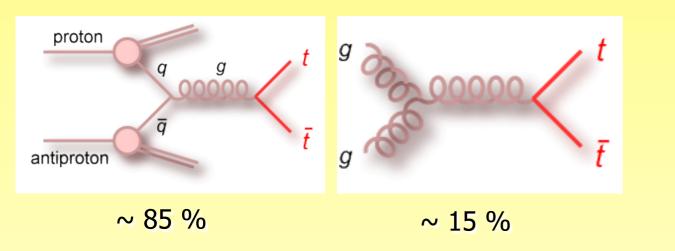
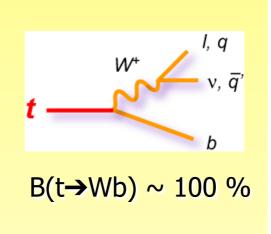
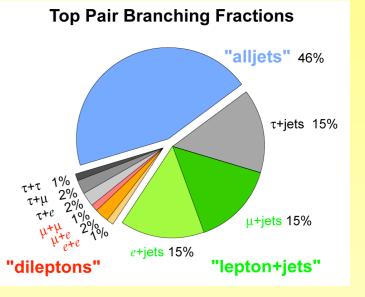


Top quark properties at the Tevatron

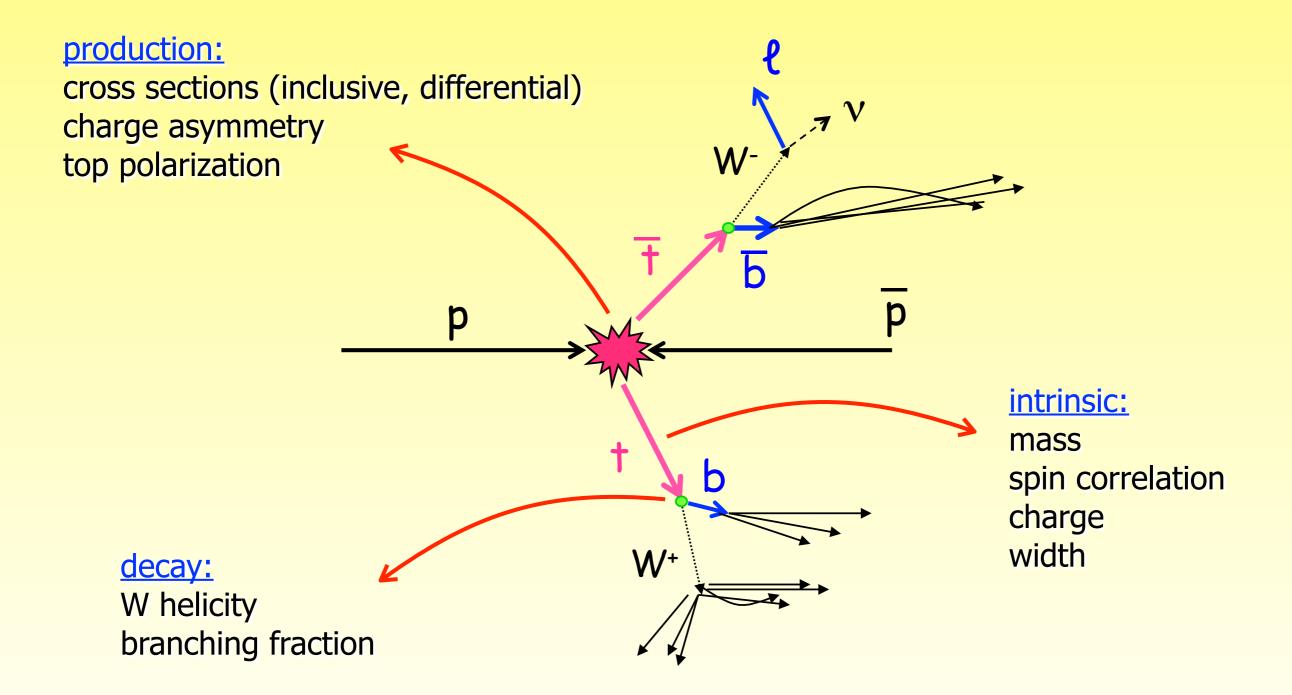

Frédéric Déliot CEA/Irfu-Saclay


on behalf of the CDF and D0 collaborations


Les rencontres de physique de la vallée d'Aoste, 27 February 2014

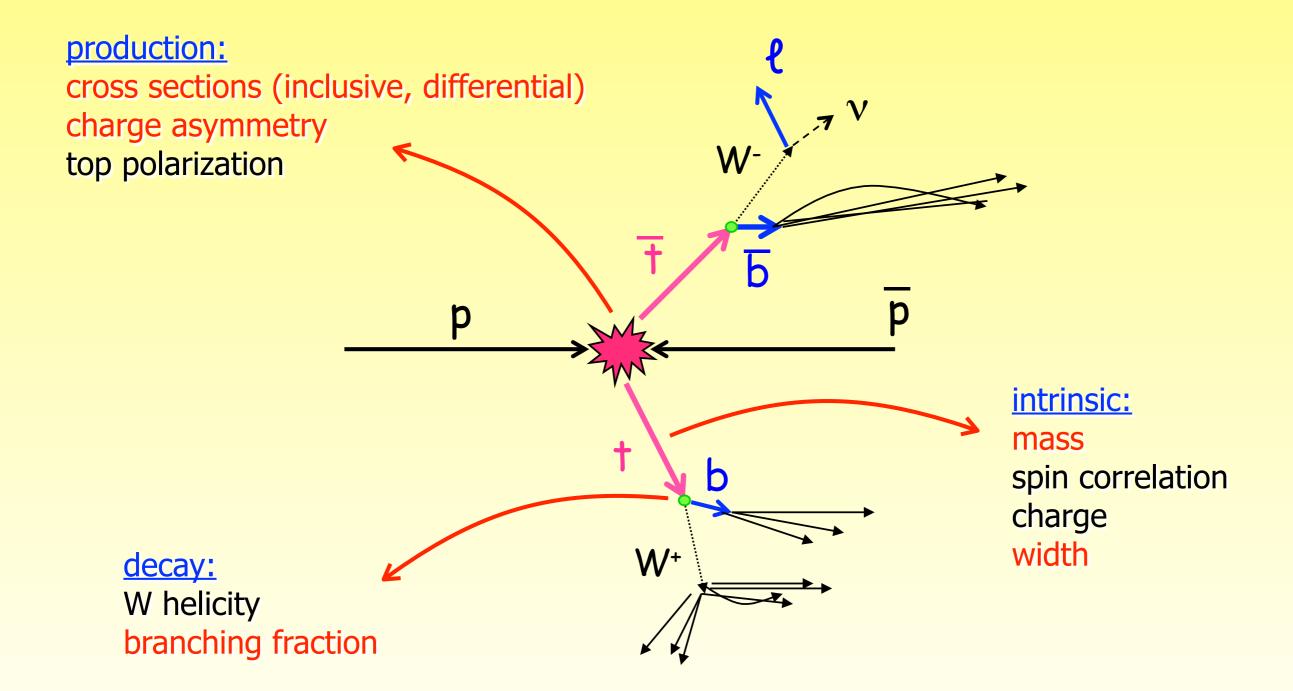
Top quark production at the Tevatron

• Mainly pair production via QCD


• theoretical computations: Mt = 172.5 GeV, $\sigma(t\bar{t}) \approx 7.35$ pb (NNLO), $\Delta\sigma/\sigma \sim 4$ %

