New Physics in Flavour after the first LHC phase

Presented by David M. Straub

Junior Research Group "New Physics" Excellence Cluster Universe, Munich

Two frontiers

Direct searches at LHC

- Directly probe the scale of new physics (NP) Λ
- ► Limited by available energy

Flavour physics

- Probes NP indirectly through quantum effects
- Limited by size of flavour violation

Two frontiers

Direct searches at LHC

- Directly probe the scale of new physics (NP) Λ
- Limited by available energy

Flavour physics

- Probes NP indirectly through quantum effects
- Limited by size of flavour violation

At both frontiers, strong bounds but no signs of NP

Collider vs. flavour physics

Outline

- News from flavour theory & experiment
 - $B_s \rightarrow \mu^+ \mu^-$
 - \blacksquare $B \rightarrow K^* \mu^+ \mu^-$
 - B_s mixing phase
- Collider vs. flavour: natural SUSY with CKM-like flavour violation
 - Model-independent bounds from meson mixing
 - Numerical analysis of meson mixing in natural SUSY

$$B_s o \mu^+ \mu^-$$
: theory vs. experiment

Experiment

News

2013: first evidence for the decay by CMS & LHCb

$$\overline{\rm BR}_{\rm LHCb+CMS} = (2.9 \pm 0.7) \times 10^{-9}$$

Theory

- ► $\Delta\Gamma_s$ taken into account [De Bruyn et al. 1204.1737]
- ► f_{B_s} computed on the lattice to 2% precision [HPQCD, FLAG]
- ► NLO electroweak corrections [Bobeth et al. 1311.1348]
- ► NNLO QCD corrections [Hermann et al. 1311.1347]

$$\overline{\rm BR}_{\rm SM} = (3.65 \pm 0.23) \times 10^{-9}$$

$${\it B_s}
ightarrow \mu^+ \mu^-$$
 in the MSSM

Contributions to the Wilson coefficients $C_{S,P}$ are generated by H^0 and A^0 exchange.

Dominant contribution: Higgsino-stop loop

$$C_S \simeq -C_P \propto rac{\mu A_t}{m_{ ilde{t}}^2} rac{m_{B_s} m_{\mu}}{m_A^2} an^3 eta$$

Potentially huge enhancement for large $\tan \beta$

Large tan β + light pseudoscalar Higgs disfavoured

[Altmannshofer et al. 1211.1976]

- ▶ Direct Higgs searches more constraining for $\tan \beta \lesssim 25$
- Milder bounds for μA_t > 0 (destructive interference with SM)

$B_{s,d} o \mu^+ \mu^-$ in other models

 $B_{s,d} \rightarrow \mu^+ \mu^-$ remains interesting: now starts to probe models without scalar operators e.g. composite Higgs/extra-dim. models with partial compositeness [DS 1302.4651]

$extbf{\textit{B}} ightarrow extbf{\textit{K}}^* \mu^+ \mu^-$: SM vs. new physics

$B o K^*\mu^+\mu^-$: SM vs. new physics

$B o K^*\mu^+\mu^-$: SM vs. new physics

- \triangleright Several tensions at 2–3 σ level
- NP explanation is hard to realize in explicit models (impossible in SUSY, partial compositeness, ...) and leads to tensions in other observables $(B \to K\mu\mu, ...)$
- Subleading hadronic effects might be larger than expected
- More data on tape stay tuned

[Descotes-Genon et al. 1307.5683, Altmannshofer and DS 1308.1501, Beaujean et al. 1310.2478]

ightarrow see talk by Matias

B_s mixing phase

Outline

- News from flavour theory & experimen
 - \blacksquare $B_s \rightarrow \mu^+\mu^-$
 - \blacksquare $B \rightarrow K^* \mu^+ \mu^-$
 - B_s mixing phase
- 2 Collider vs. flavour: natural SUSY with CKM-like flavour violation
 - Model-independent bounds from meson mixing
 - Numerical analysis of meson mixing in natural SUSY

Based on arXiv:1402.xxxx with R. Barbieri, D. Buttazzo, and F. Sala

Two ways to CKM-like flavour violation

Minimal Flavour Violation (MFV) [D'Ambrosio et al. hep-ph/0207036]

- ▶ $U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$ flavour symmetry
- broken minimally by Yukawa couplings Y_u, Y_d
- all FCNC amplitudes suppressed by same CKM factors as in SM
- ▶ perfect correlation between $s \leftrightarrow d$, $b \leftrightarrow s$, $b \leftrightarrow d$

Two ways to CKM-like flavour violation

Minimal Flavour Violation (MFV) [D'Ambrosio et al. hep-ph/0207036]

- ▶ $U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$ flavour symmetry
- broken minimally by Yukawa couplings Y_u, Y_d
- all FCNC amplitudes suppressed by same CKM factors as in SM
- ▶ perfect correlation between $s \leftrightarrow d$, $b \leftrightarrow s$, $b \leftrightarrow d$

