Studies of Single Top Quark Production at the Tevatron

Craig Group (The University of Virginia and Fermilab)

on behalf of the CDF and D0 Collaborations

The Tevatron

CDF

Chicago

DØ

p-pbar collisions at 1.96 TeV Peak luminosity 10³⁴ cm²/s Weekly integrated luminosity ~50 pb⁻¹ 12 fb⁻¹ delivered (10 fb⁻¹ on tape)

Main Injector

After a 26 year career, the last Tevatron collision was on Sept. 30th 2011 ! (still interesting things to say 2.5 years later)

1 km

Feb. 2014

Craig Group - Studies of Single Top Quark Production

The CDF and D0 detectors

interactions, was first observed at Tevatron in 2009.

Tevatron v/s LHC

Both the Tevatron and LHC are sensitive to t-channel.

The Tevatron has an advantage in s-channel studies but is not sensitive to Wt production.

Motivation

- New physics may affect the rate of
 - *s* and *t*-channel differently:
 - s-channel: new bosons
 - t-channel: FCNC

- Access to the W-t-b vertex
- Allows measurement of CKM matrix element |V_{tb}|:
 - Is this Matrix 3x3 ?
 Is there a 4th generation ?
 - Does unitarity hold ?
 - "simple" 4th generation ruled out by EW fits but see e.g.

Production Rates

- Single Top production is a rare process at the Tevatron
 - Signal:Background (S:B) ~ 1:10⁹
 (before any selection)
- First step:
 - Trigger on leptons/MET
 - S:B to ~ 1:1000
 - High p_T lepton triggers (e, μ)
 - MET + jets triggers
- Second step:
 - Topological event selection
 - *b*-jet selection
 - S:B **~ 1:20**
- Third step:
 - Advanced analysis techniques to separate signal from background using discriminants
 - S:B > 1:1 in most significant bins

Event Selection

(1) Lepton + MET + jets Selection:

- Missing E_T (MET)
- 2 or more jets
- Veto "non-W", Z, dileptons,
 Conversions, Cosmics
- At least one *b*-tagged jet
 (displaced secondary vertex)

(2) MET + jets Selection:

- Large MET
- Veto leptons
- 2 or more jets
- At least one *b*-tagged jet
- Neural Network to suppress QCD background
- => Orthogonal Event Selections:

(2) adds 33% acceptance to (1)

Single Top Background Estimate W+HF jets (Wbb/Wcc/Wc) <u>Top/EWK (WW/WZ/Z→ττ, ttbar)</u> •W+jets normalization from data and MC normalized to theoretical cross-section heavy flavor (HF) fractions from

ALPGEN Monte Carlo

MC driven

Feb. 2014

Modeled by Pythia Monte Carlo

The Challenge

Note: DØ also includes events with 4-jets in the signal region

The Challenge

Note: DØ also includes events with 4-jets in the signal region

Multivariate Techniques

Yield [Events/10 GeV

2000

1000

- Goal: Combine multiple * variables into single, more powerful discriminant
- Techniques range from *
 - Matrix Elements: Derive * discriminant from "first principals" (leading-order amplitudes)
 - Neural Networks, Boosted * **Decision Trees, Multivariate** Likelihoods: General purpose techniques for combining multiple variables

CDF 7.5 fb⁻¹

- Train NN with 11-14 variables
- Use s-channel as signal in only 2 jet 2 tag channel, t-channel for the rest
- Validate data-background agreement in 0-tag sample
- CDF Note 10739

(SM prediction 3.34 pb)

 $\sigma_{s+t} = 3.04^{+0.57}$

-0.53 **pb** (17%)

꿏

D0 9.7 fb⁻¹

Phys.Lett. B726 (2013) 656-664

- Multipurpose analysis for s+t, s-only, and t-only
- Optimized selection for s-channel production
- D0 has used three different techniques: BDT, BNN, ME
 - BDT uses 30 well-modeled variables, BNN uses 4-vectors
 - Improved ME, better tt model, and b-tag weights for discriminants
- Simultaneous s- and t- channel cross section measurements on same data

CDF MET+jets 9.1 fb⁻¹ CDF Note 10979

- MET+jets selection only lepton veto
- Recover non-reconstructed electrons and muons and $W \rightarrow \tau v$ (hadronic decay)
- Completely orthogonal dataset to ℓ+jets selection
- Train several MVA against QCD and tt, then combine with NN

Craig Group - Studies of Single Top Quark Production

New!

