neutral system:

$$\left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} + k^2\right) R_{\ell} = 0$$

Bessel equation : solutions $j_{\ell}(kr), n_{\ell}(kr)$

Charged system:

$$\left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} - 2\frac{\eta k}{r} + k^2\right) R_{\ell} = 0:$$

Coulomb equation: solutions $F_{\ell}(\eta, kr), G_{\ell}(\eta, kr)$

• Incoming and outgoing functions (complex)

$$\begin{split} I_{\ell}(\eta, x) &= G_{\ell}(\eta, x) - iF_{\ell}(\eta, x) \to e^{-i(x - \frac{\ell\pi}{2} - \eta \ln 2x + \sigma_{\ell})}: \text{ incoming wave} \\ O_{\ell}(\eta, x) &= G_{\ell}(\eta, x) + iF_{\ell}(\eta, x) \to e^{i(x - \frac{\ell\pi}{2} - \eta \ln 2x + \sigma_{\ell})}: \text{ outgoing wave} \end{split}$$

- Phase-shift definition
 - neutral systems : $R_{\ell}(r) \rightarrow rA(j_{\ell}(kr) \tan \delta_{\ell} n_{\ell}(kr))$

○ charged systems:
$$R_{\ell}(r) \rightarrow A(F_{\ell}(\eta, kr) + \tan \delta_{\ell} G_{\ell}(\eta, kr))$$

 $\rightarrow B(\cos \delta_{\ell} F_{\ell}(\eta, kr) + \sin \delta_{\ell} G_{\ell}(\eta, kr))$
 $\rightarrow C(I_{\ell}(\eta, kr) - U_{\ell}O_{\ell}(\eta, kr))$

3 equivalent definitions (amplitude is different) Collision matrix (=scattering matrix)

$$U_{\ell} = e^{2i\delta_{\ell}}$$
 : module $|U_{\ell}| = 1$

Example: hard-sphere potential

$$V(r) = \frac{Z_1 Z_2 e^2}{r} for r > a$$

$$\infty for r < a$$

phase shift: $\tan \delta_{\ell} = -\frac{F_{\ell}(\eta, ka)}{G_{\ell}(\eta, ka)}$

C. Rutherford cross section

For a Coulomb potential ($V_N = 0$):

- scattering amplitude : $f_c(\theta) = -\frac{\eta}{2k \sin^2 \theta/2} e^{2i(\sigma_0 \eta \ln \sin \theta/2)}$
- Coulomb phase shift for $\ell = 0$: $\sigma_0 = \arg \Gamma(1 + i\eta)$

We get the Rutherford cross section:

$$\frac{d\sigma_C}{d\Omega} = |f_c(\theta)|^2 = \left(\frac{Z_1 Z_2 e^2}{4E \sin^2 \theta/2}\right)^2$$

- Increases at low energies
- Diverges at $\theta = 0 \rightarrow$ no integrated cross section

D. Cross sections with nuclear and Coulomb potentials

The general definitions

$$f(\theta) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell + 1) (\exp(2i\delta_{\ell}) - 1) P_{\ell}(\cos\theta)$$
$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2$$

are still valid

Problem : very slow convergence with ℓ
 → separation of the nuclear and coulomb phase shifts

$$\delta_{\ell} = \delta_{\ell}^{N} + \sigma_{\ell}$$

$$\sigma_{\ell} = \arg \Gamma (1 + \ell + i\eta)$$

- Scattering amplitude $f(\theta)$ written as $f(\theta) = f^{C}(\theta) + f^{N}(\theta)$
 - $f^{C}(\theta) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell+1) (\exp(2i\sigma_{\ell}) 1) P_{\ell}(\cos\theta) = -\frac{\eta}{2k\sin^{2}\theta/2} e^{2i(\sigma_{0} \eta \ln \sin \theta/2)}$ \rightarrow analytical
 - $f^{N}(\theta) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell+1) \exp(2i\sigma_{\ell}) (\exp(2i\delta_{\ell}^{N}) 1) P_{\ell}(\cos\theta)$ \rightarrow converges rapidly

