Latest results on rare decays at LHCb

Justine Serrano on behalf of the LHCb collaboration Centre de Physique des Particules de Marseille

Rencontres de Physique de la vallée d'Aoste, LaThuile 2014

Outline

- Radiative decay:
 - Photon polarization in B⁺ \rightarrow K⁺ π ⁻ π ⁺ γ

- Lepton number violationg decay:
 - Search for Majorana neutrinos with $B^- \rightarrow \pi^+ \mu^- \mu^-$
- B semileptonic decay:
 - Measurement of angular observables in $B_d \rightarrow K^{*0} \mu^+ \mu^-$
- Rare charm decay:
 - BR(D⁰ \rightarrow $\pi^+\pi^-\mu^+\mu^-)$
- BR(B_{s/d} \rightarrow $\mu^+\mu^-$)
- Conclusion

Why rare decays ?

- Up to now, no sign of New Physics (NP) from direct searches... but indirect NP effects can also appear in heavy flavour rare decays.
- Flavour changing neutral currents are forbidden at the tree level in the SM, they can only proceed through loop diagrams.

- NP virtual particles can enter the loop and modify observables such as branching ratios, CP asymmetries, angular distributions,...
- Complementary to ATLAS/CMS searches, flavour can probe a very high scale!

LHCb

Rare decays @ LHCb

LHCb-PAPER-2014-001

- b →sγ FCNC are sensitive to NP through the presence of new physics particle that can enter the electroweak penguin diagram
- Photons are predominantly left handed in SM
- Significant right handed component possible in many NP models

- The up-down asymmetry is proportional to the photon polarization $A_{ud} \propto \lambda_{\gamma}$
- We present an update of LHCb-CONF-2013-009 based on 3 fb⁻¹

Theory

LHCb-PAPER-2014-001

• Differential decay rate of $B^+ \rightarrow K^+\pi^-\pi^+\gamma$ (*Gronau, et al. PRD66 (2002) 054008*):

6

- Fit to the B mass distribution gives ~14000 signal events
- Angular distributions obtained in the 4 M(Kππ) bins using a fit to the B mass spectrum in bins of cosθ

Rare decays @ LHCb

Justine Serrano

Results

LHCb-PAPER-2014-001

• We obtain 4 independent measurements of the asymmetry:

• This translates into a 5.2 σ significance for a non zero up-down asymmetry \Rightarrow first observation of photon polarization in b \rightarrow s γ transition

Search for Majorana neutrinos in $B^- \rightarrow \pi^+ \mu^- \mu^-$

- Lepton number violating decay forbidden in the SM
- Can probe Majorana neutrino with any mass in m(π)+m(μ) < m(N) < 5 GeV
- The lifetime of N is unknown, we search for N with a lifetime up to 1000 ps
- Experimental status:

CLEO	BR(B ⁻ →π ⁺ μ ⁻ μ ⁻) < 1.4 x10 ⁻⁶ at 90%, PRD65:111102 (2002)
Babar	BR(B ⁻ →π ⁺ μ ⁻ μ ⁻) < 10.7 x10 ⁻⁸ at 90%, PRD85:071103 (2012)
LHCb (0.41fb ⁻¹)	BR(B ⁻ $\rightarrow \pi^{+}\mu^{-}\mu^{-}) < 1.3 \text{ x}10^{-8} \text{ at } 95\%, \text{ PRD } 85:112004 (2012)$

Here we present an update based on the 3fb⁻¹ recorded

arXiv:1401.5361, submitted to PRL

Rare decays @ LHCb

Justine Serrano

arXiv:1401.5361

- 2 selections :
 - Assuming N has zero lifetime, B vertex formed by $\pi^+\mu^-\mu^-$
 - Detached neutrino: first vertex for $\pi^+\mu^-$, attached to the second μ^- to form the B candidate $\sum_{k=0000}^{k} \left[\frac{1}{1 + C_k} + \frac{1}{2} \right]$
- Normalization to $B^+ \rightarrow J/\Psi K^+$
 - Find ~280 000 events

- Ratio of efficiencies taken from MC or data driven methods
- Extended maximum likelihood fit to the π⁺μ⁻μ⁻ sidebands to determine the combinatorial background
- Peaking background shape taken from MC, yields constrained to $B^+ \rightarrow J/\Psi K^+$
- Limits obtained with the CLs method

$B^{-} \rightarrow \pi^{+} \mu^{-} \mu^{-}$, short neutrino lifetime

- Peaking background : $B^+ \rightarrow J/\Psi \ K^+(\pi^+), B^+ \rightarrow \Psi(2S) \ K^+$
- No signal found, BR(B⁻→ $\pi^+\mu^-\mu^-$) < 4.0 x10⁻⁹ at 95% CL
- Limit as function of neutrino mass:
 - Scan over neutrino mass with 5 MeV step up to 5000 MeV
 - At each point, fit m(π⁺μ⁻) in a 3σ window, σ being the neutrino mass resolution evaluated from MC