"Minimal $U(2)^3$ " [Barbieri et al. 1105.2296]

- ▶ $U(2)_{Q_L} \times U(2)_{U_R} \times U(2)_{D_R}$ flavour symmetry
- broken minimally by three spurions
- all FCNC amplitudes suppressed by same CKM factors as in SM
- ightharpoonup perfect correlation only between $b \leftrightarrow s$ and $b \leftrightarrow d$, new phases

Meson-antimeson mixing

Mixing amplitudes M_{12} in the K, B_d , B_s systems can be written as

$$egin{aligned} M_{12}^K &= (M_{12}^K)_{\mathrm{SM}} \left(1 + h_K e^{2i\sigma_K}
ight) \ M_{12}^d &= (M_{12}^d)_{\mathrm{SM}} \left(1 + h_d e^{2i\sigma_d}
ight) \ M_{12}^s &= (M_{12}^s)_{\mathrm{SM}} \left(1 + h_s e^{2i\sigma_s}
ight) \end{aligned}$$

- ▶ **MFV**: $\sigma_{K,d,s} = 0$ and $h_{K,d,s} \equiv h$
- ► $U(2)^3$: $\sigma_K = 0$, h_K , $h_{d,s} \equiv h_B \sigma_{d,s} \equiv \sigma_B$

Meson-antimeson mixing

Mixing amplitudes M_{12} in the K, B_d , B_s systems can be written as

$$egin{aligned} M_{12}^K &= (M_{12}^K)_{\mathrm{SM}} \left(1 + h_K e^{2i\sigma_K}
ight) \ M_{12}^d &= (M_{12}^d)_{\mathrm{SM}} \left(1 + h_d e^{2i\sigma_d}
ight) \ M_{12}^s &= (M_{12}^s)_{\mathrm{SM}} \left(1 + h_s e^{2i\sigma_s}
ight) \end{aligned}$$

- ▶ **MFV**: $\sigma_{K,d,s} = 0$ and $h_{K,d,s} \equiv h$
- ► $U(2)^3$: $\sigma_K = 0$, h_K , $h_{d,s} \equiv h_B \sigma_{d,s} \equiv \sigma_B$

What are the allowed sizes of h or h_B , h_K , σ_B ?

Meson-antimeson mixing in MFV

Global fit to $\Delta \textit{M}_{\textit{d}}$, $\Delta \textit{M}_{\textit{s}}$, $\phi_{\textit{s}}$, $S_{\psi\textit{K}_{\textit{s}}}$, $\epsilon_{\textit{K}}$, γ , $|\textit{V}_{\textit{ud}}|$, $|\textit{V}_{\textit{us}}|$, $|\textit{V}_{\textit{cb}}|$, $|\textit{V}_{\textit{ub}}|$:

MFV-like modification of mixing amplitudes constrained to $\pm 20\%$

Meson-antimeson mixing in $U(2)^3$

- ▶ Slight preference for a positive contribution to h_K (ϵ_K)
- ▶ Modification in B/B_s mixing phase small due to ϕ_s constraint

Meson-antimeson mixing in $U(2)^3$

- ▶ Slight preference for a positive contribution to h_K (ϵ_K)
- ▶ Modification in B/B_s mixing phase small due to ϕ_s constraint

$\epsilon_{\it K}$ vs. ${\it S}_{\psi \it K_{\it S}}$

- ▶ There is a long-standing tension in the SM CKM fit between ϵ_K , $S_{\psi K_S} = \sin 2\beta$ and $\Delta M_d/\Delta M_s$ that can be solved in $U(2)^3$, not in MFV
- What is the status of this tension?

$\epsilon_{\it K}$ vs. ${\it S}_{\psi \it K_s}$

▶ There is a long-standing tension in the SM CKM fit between ϵ_K , $S_{\psi K_S} = \sin 2\beta$ and $\Delta M_d/\Delta M_s$ that can be solved in $U(2)^3$, not in MFV

What is the status of this tension?

- ► Significance of "tension" down to 1.1σ
- Main reason: lattice bag parameter \hat{B}_K moved up; theory uncertainty on η_{CC} increased

$U(2)^3$ and natural SUSY

- Strong LHC bounds on 1st/2nd generation squarks
- Light 3rd generation squarks to solve hierarchy problem

Natural SUSY with split generations + CKM-like flavour violation: SUSY $U(2)^3$

$U(2)^3$ and natural SUSY

- Strong LHC bounds on 1st/2nd generation squarks
- Light 3rd generation squarks to solve hierarchy problem

Natural SUSY with split generations + CKM-like flavour violation: SUSY $U(2)^3$

► How large can the effects in meson-antimeson mixing still be in SUSY $U(2)^3$, given the direct bounds from LHC?

