

The SNOLAB Science Programme

Clarence Virtue

UniversiteLaurentienne

(on behalf of SNOLAB)

Elements of the Science Programme

Direct dark Matter Detection

Low Energy Solar Neutrino Physics

Supernova Neutrino Detection

Location

Location

A Brief History

- Outgrowth of the highly successful SNO project
- Proposal in 2001
- Funding in 2002

- Surface facility
- Groundbreaking 2004
 - Occupancy 2005
 - Underground
- excavation commenced Nov 2004
- Experiment installation 2009

2 km deep!

FIG. 3: The total muon flux measured for the various underground sites summarized in Table I as a function of the equivalent vertical depth relative to a flat overburden. The

Cosmogenics likewise reduced. 0.27 muons/m²/day at SNOLAB. 70 /day in SNO+ vs 26,000 /day in KamLAND.

FIG. 14: The total muon-induced neutron flux deduced for the various underground sites displayed. Uncertainties on

Vale Creighton Mine

- Surface Facility (3100 m²)
 - Operational from 2005 Provides offices, conference room, dry, warehousing, data center, clean-room labs, detector construction labs, chemical + assay lab
 - 440m² class-1000 clean rooms for experiment setup and tests

Clarence Virtue

XXVIII Rencontres de Physique de la Vallée d'Aoste

27th February, 2014

Underground Facilities

Original SNO Area: 1860 m²

Expanded SNOLAB Area: 5360 m²

أستما والالاست المكر والمائلة المتورج والمنابعة والمكركية بالمتعارك والمكر والمكانية المكانية المتكرفة والمنابعة والمتكرك

Underground Facilities

Original SNO Area: 1860 m²

Expanded SNOLAB Area: 5360 m²

Personnel facilities

- SNO+: $^{130}\text{Te} \rightarrow ^{130}\text{Xe} + e^{-} + e^{-}$
 - Uses existing SNO detector. Heavy water replaced by scintillator loaded with ¹³⁰Te. Modest resolution compensated by high statistical accuracy.
 - Requires engineering for acrylic vessel hold down and purification plant.
 Technologies already developed.
 - Will also measure
 - solar neutrino pep line (low E-threshold)
 - geo-neutrinos (study of fission processes in crust)
 - supernovae bursts (as part of SNEWS)
 - reactor neutrinos (integrated flux from Canadian reactors)
- HALO: Dedicated Supernova watch experiment
 - Charged/neutral current interactions in lead
 - Re-use of detectors (NCDs) and material (Pb) from other systems
 - Operational May 2012
 - Will form part of SNEWS array

Erice September 2013, Christine Kraus, Laurentian University

27th February, 2014

Liquid scintillator

- Detector to be filled with 780 tonnes of organic liquid scintillator (LS)
- More light yield than Čerenkov , around 400 p.e./MeV, enabling lower energy threshold
- Linear alkylbenzene (LAB)
 - High light yield
 - Long attenuation length
 - Safe: high flash point and low toxicity
 - More affordable than other scintillators
- Add wavelength shifter
 - Initial plan: 2g/L PPO fluor

Linear Alkylbenzene

Erice September 2013, Christine Kraus, Laurentian University

SNQ

Double beta isotopes

1245ne

76G

10

Decay candidate	Q-value (MeV)	% natural abundance
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge → ⁷⁶ Se	2.040	7.8
⁸² Ca→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd → ¹¹⁰ Cd	2.013	11.8
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te → ¹³⁰ Xe	2.533	34.1
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
¹⁵⁰ Nd → ¹⁵⁰ Sm	3.367	5.6

Erice September 2013, Christine Kraus, Laurentian University

20

natural abundance (%)

30

40

1.5

XXVIII Rencontres de Physique de la Vallée d'Aoste

50

8

Advantages of Tellurium

- 34% natural abundance
- $2\nu\beta\beta$ rate is low
- no inherent optical absorption lines
- High values of loading feasible (default 0.3%)
- Internal U/Th background can be actively suppressed by identifying ²¹⁴Bi-²¹⁴Po alphas

Erice September 2013, Christine Kraus, Laurentian University

10

SNC

Loading scintillator

Conventional Loading Method Carboxylate Organometallic Complex

New loading technique (BNL): Dissolve telluric acid in water and add a few percent of this mixture to LAB using a surfactant. Clear and stable has been demonstrated for more than 1 year.

ICP-MS determined U/Th content of telluric acid to be 2-3 times 10¹¹ g/g U/Th purification factors of >400 in a single pass have been achieved.

Erice September 2013, Christine Kraus, Laurentian University

SNC

- ★ 2 years lifetime and fiducial volume cut at 3.5 m (20%)
- ★ > 99.99% efficient 214 Bi tag, 97% efficient internal 208TI tag
- ★ Factor 50 reduction 212BiPo and negligible cosmogenic isotopes
- ★ $m_{0\nu 2\beta}$ = 200 meV assumed for this plot

Erice September 2013, Christine Kraus, Laurentian University

XXVIII Rencontres de Physique de la Vallée d'Aoste

15

SNO+ projected sensitivity

Erice September 2013, Christine Kraus, Laurentian University

Clarence Virtue

XXVIII Rencontres de Physique de la Vallée d'Aoste

27th February, 2014

SNO+ Status

Development of a scaffold for cleaning internal surface of the acrylic vessel. AV now cleaned and ready for filling with water.

First LAB plant vessel being installed into utility drift. All vessels now in place and interconnects started.

