The Q_{Weak} Experiment

First Determination of the Weak Charge of the Proton

- Qweak basics and motivation
- Experimental design
- Preliminary results
- Outlook, summary

Manolis Kargiantoulakis On behalf of the Q_{Weak} Collaboration Les Rencontres de Physique de la Vallée d'Aoste La Thuile 2014

Precision tests of the Standard Model

The Standard Model has been greatly successful, but thought to be just an effective low-energy theory of a more fundamental underlying structure.

Two complementary approaches to look for Physics *Beyond* the Standard Model :

Energy frontier - direct searches, eg LHC, Tevatron

Precision or Intensity frontier - indirect high-precision measurements at lower energies α₁-2, 0vββ, atomic parity violation (APV), parity violating electron scattering (PVES)

Precision measurements focus on quantities that are precisely predicted or suppressed within the Standard Model.

The weak charge of the proton $Q_{W}(p)$

is both suppressed and precisely predicted in the SM

Weak charge of the proton, $Q_{w}(p)$

Charge			
Particle	Electric	Weak (vector)	
u	+2/3	$-2 \text{ C}_{1u} = + 1 - 8/3 \frac{\sin^2 \theta_W}{\sin^2 \theta_W}$	Weak mixing
d	-1/3	$-2 C_{1d} = -1 + 4/3 \frac{\sin^2 \theta_{W}}{\sin^2 \theta_{W}}$	angle
<i>Proton</i> uud	+1	$Q_w^{p} = 1 - 4 sin^2 \theta_W \approx 0.07$	<pre>} Suppressed</pre>
<i>Neutron</i> udd	0	Q _w ⁿ = -1	

Weak charge of the proton, $Q_{w}(p)$

Charge	Flootria	Maak (vaatar)	Vector wea	ak quark couplings, defined in e 4-fermion contact interaction
	Electric	vveak (vector)		$Q_{p}^{p} = -2 (2C_{p} + C_{p})$
u	+2/3	$-2C_{1u} = +1 - 8/3 \sin^2 \theta_W$	Weak mixing	$\mathbf{A}_{W} = (\mathbf{A} \mathbf{C}_{1u} + \mathbf{C}_{1d})$
d	-1/3	$-2C_{1d} = -1 + 4/3 \sin^2 \theta_W$	angle	e e e
Proton] .	q q
uud	+1	$Q_w^p = 1 - 4 sin^2 \theta_W \approx 0.07$	Suppressed	$C_{1i} \equiv 2g_A^e g_V^i$
Neutron				M_{C} G_{E} ∇
udd	0	$Q_w^n = -1$		$\mathscr{L}_{e-q}^{NC} = \frac{-F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma^{3} e \sum C_{1q} \bar{q} \gamma^{\mu} q$

Weak charge of the proton, $Q_{W}(p)$

Charge Particle	Electric	Weak (vector)	Vector wea	ak quark couplings, defined in e 4-fermion contact interaction
u	+2/3	$-2C_{1u} = +1 - 8/3 \sin^2 \theta_W$	Weak mixing	$Q_W^p = -2 \left(2C_{1u} + C_{1d} \right)$
d	-1/3	$-2C_{1d} = -1 + 4/3 \sin^2 \theta_{W}$	angle	e e Z ⁰
<i>Proton</i> uud	+1	$Q_w^p = 1 - 4 sin^2 \theta_W \approx 0.07$	<pre>Suppressed</pre>	$\frac{q}{C_{1i}} \equiv 2g_A^e g_V^i$
<i>Neutron</i> udd	0	Q _w ⁿ = -1		$\mathscr{L}_{e-q}^{NC} = \frac{G_F}{\sqrt{2}} \overline{e} \gamma_\mu \gamma^5 e \sum C_{1q} \overline{q} \gamma^\mu q$

The \mathbf{Q}_{Weak} experiment proposes a 4% determination of $\mathbf{Q}_{\text{w}}(\mathbf{p})$

Very important precision test of EW sector. $Q_{w}(p)$ suppression allows:

- Senhanced TeV-scale sensitivity to signatures of BSM physics
- → A 0.3% extraction of $\sin^2\theta_w$, the weak mixing angle: most precise at low Q²
- \rightarrow High-precision extraction of both C_{11} , C_{1d} , in combination with APV data

The Q_{Weak} Experiment in Jefferson Lab

The Jefferson Lab e⁻ accelerator facility, supporting a world-leading Parity Violation program Santa F Oklahoma Cit North Atlantic Pacific Ocean State capital A Scale 1:27.000.000 Chihu Albers Equal-Area Projection THE BAHAMAS EXICO allels 28°30'N and 45°30'N Gulf of Mexico SITE LOCATION Richmond Williamsburg Hampton Vorktown Newport News Virginia Beach

Qweak was completed on May 2012 after 2 years of data-taking in Hall C of Jefferson Lab.