$B^{-} \rightarrow \pi^{+} \mu^{-} \mu^{-}$, long neutrino lifetime

- Peaking background : $B^+ \rightarrow J/\Psi$ K⁺(π^+), B⁺ $\rightarrow \Psi(2S)$ K⁺
- No signal found, limit as function of neutrino mass and lifetime

$$B_d \rightarrow K^{*0} \mu^+ \mu^-$$

 $\frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{16\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell \right]$ $- F_L \cos^2\theta_K \cos 2\theta_\ell + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + \frac{1}{2} (1 - F_L) A_T^{Re} \sin^2\theta_K \cos \theta_\ell + (S/A)_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right]$

$$A_{FB} = \frac{3}{4}(1 - F_L)A_T^{\text{Re}}$$

 A_{FB} : forward-backward asymmetry F_L : fraction of K^{*0} longitudinally polarized

A_{FB} zero crossing point precisely predicted in SM: Beneke et al, EPJ C41 (2005) 173

$$q_0^2 = 4.36^{+0.33}_{-0.31} GeV^2 / c^4$$

Rare decays @ LHCb

Results

JHEP 08 (2013) 131

- Analysis based on 1 fb⁻¹, ~900 events
- Observables measured in 6 q² bins

Theory from bobeth-Hiller-Van Dyk (2011), consistent with Matias et al (2013)

Rare decays @ LHCb

Results

JHEP 08 (2013) 131

Theory from bobeth-Hiller-Van Dyk (2011), consistent with Matias et al (2013)

- Good agreement with SM predictions
- First measurement of zero crossing point:

$$q_0^2 = 4.9 \pm 0.9 \ GeV^2 / c^4$$

New observables

- Observables with limited dependence on form-factors uncertainty have been proposed by several theorists
- Different set of observables give different constraints ⇒ complementarity!
- Use different folding to measure each P'_i

$$\frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell}{-F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + \frac{1}{2} (1 - F_\mathrm{L}) A_\mathrm{T}^{(2)} \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi} + \sqrt{F_\mathrm{L} (1 - F_\mathrm{L})} \frac{P_\ell}{P_5} \sin 2\theta_K \sin \theta_\ell \cos \phi} + \sqrt{F_\mathrm{L} (1 - F_\mathrm{L})} \frac{P_\ell}{P_5} \sin 2\theta_K \sin \theta_\ell \cos \phi} + (1 - F_\mathrm{L}) A_\mathrm{Re}^\mathrm{T} \sin^2\theta_K \cos \theta_\ell} + \sqrt{F_\mathrm{L} (1 - F_\mathrm{L})} \frac{P_\ell}{P_6} \sin 2\theta_K \sin \theta_\ell \sin \phi} + \sqrt{F_\mathrm{L} (1 - F_\mathrm{L})} \frac{P_\ell}{P_6} \sin 2\theta_K \sin^2 \theta_\ell \sin 2\phi} \right]$$

Results for new observables

PRL 111 (2013) 191801

 P_4 ', P_6 and P_8 are in good agreement with theoretical predictions (Descotes-Genon et al, JHEP 05 (2013) 137), but large deviation in P_5

Could be interpreted as NP contribution in Wilson coefficient C9

Rare charm decay: $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$

PLB 728 (2014) 234-243

- SM prediction for the BR ~10⁻⁹
- Never seen yet, latest result by E791 BR($D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$) < 3.0 x10⁻⁵ @ 90% CL

- 1 fb⁻¹ analysed, using $D^{*+} \rightarrow D^0 (\rightarrow \mu^+ \mu^-) \pi^+_{slow}$
- Yields from 2D fit: $m(D^0)$ vs $\Delta m(D^{*+}-D^0)$
- $D^0 \rightarrow \pi^+\pi^- \phi(\rightarrow \mu^+\mu^-)$ is used as normalization channel

Results

PLB 728 (2014) 234-243

$B_{s/d} \rightarrow \mu^+ \mu^-$

CMS PAS BPH-13-007, LHCb-CONF-2013-012

- CMS (25 fb⁻¹) and LHCb (3 fb⁻¹) both found evidence for the very rare decay $B_s \rightarrow \mu^+ \mu^-$, in agreement with SM
- Combining CMS and LHCb: first observation of $B_s \rightarrow \mu^+ \mu^-$

$$BR(B_s^0 \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

$$BR(B^0 \to \mu^+ \mu^-) = (3.6^{+1.6}_{-1.4}) \times 10^{-10}$$

- We are entering the precision era
- The current SM BR(B_s→µ⁺µ⁻) has a 10% uncertainty ⇒ crucial to improve theoretical errors

See A. Morda talk for more details!

Conclusion

- LHCb is providing a lot of interesting new results on rare decays:
 - First observation of the photon polarization in $B^+ \rightarrow K^+\pi^-\pi^+\gamma$
 - Improved limit BR(B⁺ \rightarrow K⁺ μ ⁺ μ ⁻) sensitive to Majorana neutrino
 - Measurement of form factor independent observables in $B_d \rightarrow K^{*0}\mu^+\mu^-$
 - World best upper limit on $BR(D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-)$
 - BR measurement for $B_s \rightarrow \mu^+ \mu^-$ with 4 σ significance
- Overall good agreement with SM, except for a local discrepancy in the low q^2 region for P_5 ' in $B_d \rightarrow K^{*0}\mu^+\mu^-$. This analysis uses 1 fb⁻¹, stay tuned!