Total cross section: $\frac{d\sigma}{d\Omega} = |f(\theta)|^2 = |f^C(\theta) + f^N(\theta)|^2$

- Nuclear term dominant at 180°
- Coulomb term coulombien dominant at small angles ightarrow used to normalize experiments
- Coulomb term coulombler coulombler and $\rightarrow \frac{d\sigma/d\Omega}{d\sigma_c/d\Omega}$
- Integrated cross section $\int \frac{d\sigma}{d\Omega} d\Omega$ is not defined

System ⁶Li+⁵⁸Ni

•
$$E_{cm} = \frac{58}{64} E_{lab}$$

• Coulomb barrier

$$E_B \sim \frac{3 * 28 * 1.44}{7} \sim 17 \text{ MeV}$$

- Below the barrier: $\sigma \sim \sigma_C$
- Above E_B : σ is different from σ_C

Generalization 2: numerical calculation

For some potentials: analytic solution of the Schrödinger equation

In general: no analytical solution \rightarrow numerical approach

$$-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2}u_{\ell}(r) + (V(r) - E)u_{\ell}(r) = 0$$

with: $V(r) = V_N(r) + \frac{Z_1Z_2e^2}{r} + \frac{\hbar^2}{2\mu}\frac{\ell(\ell+1)}{r^2}$ $u_{\ell}(r) \to F_{\ell}(kr,\eta)\cos\delta_{\ell} + G_{\ell}(kr,\eta)\sin\delta_{\ell}$

Numerical solution : discretization N points, with mesh size h

- $u_l(0) = 0$
- $u_l(h) = 1$ (or any constant)
- $u_l(2h)$ is determined numerically from $u_l(0)$ and $u_l(h)$ (Numerov algorithm)
- $\bullet \, u_l(3h), \ldots u_l(Nh)$
- for large r: matching to the asymptotic behaviour ightarrow phase shift

Bound states: same idea (but energy is unknown)

Experimental phase shifts

Potential: $V_N(r) = -122.3 \exp(-(r/2.13)^2)$

 $\alpha{+}\alpha$ wave function for $\ell=0$

E=0.2 MeV

- $E < E_B$
- Small amplitude for r small

E=1 MeV

• $E \approx E_B$

Generalization 3: complex potentials

Goal: to simulate absorption channels

High energies:

- many open channels
- strong absorption
- potential model extended to complex potentials (« optical »)

Phase shift is complex: $\delta = \delta_R + i\delta_I$ collision matrix: $U = \exp(2i\delta) = \eta \exp(2i\delta_R)$ where $\eta = \exp(-2\delta_I) < 1$

Elastic cross section

$$\frac{d\sigma}{d\Omega} = \frac{1}{4k^2} \left| \sum_{\ell} (2\ell + 1)(\eta_{\ell} \exp(2i\delta_{\ell}) - 1) P_{\ell}(\cos\theta) \right|^2$$

Reaction cross section:

$$\sigma = \frac{\pi}{k^2} \sum_{\ell} (2\ell + 1)(1 - \eta_{\ell}^2)$$

In astrophysics, optical potentials are used to compute fusion cross sections

Fusion cross section: includes many channels

Example: ¹²C+¹²C: Essentially ²⁰Ne+ α , ²³Na+p, ²³Mg+n channels \rightarrow absorption simulated by a complex potential $V = V_R + iW$

Origin of the complex potential

• Time-dependent Schrödinger equation: $i\hbar \frac{\partial \Psi}{\partial t} = H\Psi = (T + V)\Psi$

is equivalent to (real potential): $\frac{\partial \rho}{\partial t}$ + div $\boldsymbol{J} = 0$, with $\boldsymbol{J} = \frac{1}{\mu} Re (\Psi^* \boldsymbol{p} \Psi)$ \rightarrow constant current J

for a complex potential:
$$V = V_R + iV_I$$

 $\frac{\partial \rho}{\partial t} + \operatorname{div} \boldsymbol{J} = \frac{2}{\hbar} \mathbf{V}_{\mathbf{I}} \rho$