Calculation	$\sigma_{t\bar{t}}$ (pb)	$\Delta \sigma_{\rm scale}$ (pb)	$\Delta\sigma_{ m PDF}$ (pb)
NLO	6.85	$^{+0.37}_{-0.77}$	$^{+0.19}_{-0.13}$
NLO+NLL	7.09	$^{+0.28}_{-0.51}$	$^{+0.19}_{-0.13}$
NNLO+NNLL	7.35	$^{+0.11}_{-0.21}$	$^{+0.17}_{-0.12}$

computed with top++ M. Czakon, P. Fiedler, A. Mitov, PRL 110 252004 (2013)

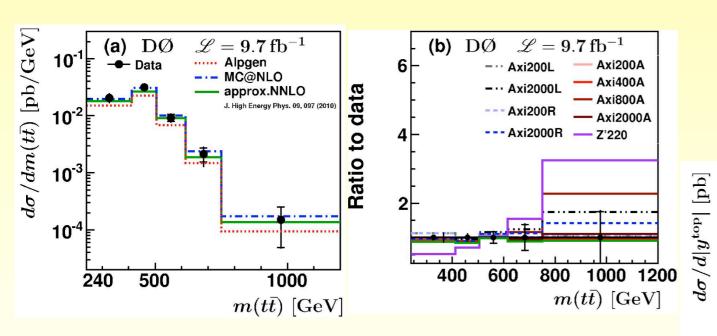

We have a large sample of $t\bar{t}$ events with the full Tevatron dataset mainly produced by $q\bar{q}$ (~7.5 kevts observed per experiment)