Penguins can still be hiding new physics!

Results: $B_{s/d} \rightarrow \mu^+ \mu^-$

Experimental observable

Experimental observable is the time integrated B:

$$B(B_s^0 \to f)_{\exp} \equiv \frac{1}{2} \int_0^\infty \langle \Gamma(B_s^0(t) \to f) \rangle dt$$

Theoretical definition for the prediction:

$$B(B_s^0 \to f)_{\text{theo}} \equiv \frac{\tau_{B_s^0}}{2} \langle \Gamma(B_s^0(t) \to f) \rangle \Big|_{t=0}$$

• Time integrated prediction:

$$BF(B_{s}^{0} \to \mu^{+}\mu^{-})_{exp} = BF(B_{s}^{0}(t) \to \mu^{+}\mu^{-})_{t=0} \times \frac{1 + A_{\Delta\Gamma}y_{s}}{1 - y_{s}^{2}}$$

$$\mathcal{A}_{\Delta\Gamma}^{f} = \frac{\Gamma(B_{s,\mathrm{H}} \to f) - \Gamma(B_{s,\mathrm{L}} \to f)}{\Gamma(B_{s,\mathrm{H}} \to f) + \Gamma(B_{s,\mathrm{L}} \to f)} \qquad \qquad y_{s} = \frac{\Gamma_{L} - \Gamma_{H}}{\Gamma_{L} + \Gamma_{H}} = 0.0615 \pm 0.0085$$

in the SM:
$$A_{\Delta\Gamma} = 1$$
 $B(B_s^0 \to \mu^+ \mu^-)_{exp}^{SM} = (3.56 \pm 0.30) \times 10^{-9}$

De Bruyn et al., PRL 109, 041801(2012), uses ys from HFAG

Bs2MuMu @ LHCb

Limit on $|V_{\mu4}|^2$

Atre et al. JHEP 05 (2009) 030 :

$$\mathcal{B}(B^- \to \pi^+ \mu^- \mu^-) = \frac{G_F^4 f_B^2 f_\pi^2 m_B^5}{128\pi^2 \hbar} |V_{ub} V_{ud}|^2 \tau_B \left(1 - \frac{m_N^2}{m_B^2}\right) \frac{m_N}{\Gamma_N} |V_{\mu 4}|^4$$

We use for the total width of the neutrino decay:

$$\Gamma_N = \left[3.95m_N^3 + 2.00m_N^5(1.44m_N^3 + 1.14)\right]10^{-13}|V_{\mu4}|^2$$

$$B_d \rightarrow K^{*0} \mu^+ \mu^-$$

• Full angular distribution:

$$\begin{aligned} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi} &= \frac{9}{32\pi} \left[I_1^s \sin^2\theta_K + I_1^c \cos^2\theta_K + \\ I_2^s \sin^2\theta_K \cos 2\theta_\ell + I_2^c \cos^2\theta_K \cos 2\theta_\ell + \\ I_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + I_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + \\ I_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + I_6 \sin^2\theta_K \cos \theta_\ell + \\ I_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + I_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + \\ I_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right] ,\end{aligned}$$

$$S_j = \left(I_j + \bar{I}_j\right) \left/ \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} \text{ or } A_j = \left(I_j - \bar{I}_j\right) \left/ \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} \right.$$

To few events to fit for the 11 angular terms: Folding the φ angle cancels terms with sin φ or cos φ dependence.

New observables in $B_d \rightarrow K^{*0} \mu^+ \mu^-$

Folding technique:

Measurement of the other observables with other folding techniques For $P_{s'}$ (or equivalently S_{s}) $\phi \rightarrow -\phi$ (if $\phi<0$) and $\vartheta_{l} \rightarrow \pi - \vartheta_{l}$ (if $\vartheta_{l}<\pi/2$)

$$\frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \overline{\Gamma})}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = \frac{9}{8\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos^2\theta_K + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + \sqrt{F_L (1 - F_L)} P_5' \sin 2\theta_K \sin \theta_\ell \cos \phi \right]$$

$$Pdf = \frac{9}{8\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + P'_4, S_4: \begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \phi \to \pi - \phi & \text{for } \theta_\ell > \pi/2 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases} \right]$$

$$Pdf = \frac{9}{8\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + P_6', S_7: \begin{cases} \phi \to \pi - \phi & \text{for } \phi > \pi/2 \\ \phi \to -\pi - \phi & \text{for } \phi < -\pi/2 \\ \theta_\ell \to \pi - \theta_\ell & \text{for } \theta_\ell > \pi/2, \end{cases} \right]$$

$$Pdf = \frac{9}{8\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + F_L \cos^2 \theta_K \sin 2\theta_\ell \sin 2\theta_K \sin 2\theta_\ell \sin 2\theta_$$

D⁰→π⁺π⁻μ⁺μ⁻