 \rightarrow V_I < 0 simulates absorption (inelastic, transfer, etc) not explicitly included

Simple interpretation

• Let us assume a constant potential $V = -V_0$

→ wave function=plane wave $\Psi \sim \exp(ik_0 r) \sim \exp(i\sqrt{\frac{2\mu(E+V_0)}{\hbar^2}}r) \rightarrow |\Psi|^2 = 1$

• For a complex potential $V = -V_0 - iW_0$ (W_0 small) \rightarrow wave function $\Psi \sim \exp(ik_0r) \exp(-k_Ir)$: $\rightarrow |\Psi|^2 \sim \exp(-2k_Ir)$ \rightarrow incoming particles « disappear » (=absorption)

Generalization 4 : system with spins (multichannel)

- Allows to deal with inelatic, transfer, etc..
- Phase shift (single-channel) \rightarrow collision (scattering) matrix

A. Quantum numbers

- Good quantum numbers: total angular momentum J and parity π
- Additional indices
 - Channel α defined by 2 nuclei with spins I_1, I_2 et parités π_1, π_2
 - Channel spin $I = I_1 + I_2$
 - Relative angular momentum ℓ

with $J = I + \ell$ $\pi = \pi_1 \pi_2 (-1)^{\ell}$

Examples:

1)
$$\alpha$$
+n : I_1 =0, I_2 =1/2 \rightarrow I =1/2, $\ell = |J - \frac{1}{2}|$ or $J + \frac{1}{2}$: channel number =1

2) p+n : $I_1=I_2=1/2 \rightarrow I = 0$ or 1: channel number depends on J

3) Reaction ${}^{6}\text{Li} + p \rightarrow {}^{3}\text{He} + \alpha$

- channel 1: ${}^{6}\text{Li} + p$, spin(${}^{6}\text{Li}$) $I_{1}=1^{+}$, spin(p) $I_{2}=1/2^{+}$
- channel 2: ${}^{3}\text{He} + \alpha$, spin (${}^{3}\text{He}$)=1/2⁺, spin(α)=0⁺

Jπ	channel $\alpha = 1$	channel $\alpha = 2$	αIℓ
1/2+	$I = 1/2, \ell = 0$ $I = 3/2, \ell = 2$	$I=1/2, \ell=0$	3 values
1/2-	$I = 1/2, \ell = 1$ $I = 3/2, \ell = 1$	$I = 1/2, \ell = 1$	3 values
3/2+	$I = 1/2, \ell = 2$ $I = 3/2, \ell = 0, 2$	$I = 1/2, \ell = 2$	4 values
3/2-	$I = 1/2, \ell = 1$ $I = 3/2, \ell = 1,3$	$I = 1/2, \ell = 1$	4 values

 \rightarrow Size of the collision matrix is: 3x3 or 4x4

B. Coupled-channel wave functions

$$\Phi_{\alpha}^{I_1K_1\pi_1} \mathbf{R} = (R, \Omega) \Phi_{\alpha}^{I_2K_2\pi_2}$$

- 1. Internal wave functions of nuclei 1 and 2 : $\Phi_{\alpha}^{I_1K_1\pi_1}$ and $\Phi_{\alpha}^{I_2K_2\pi_2}$
- 2. Coupling of the projectile+target spins: $I = I_1 \bigoplus I_2$

$$\Phi_{\alpha}^{IK\pi_{1}\pi_{2}} = \sum_{K_{1}K_{2}} < I_{1}K_{1}I_{2}K_{2} | IK > \Phi_{\alpha}^{I_{1}K_{1}\pi_{1}}\Phi_{\alpha}^{I_{2}K_{2}\pi_{2}} = \left[\Phi_{\alpha}^{I_{1}\pi_{1}} \otimes \Phi_{\alpha}^{I_{2}\pi_{2}}\right]^{IK}$$

