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Why QCD in external magnetic field?
External magnetic fields can be relevant for the phenomenology of

primordial universe and cosmological EWSM, B ∼ 1016Tesla
Vachaspati, Grasso & Rubinstein

neutron star and magnetars, B ∼ 1010Tesla
Duncan & Thompson

non central heavy-ion collision, B ∼ 1015 Tesla
Skokov & Illarionov & Toneev

1015 e Tesla ∼ 0.06GeV
2 ∼ 3.3m2

π

Possible modifications of the strong
interactions dynamics.
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What could happen?

Model computations (like NJL-model) and effective field theories (like
χPT) predict a rich phenomenology:

Effects on the QCD vacuum structure (e.g. chiral symmetry breaking
and condensates)

Effects on the QCD phase diagram (e.g. changes in the location and
nature of the phase transitions, decoupling of χSB and confinement,
new phases)

Effects on the QCD equation of state (e.g. magnetic contribution to
the pressure)

Need for a first principles non-perturbative
study of QCD in background e.m. fields.

Lattice QCD (LQCD) is an ideal tool to study such questions, at least in
the limit of vanishing density where no algorithmic problems are present
(i.e. no magnetars!)
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LQCD crash course

The starting point is the Feynman path integral approach in the Euclidean
space-time and the basic ideas are the following

Vacuum expectation values of T -ordered products are written as
expectation values with respect to the path measure

The continuum space-time is approximated by a (finite) number of
points and the path integration by standard integration

The integration is performed numerically by Monte-Carlo techniques

In order to maintain gauge invariance the natural variables are not the
gauge fields Aµ ∈ su(N) but the elementary parallel transports
Uµ ∈ SU(N), Uµ ∼ e iaAµ , where a is the lattice spacing.

In finite temperature studies the temperature is related to the temporal
extent of the lattice: T = 1/(Nta).

External e.m. fields are introduced by means of an additional uµ ∈ U(1)
gauge field coupled to fermions.
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LQCD crash course (2)

The theory discretized on a lattice of linear extent L and lattice size a is a
non-perturbative IR and UV regularization of the original theory.
To extract the physical result we have to

check for finite size effects: is L large enough? This means that L is
“much larger” than the typical length scale of the process we are
interested in. Usually this requires L & 3m−1

π .

perform the continuum limit: we regularized the theory, we have to
renormalize it. The lattice spacing is related to some “standard
physical observable” (like e.g. the qq̄ potential) and when everything
is rewritten in term of physical length scales the results are of the form

R(a) = R(a = 0) +O(aα) α > 0

and by studying different values of the lattice spacing we can
extrapolate the continuum result.
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Lattice results

Effects on the QCD vacuum structure

At zero temperature a magnetic field increases the χSB (magnetic
catalysis)
Buividovich et al, Phys. Lett. B 682, 484 (2010), Nucl. Phys. B 826, 313 (2010)

D’Elia and Negro, Phys. Rev. D 83, 114028 (2011)

Bali, Bruckmann, Endrodi, Fodor, Katz and Schafer, Phys. Rev. D 86, 071502

(2012)

An external magnetic field induces anisotropies in the gluon action
Ilgenfritz et al, Phys. Rev. D 85, 114504 (2012)

Bali, Bruckmann, Endrodi, Gruber and Schaefer, JHEP 1304, 130 (2013)

An external CP-odd e.m. field (~E · ~B 6= 0) induces an effective θ term
D’Elia, Mariti and Negro, Phys. Rev. Lett. 110, 082002 (2013)
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Lattice results (2)

Effects on the QCD phase diagram

A magnetic field does not induce a split between χSB and
deconfinement.

Near Tc a magnetic field decrease the amount of χSB (inverse
magnetic catalysis).

A magnetic field decreases the value of Tc (still some controversy).

D’Elia, Mukherjee and Sanfilippo, Phys. Rev. D 82, 051501 (2010)

Bali et al, JHEP 1202, 044 (2012)

Ilgenfritz et al, Phys. Rev. D 85, 114504 (2012)

Bali, Bruckmann, Endrodi, Gruber and Schaefer, JHEP 1304, 130 (2013)

Bruckmann, Endrodi and Kovacs, JHEP 1304, 112 (2013)

Ilgenfritz, Muller-Preussker, Petersson and Schreiber, arXiv:1310.7876 [hep-lat]
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The magnetic properties of the QCD medium

We are interested in the magnetic properties of QCD at finite temperature.