Top quark properties from tt events

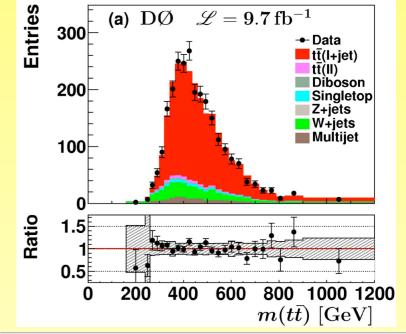
Does the heaviest elementary particle behave as expected ?

Top quark properties from tt events

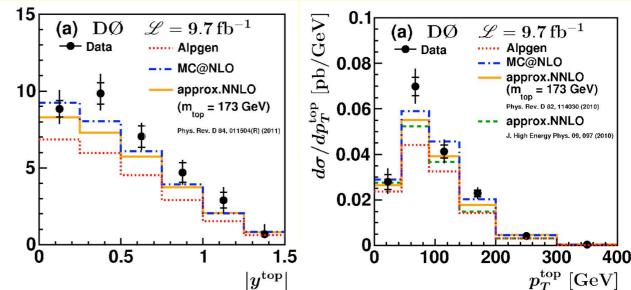
This talk will focus on the latest results


tt cross sections

Differential tt cross section



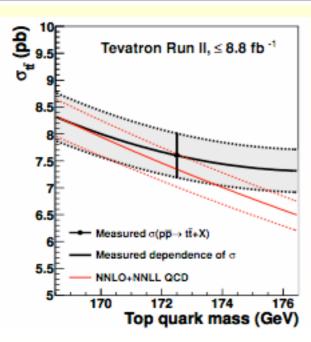
arXiv:1401.5785, submitted to PRD

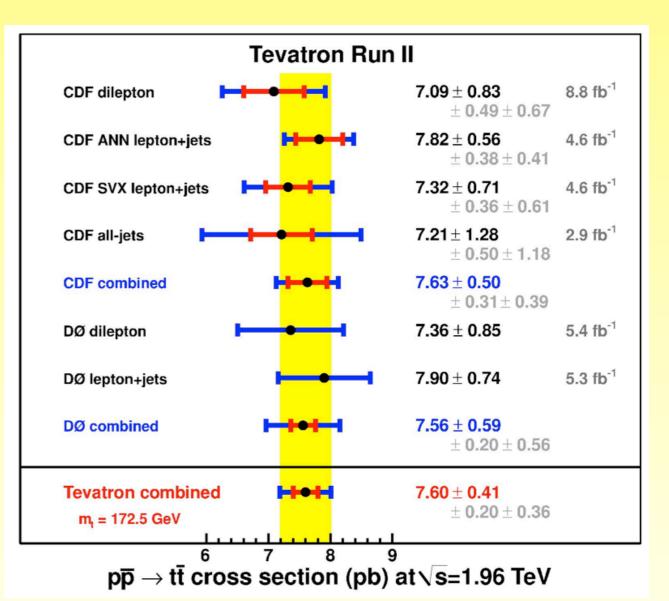

- stringent tests of QCD in the top quark sector
 - \rightarrow allowed by the large tt statistics
 - → crucial to understand the QCD modeling (new physics search, tt charge asymmetry)
- I+jets channel with 1 b-tag
 - → measurements vs m_{tt}, p_T(t), |y(t)| normalized to the NNLO inclusive cross section

Typical uncertainty: $\sim 9 \%$ Overall good agreement with the predictions

Source of uncertainty	Uncertainties, %		
	$\delta_{ m incl}$	$\delta_{ m diff}$	
Signal modeling	$^{+5.2}_{-4.4}$	4.0 - 14.2	
PDF	$^{+3.0}_{-3.4}$	0.9 - 4.4	
Detector Modeling	$^{+4.0}_{-4.1}$	3.1 - 13.7	
Sample composition	± 1.8	2.8 - 9.2	
Regularization strength	± 0.2	0.8 - 2.1	
Integrated luminosity	± 6.1	6.1 - 6.1	
Total systematic uncertainty	$^{+9.6}_{-9.3}$	8.5 - 23.1	