- 3. Channel function is defined by $(J = \ell \oplus I)$ $\varphi_{\alpha I \ell}^{JM\pi}(\Omega) = \left[\Phi_{\alpha}^{I\pi_{1}\pi_{2}} \otimes Y_{\ell}(\Omega)\right]^{JM}$
- 4. Total wave function for given J and π :

$$\Psi^{JM\pi} = \sum_{\alpha I\ell} u^{J\pi}_{\alpha I\ell}(r) \,\varphi^{JM\pi}_{\alpha I\ell}(\Omega)$$

4. Total wave function for given *J* and $\pi : \Psi^{JM\pi} = \sum_{\alpha I \ell} u^{J\pi}_{\alpha I \ell}(r) \varphi^{JM\pi}_{\alpha I \ell}(\Omega)$

5. Radial functions $u_{\alpha l\ell}^{J\pi}(r)$ are obtained from a set of coupled equations

• Single-channel:
$$-\frac{\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} \right) u_\ell + V(r) u_\ell = E u_\ell$$

With
$$u_l(r) \to I_\ell(\eta, kr) - \frac{U_\ell}{\ell} O_\ell(\eta, kr)$$
$$U_\ell = \exp(2i\delta_\ell) = \ll \text{matrix} \gg 1 \times 1$$

Multichannel

$$-\frac{\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2}\right) u^{J\pi}_{\alpha I\ell} + \sum_{\alpha' I'\ell'} V^{J\pi}_{\alpha I\ell,\alpha' I'\ell'}(r) u^{J\pi}_{\alpha' I'\ell'} = E u^{J\pi}_{\alpha I\ell}$$

with $u_{\alpha I\ell}^{J\pi}(r) \rightarrow I_{\ell}(r)\delta_{\alpha\omega} - U_{\alpha I\ell,\alpha'I'\ell'}^{J\pi}O_{\ell'}(r)$

Collision matrix provides cross sections (several J values are necessary)

Comments on the multichannel system

$$-\frac{\hbar^2}{2\mu} \left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2}\right) u^{J\pi}_{\alpha I\ell} + \sum_{\alpha I'\ell'} V^{J\pi}_{\alpha I\ell,\alpha' I'\ell'}(r) u^{J\pi}_{\alpha' I'\ell'} = E u^{J\pi}_{\alpha I\ell}$$

- Standard form of many scattering theories (CDCC, folding, microscopic, 3-body, etc.)
- Theories differ by the calculation of the potentials
- Diagonal and non-diagonal potentials $V_{\alpha I\ell,\alpha' I'\ell'}^{J\pi}(r)$ non-diagonal $V_{\alpha I\ell,\alpha' I'\ell'}^{J\pi}(r) \rightarrow 0$ for large r diagonal $V_{\alpha I\ell,\alpha II}^{J\pi}(r) \rightarrow \frac{Z_p Z_t e^2}{r}$ for large r
- Main problems

Sometimes: more than 100 channels are included Long range of the potential \rightarrow numerical difficulties

Numerical resolution can be time consuming
 2 main methods: Numerov (+ improvements)
 R-matrix method

C. Cross sections in a multichannel formalism

One channel:

$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2$$
$$f(\theta) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2\ell + 1) (\exp(2i\delta_{\ell}) - 1) P_{\ell}(\cos\theta)$$

Multi channel:

$$\begin{split} \frac{d\sigma}{d\Omega}(\alpha \to \alpha') &= \sum_{K_1 K_2 K_1' K_2'} \left| f_{K_1 K_2, K_1' K_2'}(\theta) \right|^2 \\ f_{K_1 K_2, K_1' K_2'}(\theta) &= \sum_{J\pi} \sum_{ll, l'l'} \dots \bigcup_{\alpha l \ell, \alpha' l' \ell'}^{J\pi} Y_{l'}(\theta, 0) \\ \end{split}$$
Collision matrix

generalization of d: U_{ij}=\eta_{ij}exp(2i\delta_{ij})
determines the cross section

With: K_1K_2 =spin orientations in the entrance channel $K'_1K'_2$ =spin orientations in the exit channel