The free energy can be expanded in B as

F (B ,T ) = F (B = 0,T ) + F1(T )B −
1

2
χ(T )B2 +O(B3)

F1 ≡ 0 if there is no ferromagnetism
χ > 0 for paramagnetic media and χ < 0 for diamagnetic media.

Our aims are:

check that F1 is compatible with zero

study χ(T )

check for which B values the linear approximation F ∼ F0 −
1
2χB

2

is reliable
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The standard way and a no-go

The determination of magnetic susceptibilities is a standard problem in
statistical physics. An estimator for χ is obtained by using the relation

χ(T ) = −
∂2F (B ,T )

∂B2

∣

∣

∣

∣

B=0

and it is enough to compute the mean value of some well defined lattice
observable at B = 0.

In LQCD this is not possible: to reduce finite size effects simulations are
performed on compact manifold without boundary and as a consequence
the possible values of the homogeneous magnetic field are quantized.

∂
∂B

on the lattice is not well defined!
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The magnetic field on the lattice

On a compact manifold with no boundary the
Stokes theorem can be applied to each of the two
connected component separated by the continuous
closed path.

For an homogeneous magnetic field Bẑ we have

∮

Aµdxµ = AB

∮

Aµdxµ = −(ℓxℓy −A)B

This does not affect the motion of a particle of charge q if we impose

exp(iqBA) = exp(iqB(A− ℓxℓy )) ⇒ qB =
2πb

ℓxℓy
b ∈ Z

(the ℓµ’s are the lengths in physical units)
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The magnetic field on the lattice (2)

A simple choice of the lattice discretization is

uy (n) = e ia
2qBnx ux(Lx − 1) = e−ia2qBLxny otherwise uj(n) = 1

An example for Lx = Ly = 4.

The e.m. plaquettes are given by

Pij = e ia
2qB for (i , j) 6= (3, 3)

P33 = exp(ia2qB + ia2qBLxLy )

Everything is ok if a2qBLxLy = 2πb
with b ∈ Z. The idea is the same as
the Dirac quantization condition for
monopoles (i.e. “invisible” string).
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How to compute χ

By now three different ways exist to avoid the “derivative problem”

Using anisotropies:
G. S. Bali, F. Bruckmann, G. Endrodi, F. Gruber, A. Schaefer
JHEP 1304, 130 (2013) [arXiv:1303.1328 [hep-lat]] &
arXiv:1311.2559 [hep-lat].

Using finite differences of the free energy:
C. B., M. D’Elia, M. Mariti, F. Negro, F. Sanfilippo
Phys. Rev. Lett. 111, 182001 (2013) [arXiv:1307.8063 [hep-lat]] &
arXiv:1310.8656 [hep-lat].

Using non-uniform magnetic field:
L. Levkova, C. DeTar
Phys. Rev. Lett. 112, 012002 (2014) [arXiv:1309.1142 [hep-lat]].
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The finite difference method

We are interested in studying the B dependence of F , i.e.

∆F (B ,T ) ≡ F (B ,T )− F (0,T ) a2qB =
2πb

LxLy
b ∈ Z

M(b,T ) ≡ ∂F (B,T )
∂b

is not the magnetization, but we can evaluate it at
non quantized values of B (i.e. b ∈ R) in order to get

∆F (B ,T ) =

∫ b

0
M(b̃,T )db̃

All the “quantization” artefacts that affect M simplify in the integral to
give us the correct answer for the quantized B values!

We work on finite lattices, so everything is analytic and we adopt the
previous expression for the ui (n) also for non quantized B values. These
values of B are non physical but are needed only for the purpose of
reconstructing ∆F for integer b.
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Renormalization prescription

The free energy renormalizes additively and a prescription has to be fixed
to perform the continuum limit.

The additive renormalization is temperature independent and can be
removed by subtracting the zero temperature value:

(∆F )R(B ,T ) = ∆F (B ,T )−∆F (B ,T = 0)

This is motivated by the idea that we want to study the properties of the
thermal medium, so the zero temperature value has to be subtracted as a
normalization.