Meson mixing in SUSY $U(2)^3$

Two classes of contributions

▶ Higgsino and ch. Higgs contributions are MFV-like ($h_K = h_B$, $\sigma_B = 0$)

► Wino and gluino contributions can induce a new phase in *B/B_s* mixing

Sparticle mass bounds in natural SUSY

- Natural spectra
 - lacktriangle "heavy": $m_{ ilde{g}}\gtrsim 1.4\, ext{TeV},\, m_{ ilde{t}. ilde{b}}\gtrsim 0.7\, ext{TeV}$
 - "compressed": $m_{\tilde{g}} m_{\chi_1^0} \lesssim 350 \,\mathrm{GeV}$ or $m_{\tilde{t}} m_{\chi_1^0} \lesssim 150 \,\mathrm{GeV}$

Meson mixing in SUSY $U(2)^3$

 Direct bounds almost as constraining as flavour, except for compressed spectra

Meson mixing in SUSY $U(2)^3$

 $ightharpoonup B_{s,d}$ mixing phase at most 0.1, whether compressed or not

Meson mixing in SUSY $U(2)^3$

▶ The $U(2)^3$ relation $\phi_s^{\Delta} = \phi_d^{\Delta}$ is broken by an accidental enhancement of the LR operator in B_s mixing, at subleading order in the spurion expansion

Conclusions

Natural SUSY with split families + CKM-like flavour violation = SUSY $U(2)^3$

- ▶ New physics in meson mixing allowed at the 20–30% level
- $ightharpoonup \Delta M_{s,d}$: for a compressed spectrum, flavour constraints stronger than collider bounds
- $\phi_{d,s}^{\Delta}$: collider bounds are as strong as flavour measurements, even for compressed spectrum.
- lacktriangledown ϕ_s close to current experimental bound still allowed

Conclusions

Natural SUSY with split families + CKM-like flavour violation = SUSY $U(2)^3$

- ▶ New physics in meson mixing allowed at the 20–30% level
- $ightharpoonup \Delta M_{s,d}$: for a compressed spectrum, flavour constraints stronger than collider bounds
- $\phi_{d,s}^{\Delta}$: collider bounds are as strong as flavour measurements, even for compressed spectrum.
- lacktriangledown ϕ_s close to current experimental bound still allowed

⇒ a close race between flavour and collider

Backup

$\Delta F = 1 \text{ in SUSY } U(2)^3$

NB: $\tan \beta \le 5$

$$B_s o \mu^+ \mu^-$$
 error budget

$$\overline{\rm BR}(B_s o \mu^+ \mu^-)_{\rm SM} = (3.65 \pm 0.23) imes 10^{-9}$$

cf.:
$$\overline{\rm BR}(B_s \to \mu^+ \mu^-)_{\rm LHCb+CMS} = (2.9 \pm 0.7) \times 10^{-9}$$

$B_d o \mu^+ \mu^-$ experiment vs. SM

▶ 2.4σ above 0, 1.6σ above SM. If NP: no MFV!

Comparison of $b \rightarrow s$ global fits (C. Bobeth)

Which data is used?

q² Binning

	q ² -Bins [GeV ²]				
lo	[1, 6]				
LO	[0, 2]				
	[2, 4.3]				
	[4.3, 8.68]				
hi	[14.18, 16]				
	[16, 19]				

DGMV: only LHCb data for $B \to K^* \ell \bar{\ell}$

AS, BBvD, HLMW: use all available data from Belle, Babar, CDF, LHCb, CMS, ATLAS

decay	obs	DGMV	AS	BBvD	HLMW
$B \to X_s \gamma$	Br	✓	✓	✓	
	A_{CP}		\checkmark		
$B \to K^* \gamma$	Br			✓	
	S(C)	✓	✓	√(√)	
	A_I	✓			
$B_s \to \mu \bar{\mu}$	Br	✓	✓	✓	
$B \to X_s \ell \bar{\ell}$	Br	lo	lo+hi	lo	
$B \to K\ell\bar{\ell}$	Br		lo+hi	lo+hi	
	Br		lo+hi	lo+hi	hi
	F_L		lo+hi	lo+hi	hi
$B \to K^* \ell \bar{\ell}$	A_{FB}	LO+hi	lo+hi	lo+hi [†]	hi
	P _{1,2} , P' _{4,5,6}	LO+hi		lo+hi [†]	
	P' ₈	LO+hi			
	S _{3,4,5}		lo+hi		hi
	A_9		lo+hi		
$B_s o \phi \ell \bar{\ell}$	Br, F _L , S ₃				hi

 $^{^{\}dagger}$ if P_2 is available then \textit{A}_{FB} is not used: LHCb

C. Bobeth Munich

December 10, 2013

14 / 23