Cavity now being filled with UPW.... Presently ~4m

Clarence Virtue

HALO - a Helium and Lead Observatory

A "SN detector of opportunity" / An evolution of LAND – the Lead Astronomical Neutrino Detector, C.K. Hargrove et al., Astropart. Phys. 5 183, 1996.

"Helium" – because of the availability of the ³He neutron detectors from the final phase of SNO

"Lead" – because of high v-Pb crosssections, low n-capture crosssections, complementary sensitivity to water Cerenkov and liquid scintillator SN detectors

HALO is using lead blocks from a decommissioned cosmic ray monitoring station

Supernova signal

- In 79 tonnes of lead for a SN @ 10kpc[†],
 - Assuming FD distribution with T=8 MeV for v_{μ} 's, v_{τ} 's.
 - 68 neutrons through v_e charged current channels
 - 30 single neutrons
 - 19 double neutrons (38 total)
 - 20 neutrons through v_x neutral current channels
 - 8 single neutrons
 - 6 double neutrons (12 total)
- ~ 88 neutrons liberated; ie. ~1.1 n/tonne of Pb

†- cross-sections from Engel, McLaughlin, Volpe, Phys. Rev. D 67, 013005 (2003)

- For HALO neutron detection efficiencies of 50% have been obtained in MC studies optimising the detector geometry, the mass and location of neutron moderator, and enveloping the detector in a neutron reflector.

CC:	ν_e + ²⁰⁸ Pb	\rightarrow	$^{207}\text{Bi} + n + e^{-}$
	ν_e + ²⁰⁸ Pb	\rightarrow	$^{206}\text{Bi} + 2n + e^{-}$
NC:	$\nu_x + {}^{208}\mathrm{Pb}$	\rightarrow	207 Pb + n
	$\nu_r + {}^{208}\mathrm{Pb}$	\rightarrow	$^{206}{ m Pb} + 2n$

Current programme: Dark Matter at SNOLAB

- Noble Liquids: DEAP-I, MiniCLEAN, & DEAP-3600
 - Single Phase Liquid Argon using pulse shape discrimination
 - Prototype DEAP-I completed operation. Demonstration of PSD at 10⁸.
 - Construction for DEAP-3600 and MiniCLEAN well advanced.
 - Will measure Spin Independent cross-section.
- Superheated Liquid / Bubble chamber: PICASSO, COUPP => PICO
 - Superheated droplet detectors and bubble chambers. Insensitive to MIPS radioactive background at operating temperature, threshold devices; alpha discrimination demonstrated;
 - COUPP-4 (CF₃I) operation completed; PICASSO-III (C₄F₁₀) currently operational, COUPP-60 (CF₃I) in data taking; PICO-2I (C₃F₈) under construction;
 - Measure Spin Dependent cross-section primarily, COUPP has SI sensitivity on iodine;
 - World leading spin-dependent sensitivity published in 2012.
- Solid State: DAMIC, SuperCDMS
 - State of the art CCD (DAMIC) Si / Ge crystals with ionisation / phonon readout (SuperCDMS).
 - DAMIC operational since 2012, 10g CCD;
 - CDMS Currently operational in Soudan facility, MN. Next phase will benefit from SNOLAB depth to reach desired sensitivity.
 - Mostly sensitive to Spin Independent cross-section.

Cube Hall - DEAP/miniCLEAN

DEAP-3600

DEAP-3600 Detector

3600 kg argon target (1000 kg fiducial) in sealed ultraclean Acrylic Vessel

Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction

255 Hamamatsu R5912 HQE PMTs 8-inch (32% QE, 75% coverage)

50 cm light guides + PE shielding provide neutron moderation

Detector in 8 m water shield at SNOLAB

27th February, 2014

Clarence Virtue

DEAP acrylic vessel Feb. 2014

Clarence Virtue

XXVIII Rencontres de Physique de la Vallée d'Aoste

27th February, 2014

MiniCLEAN Detector

- Single phase LAr/LNe (solar neutrino capability)
- 180kg fiducial volume; PSD discrimination for background rejection
- Wavelength shifter on acrylic plugs
- PMT Cassette into steel vessel

MiniCLEAN Construction

Clarence Virtue

XXVIII Rencontres de Physique de la Vallée d'Aoste

27th February, 2014

Cryopit - Features

Plus

- -Presently unallocated
- -Proposals from
- nEXO (DBD)
- Ge 1T (DBD)
- PICO 250 (DM)
- LAr DEAP6 (DM)
- CLEAN (DM/solar)
- plus 2 letter of interest

The SNOLAB Science Programme

Experiment	Solar v	Ονββ	Dark Matter	Supernova v	Geo v	Other	Space allocated	Status
CEMI						Mining Data Centre	Surface Facility	Proposal
COBRA		٧						Request
COUPP-4			V				J'-Drift	Operational
COUPP-60			V				Ladder Labs	Operational
DAMIC			V				J'-Drift	Operational
DEAP-1			V				J'-Drift	Operational
DEAP-3600			V				Cube Hall	Construction
nEXO		v						Request
HALO				V			Halo Stub	Operational
MiniCLEAN			V				Cube Hall	Construction
PICASSO-III			V				Ladders Labs	Operational
PUPS						Seismicity	Various	Completed
SNO+	٧	٧		V	v		SNO Cavern	Construction
SuperCDMS			V				Ladder Labs	Request
U-Toronto						Deep Subsurface Life	External Drifts	Completed