Elastic scattering of polarized e⁻ on proton target.

Parity-Violating asymmetry in e-p scattering

Electrons prepared in two "mirror" states of opposite helicity. The Parity-Violating asymmetry arises from interference of y and Z exchange:

$$A_{ep}^{PV} = \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}} \approx \frac{\left| M_{weak}^{PV} \right|}{\left| M_{EM} \right|}$$

Tree-level expression in terms of EM and weak form factors

$$A_{ep} = \left[\frac{G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \left[\frac{\varepsilon G_E^{\gamma} G_E^{Z} + \tau G_M^{\gamma} G_M^{Z} - (1 - 4\sin^2\theta_w) \varepsilon' G_M^{\gamma} G_A^{Z}}{\varepsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2}\right]$$

At forward angles and low Q², recast the reduced asymmetry:

$$\Rightarrow A_{ep}/A_0 = \mathbf{Q}_W^p + Q^2 B(Q^2, \theta) , \quad A_0 = \left[\frac{-G_F Q^2}{4\sqrt{2\pi\alpha}}\right]$$

Access to the neutral-weak charge of the proton

Parity-Violating asymmetry in e-p scattering

Electrons prepared in two "mirror" states of opposite helicity. The Parity-Violating asymmetry arises from interference of y and Z exchange:

$$A_{ep}^{PV} = \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}} \approx \frac{\left| M_{weak}^{PV} \right|}{\left| M_{EM} \right|}$$

Tree-level expression in terms of EM and weak form factors $A_{ep} = \left[\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \right]$ At forward angles and low Q².

$$P_{p} = \left[\frac{G_{F}Q^{2}}{4\pi\alpha\sqrt{2}}\right] \left[\frac{\varepsilon G_{E}^{\gamma} G_{E}^{Z} + \tau G_{M}^{\gamma} G_{M}^{Z} - (1 - 4\sin^{2}\theta_{w}) \varepsilon' G_{M}^{\gamma} G_{A}^{Z}}{\varepsilon (G_{E}^{\gamma})^{2} + \tau (G_{M}^{\gamma})^{2}}\right]$$

At forward angles and low Q², recast the reduced asymmetry:

 $\Rightarrow A_{ep}/A_0 = \mathbf{Q}_W^p + Q^2 B(Q^2, \theta) \quad , \quad A_0 = \left[\frac{-G_F Q^2}{4\sqrt{2\pi\alpha}}\right]$

Access to the neutral-weak charge of the proton

Nuclear structure in terms of EM and weak FFs. Suppressed at low Q² and constrained experimentally by the world PVES data.

28ème Rencontres de Physique de La Vallée d'Aoste world PVES data.

Q_{Weak} Preliminary results

Results from the commissioning run of the experiment. Only ~4% of full dataset, but already competitive.

First Determination of the Weak Charge of the Proton PRL 111, 141803 (2013)

Phy	sical Re		tters ving physics forward			
Home	Browse	Search	Subscriptions	Help		
Citation Se	earch: Phys. Rev. Le	ett. 🗾 🔪	/ol. Page/Arti	cle	Go	
			Access provided	through the su	bscription of Univ	versity of Virginia Go Mobile!
APS » Jour Phys. Re	nals » Phys. Rev. Lett. ev. Lett. 111, 141	» Volume 111 » Issue 1 803 (2013) [7 pag	l4 Jes]			< Previous Article Next Article >
View t	his article on ou	r new beta websi	ite Try it!			

First Determination of the Weak Charge of the Proton

Abstract	References	No Citing Articles		
Download: PDF (613 kB) Export: BibTeX or End	Note (RIS)		
D. Androic et al. (Q_{weak} Collaboration) Show All Authors/Affiliations				
Received	25 July 2013; published 2	October 2013		

The Q_{weak} experiment has measured the parity-violating asymmetry in $\vec{e}p$ elastic scattering at $Q^2 = 0.025 (\text{GeV}/c)^2$, employing 145 μ A of 89% longitudinally polarized electrons on a 34.4 cm long liquid hydrogen target at Jefferson Lab. The results of the experiment's commissioning run, constituting approximately 4% of the data collected in the experiment, are reported here. From these initial results, the measured asymmetry is $A_{cp} = -279 \pm 35$ (stat) ± 31 (syst) ppb, which is the smallest and most precise

- A_{msr} : Includes corrections for helicity-correlated beam differences
- P : Beam polarization
- A,,f : Background asymmetry and signal fraction
- $\boldsymbol{\mathsf{R}}_{_{total}}$: Radiative corrections and non-uniform $\boldsymbol{\mathsf{Q}}^2$