Frédéric Déliot, La Thuile, 27-FEB-2014


Tevatron tt cross section combination



arXiv:1309.7570, accepted by PRD

- First Tevatron combination of inclusive tt cross sections
 - \rightarrow combination of 6 measurements:
 - * CDF: 2 I+jets, dilepton, alljets
 - * D0: I+jets, dilepton

	CDF	D0		Tevatron
Central value of $\sigma_{\bar{t}t}$	7.63	7.56		7.60
Sources of systematic uncertainty			Correlation	
Modeling of the detector	0.17	0.22	NO	0.13
Modeling of signal	0.21	0.13	YES	0.18
Modeling of jets	0.21	0.11	NO	0.13
Method of extracting $\sigma_{t\bar{t}}$	0.01	0.07	NO	0.03
Background modeled from theory	0.10	0.08	YES	0.10
Background based on data	0.08	0.06	NO	0.05
Normalization of Z/γ^* prediction	0.13	_	NO	0.08
Luminosity: inelastic $p\bar{p}$ cross section	0.05	0.30	YES	0.15
Luminosity: detector	0.06	0.35	NO	0.14
Total systematic uncertainty	0.39	0.56		0.36
Statistical uncertainty	0.31	0.20		0.20
Total uncertainty	0.50	0.59		0.41

weights: CDF 60%, D0 40% X² = 0.01/1, Prob = 92%

Total uncertainty: 5.4 % improvement: 18% wrt CDF, 30% wrt D0

Intrinsic properties

Dilepton top-quark mass

Measurement with the full Tevatron dataset

→ statistics is no longer the limiting uncertainty, this analysis also optimized the influence of jet energy scale

template analysis using an hybrid variable

 $M_t^{eff} = w \cdot M_t^{reco} + (1-w) \cdot M_t^{alt}$

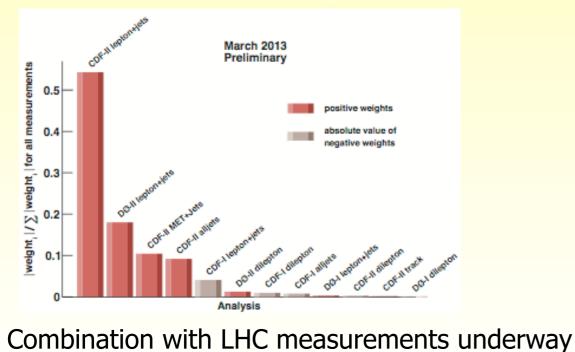
- \rightarrow Mt^{reco}: reconstructed top mass (neutrino Φ weighting)
- \rightarrow Mt^{alt}: based only on lepton 4-momenta and jet directions:
- \rightarrow optimization of the uncertainty: w = 0.7

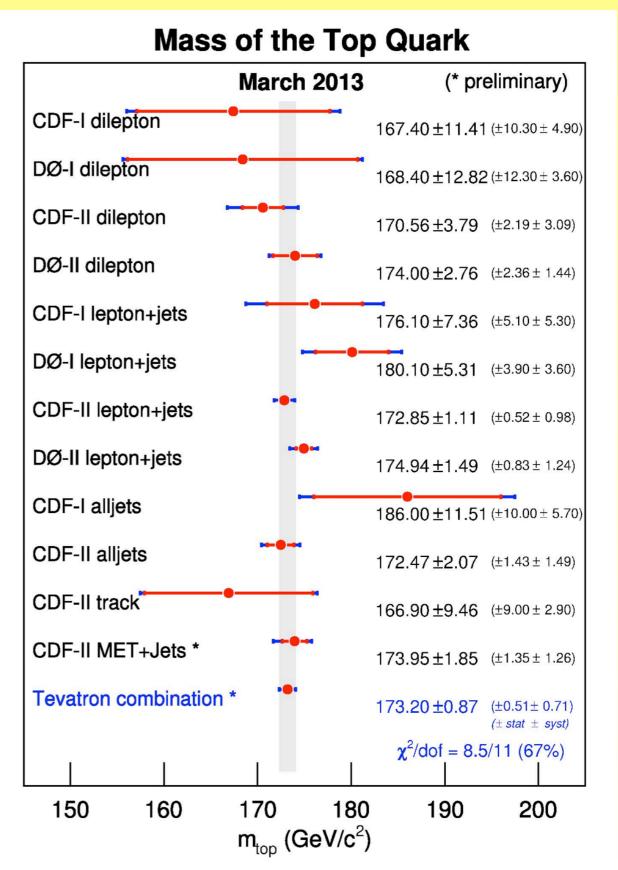
$$M_t^{alt}~\equiv~\sqrt{rac{\langle l_1,b_1
angle\cdot\langle l_2,b_2
angle}{E_{b_1}E_{b_2}}}+120~{
m GeV}$$