Our procedure is thus the following:

1 compute the “magnetization” M for different temperatures and for
non quantized B values

2 integrate M to get ∆F (B ,T ) for the quantized B values

3 compute the renormalized magnetic free energy (∆F )R(B ,T )
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How M looks like

M computed on 244 and 4× 243 (T ≈ 225MeV) lattices, Nf = 2 + 1,
physical masses, a ≈ 0.22fm. The continuous line is a 3rd order spline
interpolation.
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b

-0.001

0

0.001

0.002

M

4×243

244

The numerical integration of M to get ∆F is performed by means of spline
interpolations together with a bootstrap analysis for the error estimation.
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Extracting the quadratic term

We now need to estimate f2 defined by ∆F (B ,T ) ≈ 1
2 f2(T )b2 (B ∝ b).

In order to minimize the error propagation in the integration we fit

∆F (Bb,T )−∆F (Bb−1,T ) =

∫ b

b−1
M(b̃,T )db̃

with the function

1

2
f2(T )

[

b2 − (b − 1)2
]

=
1

2
f2(T )(2b − 1)

Results for 4 × 163, 4 × 243 and
244 lattices with physical masses
and a ≈ 0.22 fm (T ≈ 225MeV).
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A note on the susceptibility

In an usual linear medium we have (in SI units)

H =
1

µ0
B−M M = χH M =

χ̃

µ0
B χ =

χ̃

1− χ̃

In our simulations the external field is a background field, so we have to
subtract the energy of the magnetic field in vacuum from the free energy:

∆fR = −

∫

M · dB = −
χ̃

µ0

∫

B · dB = −
χ̃

2µ0
B

2

B is the total field felt by the medium, but in our simulations the medium
has no backreaction, so B is just the external field. Once χ̃ is determined,
we can extract the real world behaviour by using

∆fR = −
µ0χ(1 + χ)

2
H

2
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Check for systematics

dependence on the volume
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dependence on the spline in-
terpolation and/or the number
of points

s 16 points 32 points

1 0.001192(32) 0.001187(25)

2 0.001188(35) 0.001186(25)

3 0.001184(35) 0.001188(25)

4 0.001183(34) 0.001188(27)

dependence on the B field
extension out of integers

one string 0.00211(5)

two strings 0.00208(4)

Systematics are always less than statistical errors
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The result for χ̃
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Comments & physical interpretation

The system is paramagnetic in the explored regime

The QCD medium is linear up to eB ≈ 0.2GeV
2

UV effects are small

Expectation for the low-T region: Hadron Resonance Model
χ̃ ≈ A exp(−M/T )

Expectation for the high-T region: pQCD, χ̃ = A′ log(T/M ′)
Elmfors et al., Phys. Rev. Lett. 71, 480 (1993)

Data are well described by a function

χ̃(T ) =

{

A exp(−M/T ) T ≤ T0

A′ log(T/M ′) T > T0

with C1 matching at T0. The fit gives M ≈ 900MeV (lightest
hadrons with magnetic moment) and T0 ≈ 160MeV ≈ Tc .
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Physical picture (oversimplified but nice)

We have shown that the system is weakly paramagnetic in the confined
region and strongly paramagnetic in the deconfined phase.

Let’s think that the transition is first order. (It isn’t!)

For T < Tc we have Fc < Fd (the confined phase is the stable one)
and the transition happens when Fc = Fd .

When a magnetic field is present Fc(B) ≈ Fc(B = 0) (since χc ≈ 0)
and Fd(B) ≈ Fd(B = 0)− 1

2χdB
2 < Fd(B = 0) (since χd > 0).

As a consequence Tc(B) < Tc(B = 0).

As a consequence 〈ψ̄ψ〉(B ,T ≈ Tc) < 〈ψ̄ψ〉(B = 0,T ≈ Tc)
(i.e. inverse magnetic catalisis near the transition).
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Continuum limit and comparison with other methods
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Magnetic contribution to the pressure
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Conclusions

We introduced an intuitive non-perturbative method to compute the
magnetic properties of strongly interacting matter.

We have shown that the QCD medium is paramagnetic in the
explored temperature range.

The confined phase is weakly paramagnetic, the deconfined phase is
strongly paramagnetic.

The QCD medium is linear up to B ≈ 0.2GeV
2

The magnetic contribution to the pressure for B = 0.1÷ 0.2GeV
2

can be of order of 10÷ 50% and can play an important role in
heavy-ion collision phenomenology.

For B > 0.2GeV
2 nonlinear susceptibilities can play a dominant role

(both at zero and finite temperatures). Their study is on the way.
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