Corrections and contributions to uncertainty

	Correction Value (ppb)	$\begin{array}{c} \text{Contr}\\ \text{to } \Delta A \end{array}$	$\mathbf{L}_{ep} \ (\mathrm{ppb})$		
Normalization Factors Applied to A_{Raw}					
Beam Polarization $1/P$	-21		5		
Kinematics R_{tot}	5		9		
Bckgrnd Dilution $1/(1 - f_{tot})$	-7	7 -			
Asymmetry corrections					
Beam Asymmetries κA_{reg}	-40	13			
Transverse Polarization κA_T	0	5			
Detector Linearity κA_L	0	4			
Backgrounds	$\kappa P f_i A_i$	$\delta(f_i)$	$\delta(A_i)$		
Target Windows (b_1)	-58	4	8		
Beamline Scattering (b_2)	11	3	23		
Other Neutral bkg (b_3)	0	1	< 1		
Inelastics (b_4)	1	1	< 1		

$$A_{ep} = R_{total} \begin{bmatrix} \frac{A_{msr}}{P} - \sum_{i=1}^{4} A_i f_i \\ 1 - \sum_{i=1}^{4} f_i \end{bmatrix}$$

- A_{msr} : Includes corrections for helicity-correlated beam differences
- P : Beam polarization
- A,,f : Background asymmetry and signal fraction
- $\boldsymbol{\mathsf{R}}_{_{total}}$: Radiative corrections and non-uniform $\boldsymbol{\mathsf{Q}}^2$

Preliminary Q_{Weak} result:

Corrections and contributions to uncertainty

	Correction Value (ppb)	Contribution to ΔA_{ep} (ppb)			
Normalization Factors Applied to A_{Raw}					
Beam Polarization $1/P$	-21		5		
Kinematics R_{tot}	5		9		
Bckgrnd Dilution $1/(1 - f_{tot})$	-7		-		
Asymmetry corrections					
Beam Asymmetries κA_{reg}	-40	13			
Transverse Polarization κA_T	0	5			
Detector Linearity κA_L	0	4			
Backgrounds	$\kappa P f_i A_i$	$\delta(f_i)$	$\delta(A_i)$		
Target Windows (b_1)	-58	4	8		
Beamline Scattering (b_2)	11	3	23		
Other Neutral bkg (b_3)	0	1	< 1		
Inelastics (b_4)	1	1	< 1		

 $A_{ep} = -279 \pm 35$ (statistics) ± 31 (systematics) ppb

Preliminary results: A_{ep}

 $A_{ep} = -279 \pm 35$ (statistics) ± 31 (systematics) ppb

Preliminary results: Weak charge of the proton

Global PVES fit yields first determination of the neutral-weak charge of the proton

$$Q_w^p = 0.064 \pm 0.012$$

(18.7% relative)

Consistency with SM prediction:

 $Q_w^p(SM) = 0.0710 \pm 0.0007$

ée d'Aoste

Constraints on C₁₀ couplings

Preliminary results: Weak mixing angle

 $Q_W^p = [\rho_{\rm NC} + \Delta_e][1 - 4\sin^2\hat{\theta}_{\rm W}(0) + \Delta'_e] + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$

SM prediction for running in the MS scheme, anchored by collider measurements at the Z-pole.

Precision measurements at lower energies test the SM prediction, complementary to collider searches (but many open issues).

The full Qweak measurement will offer the most precise determination below the Z-pole.

- 25x more data in hand for the full measurement.
- Systematic uncertainties very conservative for preliminary results. Analysis ongoing.
- Important subsystems became available after commissioning.
- Full Q_{Weak} result expected in late 2014

Summary

- The Qweak experiment measured the Parity-Violating asymmetry in elastic ep scattering
- Preliminary result released, from only 4% of full dataset
- First determination of the neutral-weak charge of the proton:

$$Q_w^p = 0.064 \pm 0.012$$
 (18.7 % relative)

Consistent with SM prediction: $Q_w^p(SM) = 0.0710 \pm 0.0007$

- 25x more data in hand, full Qweak result expected in 2014
- Demonstrated the technological base for the next generation of ultra-precise SM tests at an upgraded 12 GeV Jefferson Lab.