CDF Run II Preliminary (8.8 fb	<u>')</u>	70 CDF Run II Preliminary (9.1 fb ⁻¹)
70 60 $t\bar{t} \rightarrow l^{\dagger}l^{+}2Jets+\not{E}_{T}, tagged events$ 0 0 0 0 0 0 0 0	s 260	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $
CDF Run II Preliminary (9.1 fb ⁻) $t\bar{t} \rightarrow f'\Gamma+2Jets+E_{T}$ Statisticul ancertainty only $M_{tep}=170.80 \pm 1.83 \text{ GeV/c}^2$ $\frac{1}{10}$ $\frac{1}{1$	10 co	$170.80 \pm 1.83 \text{ (stat.)} \pm 2.69 \text{ (syst.)} \text{ GeV}$)% improved uncertainty ompared to the latest CDF result this channel

CDF Run II Preliminary (9.1 fb ⁻¹)				
$M_{\rm top}$ Measurement in the tt Dilepton Final State				
Source	Uncertainty (GeV/c^2)			
Jet energy scale	2.42			
NLO effects	0.64			
Monte Carlo generators	0.49			
Lepton energy scale	0.36			
b-jet energy scale	0.34			
Initial and final state radiation	0.33			
Background modeling	0.33			
Luminosity profile (pileup)	0.30			
Color reconnection	0.24			
gg fraction	0.24			
Parton distribution functions	0.21			
MC statistics	0.19			
b-tagging	0.05			
Total systematic	2.69			
Statistical	1.83			
Total	3.25			

Tevatron top mass combination



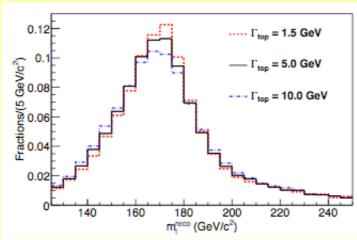

• Combination of 11 measurements

→ 5 from Run I, 7 from Run II

M _t	173.20
In situ light-jet calibration (iJES)	0.36
Response to $b/q/g$ jets (aJES)	0.09
Model for b jets (bJES)	0.11
Out-of-cone correction (cJES)	0.01
Light-jet response (2) (dJES)	0.15
Light-jet response (1) (rJES)	0.16
Lepton modeling (LepPt)	0.05
Signal modeling (Signal)	0.52
Jet modeling (DetMod)	0.08
Offset (UN/MI)	0.00
Background from theory (BGMC)	0.06
Background based on data (BGData)	0.13
Calibration method (Method)	0.06
Multiple interactions model (MHI)	0.07
Systematic uncertainty (syst)	0.71
Statistical uncertainty (stat)	0.51
Total uncertainty	0.87

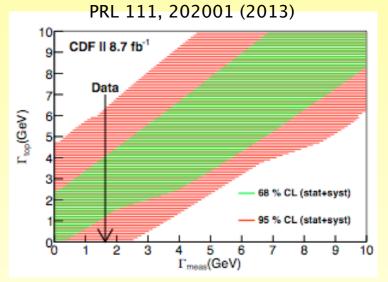
precision of 0.5%

Frédéric Déliot, La Thuile, 27-FEB-2014



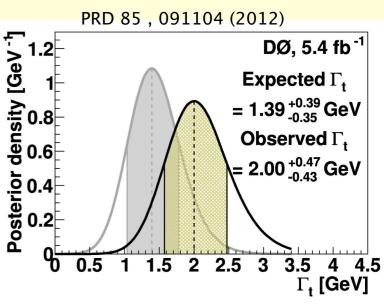
Top-quark width

- The top quark has the largest decay width of the known fermions → NNLO QCD: $\Gamma_t = 1.32$ GeV (±1%), can be used to extract V_{tb} → non standard width would indicate non-SM top decays
- CDF direct measurement
 - \rightarrow fit the data with template of M_t^{reco} and M_{ii}
 - \rightarrow the width of M_t^{reco} is used to extract Γ_t