Summary of s+t measurements

Single Top Quark Cross Section

Constraints on V_{tb}

- $\sigma(s,t) \propto |V_{tb}|^2 \rightarrow calculate posterior pdf in terms of <math>|V_{tb}|^2$
- To transform $\sigma(s+t)$ measurement into Vtb, assume:
 - SM top quark decay: $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$
 - Pure V-A and CP conserving Wtb vertex
 - No assumption on number of families or CKM unitarity (D0 doesn't assume SM σ_s/σ_t ratio either)
- Complementary with tt decay measurements of R

s-channel v/s t-channel

Can we measure s-channel and t-channel independently?

- t-channel events tend to have a distinctive forward jet whose direction is correlated with the lepton charge.
- s-channel is more likely to have central jets and to two identifiable b jets while t-channel tends to only have one
- Other subtle differences in event kinematic properties

s-channel v/s t-channel

s-channel optimized analyses

New lepton+jets and MET+jets s-channel optimized analyses inherit tools from SM Higgs search

300

250

200

150

100

50

0 L 50

Store of events 20000 15000 10000

5000

50

150

150

100

100

200 250

300

Pretag

Top-quark mass (GeV/ c^2)

200 250 300 350

Top-quark mass (GeV/ c^2)

350

(e)

Number of events

- Extra lepton trigger > 10% more leptons
- Multivariate tagger
- Improved background modeling
- Both use NN trained for s-channel in all categories
- CDF confirms evidence for s-channel!
- Both submitted to PRL

Craig Group - Studies of Single Top Quark Production

New Tevatron s-channel combination

New Tevatron s-channel combination

New Tevatron s-channel combination

Asymptotic approximation, log-likelihood ratio \rightarrow Observed p-value: 2 x 10⁻¹⁰

Conclusions

- The Tevatron single top program is almost complete:
 - Single top first observation in 2009
 - t-channel observation 2011
 - s-channel observation 2014
- **σ**_{s+t}: 14% precision
- **σ**_t: 17% precision
- **σ**_s: 19% precision
- Vtb: 8% precision

- First observation of s-channel single top production!
- Final Tevatron combination coming soon...
 - \rightarrow Expect updates on V_{tb}, σ_{s+t} , and 2-D s v/s t

Bibliography: Single Top at the Tevatron

SM Measurements:

- D0 Search: Phys. Lett. B 622, 265 (2005)
- D0 PRD: Phys. Rev. D 75, 092007 (2007)
- D0 Evidence: Phys. Rev. Lett. 98, 181802 (2007), Phys. Rev. D 78, 012005 (2008)
- CDF Evidence: Phys. Rev. Lett. 101, 252001 (2008)
- D0 Observation: Phys. Rev. Lett. 103, 092001 (2009)
- CDF Observation: Phys. Rev. Lett. 103, 092002 (2009)
- Tevatron Combination: arXiv:0908.2171
- CDF PRD: Phys. Rev. D82, 112005 (2010)
- CDF MET+jets PRD: Phys. Rev. D81, 072003 (2010)
- D0 t-channel: Phys. Lett. B 682, 363 (2010), Phys. Lett. B 705, 313 (2011)
- D0 PRD: Phys. Rev. D 84, 112001 (2011)
- D0 s-channel evidence: Phys. Lett B 726, 656 (2013)
- CDF s-channel evidence: arXiv:1402.0484 (submitted to PRL)
- CDF s-channel MET+jets: (submitted to PRL)
- Tevatron s-channel observation: arXiv:arXiv:1402.5126 (submitted to PRL)

Exotics and properties:

- D0 Anomalous couplings: Phys. Rev. Lett. 101, 221801 (2008), Phys. Lett. B 708, 21 (2012)
- D0 FCNC: Phys. Rev. Lett. 99, 191802 (2007), Phys. Lett. B 693, 81 (2010)
- CDF Dark Matter + single top: Phys. Rev. Lett. 108, 201802 (2012)
- CDF FCNC: Phys. Rev. Lett. 102, 151801 (2009)