The Qweak Collaboration

97 collaborators 23 grad students 10 post docs 23 institutions

Institutions:

- ¹ University of Zagreb
- ²College of William and Marv
- ³ A. I. Alikhanyan National Science Laboratory
- ⁴ Massachusetts Institute of Technology
- ⁵ Thomas Jefferson National Accelerator Facility
- ⁶ Ohio University
- ⁷ Christopher Newport University
- ⁸University of Manitoba,
- ⁹ University of Virginia
- ¹⁰ TRIUMF
- ¹¹ Hampton University
- ¹² Mississippi State University
- ¹³ Virginia Polytechnic Institute & State Univ
- ¹⁴ Southern University at New Orleans
- ¹⁵ Idaho State University
- ¹⁶ Louisiana Tech University
- ¹⁷ University of Connecticut
- ¹⁸ University of Northern British Columbia
- ¹⁹ University of Winnipea
- ²⁰ George Washington University
- ²¹ University of New Hampshire
- ²² Hendrix College, Conway
- ²³ University of Adelaide

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵ F. Benmokhtar,⁷ J. Birchall,⁸ R.D. Carlini,^{5,2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,² J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁸ J.M. Finn,², T. Forest,^{15, 16} D. Gaskell,⁵ M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷ M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,², A.R. Lee,¹³ J.H. Lee,^{6, 2,} L. Lee,¹⁰ S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,^{13,} J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹ Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵ J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵ P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19,8} B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ and S. Zhamkochyan ³ 28ème Rencontres de Physique de La Vallée d'Aoste 23 8/13/2013

Spokespersons Project Manager Grad Students

Backup slides

Running of the weak mixing angle

Weak mixing angle, PDG 2010

28ème Rencontres de Physique de La Vallée d'Aoste

Erler 2013, The weak neutral current

Weak mixing angle, PDG 2012

28ème Rencontres de Physique de La Vallée d'Aoste

Erler 2013, The weak neutral current

Pushing the envelope of Intensity and Precision

Very challenging precision goals of Q-weak require:

Statistics

- High current, high polarization
- High power cryotarget, long target cell
- Long running period
- Large acceptance detector, high rates

Noise

- Detector and monitor resolution
- Target density fluctuations
 - → fast helicity flip

Systematics

- Backgrounds
- Beam polarization, Q^2
- False asymmetries from helicity-correlated beam parameters

LH_

Feb 24, 2014

Polarized source at Jefferson Lab

Feb 24, 2014

28ème Rencontres de Physique de La Vallée d'Aoste

A₃

 A_2

Aluminum target window background correction

Largest correction to the measured asymmetry (~30%)

 a^2

At Qweak kinematics:

$$A_{PV}(^{27}Al) \approx \frac{-G_F Q^2}{4\pi \alpha \sqrt{2}} \left[Q_w^p + Q_w^n(\frac{N}{Z}) \right] \longrightarrow \text{Order of magnitude higher}$$

asymmetry than H

Aluminum signal fraction (Run 0 value)

$$f_{Al} = 3.2 \pm 0.2$$
 %

Goal: Reduce uncertainty of this fraction by factor of 4

Average Q² of e⁻ scattered from the US window is lower due to kinematic acceptance.

Signal fractions from the US and DS windows are different and radiative corrections applied separately.

Polarimetry

The Hall C Møller polarimeter provided the polarization for Run 0:

$$P = 89.0 \pm 1.8 \%$$
 (Run 0 value)

Main systematic uncertainties: High current extrapolation, beam position;

Goal: Reduce uncertainty down to ~1%

The Compton polarimeter was available after April 2011. Non-invasive continuous monitoring of the polarization from two independent detectors: electron and photon

Polarimetry

The Compton e⁻ detector performed admirably!

Provided continuous polarization measurements in very good agreement with Møller.

Beamline Background asymmetry correction

Background detectors provide continuous monitoring. They see large and highly correlated asymmetries, roughly proportional to their background signal fraction.

A "new physics" term in the Lagrangian (approximated by a 4-fermion contact interaction) :

 $\mathscr{L}_{e-q}^{PV} = \mathscr{L}_{SM}^{PV} + \mathscr{L}_{New}^{PV}$

$$= -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma^5 e \sum_q C_{1q}^{SM} \bar{q} \gamma^{\mu} q + \frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} \gamma^5 e \sum_q h_V^q \bar{q} \gamma^{\mu} q$$

Model-independent mass reach of full Qweak, 95% CL :

Mass scale over coupling of new physics

$$\frac{\Lambda}{g} \approx \frac{1}{\sqrt{2\sqrt{2}G_F |\Delta Q_W(p)|}} \approx 3.25 TeV$$
Erler et al, PRD 68, 016006 (2003)

Benchmark LL[±] model often used, with $g^2=4\pi$.

Confronting Top A_{FR} with PV constraints

CDF and D0 observe a 3.4 σ deviation from the SM of the tr A_{FB} .

t-channel models of extra mediators with flavour-violating coupling between u/d and t, could explain the excess while evading collider constraints.

The Cs APV measurement disfavours these models, and Qweak has the reach to place even stronger limits.

Gresham et.al. arXiv:1203.1320 [hep-ph]

Feb 24, 2014

28ème Rencontres de Physique de La Vallée d'Aoste

 \prec