M_{ii} constrains the JES uncertainty

Source	Uncertainty (GeV)
Jet resolution	0.56
Color reconnection	0.69
Event generator	0.50
Higher-order effects	0.21
Residual jet-energy scale	0.19
Parton distribution functions	0.24
b-jet energy scale	0.28
Background shape	0.18
Gluon fusion fraction	0.26
Initial- and final-state radiation	0.17
Lepton energy scale	0.03
Multiple hadron interaction	0.23
Total systematic uncertainty	1.22

 $1.10 < \Gamma_{\rm top} < 4.05 {\rm ~GeV}$

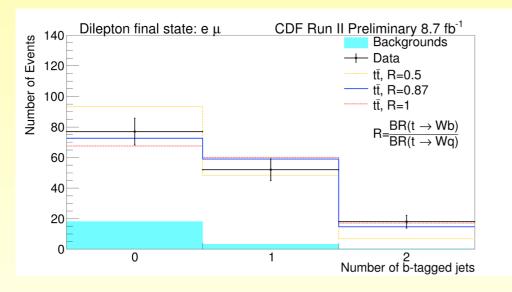

at 68% CL

D0 indirect determination

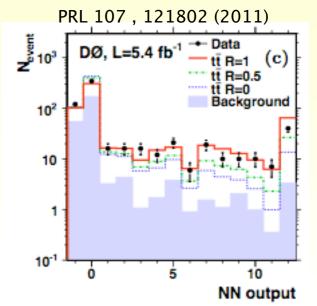
- \rightarrow using the t-channel single top cross section to extract the partial top width
- \rightarrow using the branching ratio B(t \rightarrow Wb) (see next slide) to get the total width
- \rightarrow based on the assumption that the coupling in t-channel and in top decay are the same $^{7}_{3}$ GeV

$$\Gamma_t = \frac{\sigma(t-\text{channel}) \ \Gamma(t \to Wb)_{\text{SM}}}{\mathcal{B}(t \to Wb) \ \sigma(t-\text{channel})_{\text{SM}}} \qquad \Gamma_t = 2.00^{+0.47}_{-0.43}$$

Decay properties

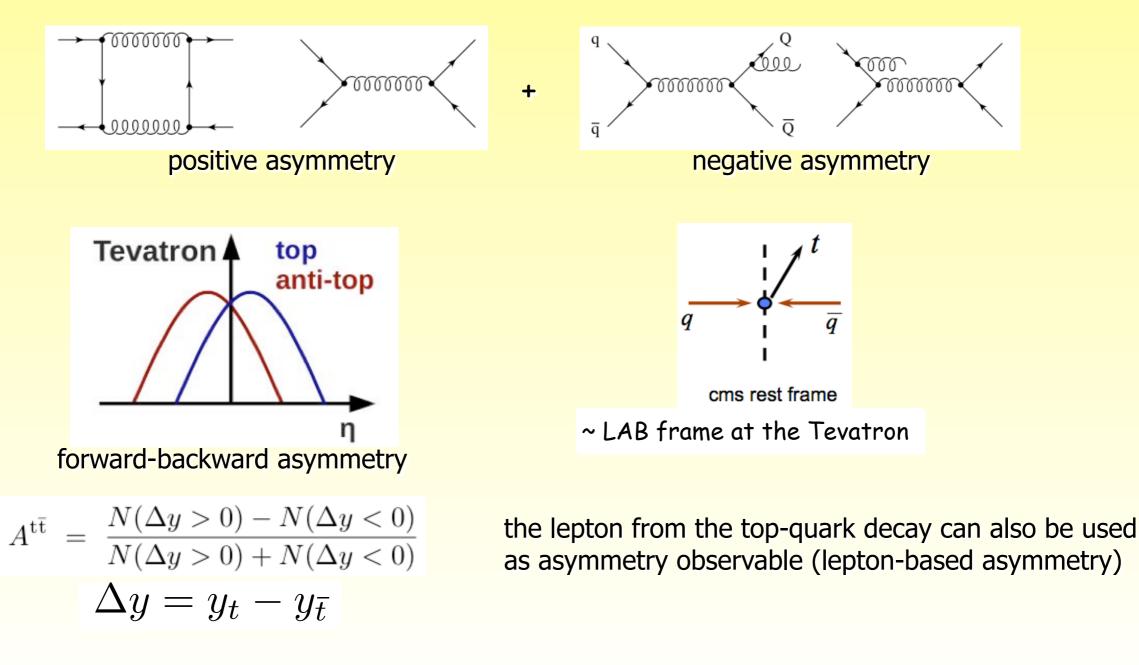

Top-quark branching fraction

- Comparing tt cross section measurements vs number of b-tag jets
 - \rightarrow indirect measurement of V_{tb}
 - \rightarrow test of existence of a 4th quark family


$$R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2}$$

- Latest CDF measurement in the dilepton channel
 - \rightarrow several bins in lepton flavour and number of b-tags
 - \rightarrow R is extracted using a likelihood fit with nuisance parameters to constrain the systematic uncertainties