S-channel (TeV \rightarrow LHC)

Cross section(pb)	tŦ	s-channel	<i>t</i> -channel
Tevatron(1.96 TeV)	7.08	1.05	2.08
LHC(8 TeV)	234	x5.5 5.55	87.2

(N. Kidonakis, arXiv:1210.7813)

Background subtracted

General analysis method

Shape Fit

normalized to unit area

- To go beyond counting experiment, use shape fit
 - Provides in-situ constraint on background
 - Parts of the distribution have much better purity
- Which variable is best?

- TLC 2Jets 1Tag CDF II Preliminary 3.2 fb Event Fraction single top 0. Wbb+Wcc Wc Wqq Diboson Z+jets 0.05 QCD -2 **Q** (lep) • η (l-jet)
- Perform binned likelihood fit :

$$L(sig,bkg_1...bkg_N) = Background Constraints$$

$$\prod_{k=1}^{B} \frac{e^{-\mu_k} \mu_k^{n_k}}{n_k!} \prod_{j=1}^{4} G(bkg_j \mid 1, \Delta_j)$$

Binned Maximum Likelihood Fit

Systematic uncertainties can affect rate and template shape and are taken into account:

- Rate systematics give fit templates freedom to move vertically only
- Shape systematics allow templates to 'slide horizontally' (bin by bin)

춖

Systematics

s-channel combination

CDF		D0		Corre-
Norm	Dist	Norm	Dist	lated
4.5%		4.5%		No
4.0%		4.0%		Yes
2 - 10%	•	3–8%		Yes
2 - 12%	•	2 - 11%	•	Yes
15 - 40%	•	19 - 50%	•	No
2 - 10%	•	1–5%	•	No
10 - 30%		15 - 40%	•	No
0 - 20%	•	9 - 40%	•	No
	$\begin{array}{c} \text{CDI} \\ \text{Norm} \\ 4.5\% \\ 4.0\% \\ 2-10\% \\ 2-12\% \\ 15-40\% \\ 2-10\% \\ 10-30\% \\ 0-20\% \end{array}$	$\begin{array}{c} \text{CDF} \\ \text{Norm} & \text{Dist} \\ 4.5\% & \\ 4.0\% & \\ 2-10\% & \\ 2-10\% & \\ 15-40\% & \\ 15-40\% & \\ 10-30\% & \\ 0-20\% & \\ \end{array}$	CDF $D0$ NormDistNorm $4.5%$ $4.5%$ $4.0%$ $4.0%$ $2-10%$ $-10%$ $2-12%$ $-10%$ $15-40%$ $19-50%$ $10-30%$ $15-40%$ $0-20%$ $-10%$	CDF $D0$ NormDistNormDist $4.5%$ $4.5%$ $4.5%$ $4.0%$ $4.0%$ $4.0%$ $2-10%$ $-3-8%$ $-15-8%$ $2-12%$ $-2-11%$ $-15-10%$ $15-40%$ $-1-5%$ $-15-40%$ $10-30%$ $15-40%$ $-15-40%$ $0-20%$ $-1-50%$ $-15-40%$

Total uncertainty on background 15-20%

꿏

D0 t-channel

Motivation

- New physics may affect the rate of
 - *s* and *t*-channel differently:
 - s-channel: new bosons
 - t-channel: FCNC

- Access to the W-t-b vertex
- Allows measurement of CKM matrix element |V_{tb}|:
 - Is this Matrix 3x3 ?
 Is there a 4th generation ?
 - Does unitarity hold ?
 - "simple" 4th generation ruled out by EW fits but see e.g.

J. Alwall et. al., "Is |V_{tb}|~1?" Eur. Phys. J. C49 791-801 (2007).

(V_{ud}	V_{us}	V_{ub}	$V_{uX}?$
	V_{cd}	V_{cs}	V_{cb}	V_{cX} ?
	V_{td}	V_{ts}	V_{tb}	V_{tX} ?
ĺ	V_{Yd} ?	V_{Ys} ?	V_{Yt} ?	V_{YX} ? /