CDF Run II Preliminary, $\mathcal{L}=8.7 \text{ fb}^{-1}$			
Parameter	Result		
$R = \frac{BR(t \to Wb)}{BR(t \to Wq)}$	0.87 ± 0.07		
$ V_{tb} $	0.93 ± 0.04		


• D0 combined measurement in the I+jets and dilepton channel \rightarrow fit together R and the tt cross section $R = 0.90 \pm 0.04$ (stat+syst)

tt asymmetries

Top-antitop charge asymmetry

- At NLO, QCD predicts an asymmetry for $t\bar{t}$ produced via $q\bar{q}$ initial state
 - \rightarrow the top quark is predicted to be emitted preferably in the direction of the incoming quark
 - → gg remains symmetric
 - \rightarrow this asymmetry can be modified by new physics (Z', axigluons, ...)

Lepton-based asymmetry in the dilepton channel

- Lepton-based asymmetry
 - \rightarrow advantage: no need to reconstruct the tt final state, sensitive to top-quark polarization
 - → drawback: dilution of the produced asymmetry
 - (w/o polarization effects, ~ half of the prediction for the $t\bar{t}$ -based asymmetry)
 - \rightarrow relation between lepton-based and tt-based asymmetry is model-dependent
- In the dilepton channel

 \rightarrow two possible observables

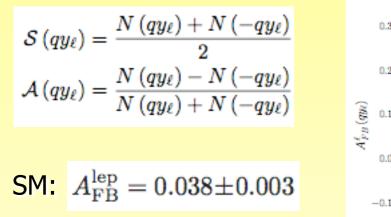
$$A_{\rm FB}^{\ell} = \frac{N(q \times \eta > 0) - N(q \times \eta < 0)}{N(q \times \eta > 0) + N(q \times \eta < 0)} \qquad A^{\ell\ell} = \frac{1}{N}$$

$$=\frac{N(\Delta\eta>0)-N(\Delta\eta<0)}{N(\Delta\eta>0)+N(\Delta\eta<0)}$$

see Z. Hong's talk at the YSF yesterday

16

- Measurement at CDF
 - \rightarrow decompose the observable into the symmetric and asymmetric part
 - → the asymmetric part is parametrized as: $A(|q\eta_l|) = a \cdot \tanh[\frac{1}{2} \cdot |q\eta_l|]$
 - → the symmetric part is taken from MC at the generated level (almost model independent)
 - \rightarrow leptons are well measured: no bin migration due to detector effects


$$A_{FB}^{lep} = 0.072 \pm 0.052(\text{stat.}) \pm 0.030(\text{sys.}) = 0.072 \pm 0.060$$

SM: $A_{FB}^{lep} = 0.038 \pm 0.003$

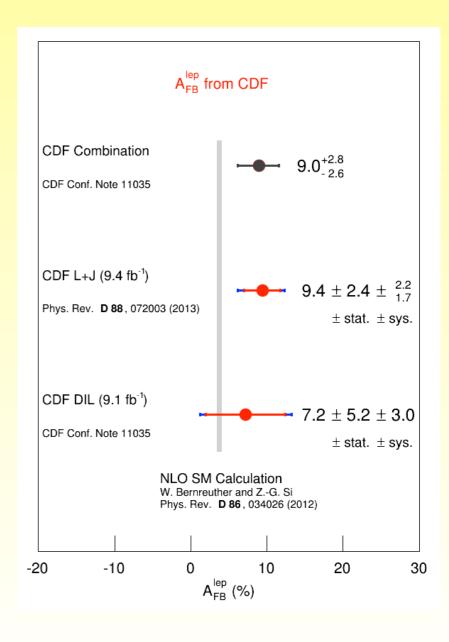

$$A_{FB}^{lep} = 0.038 \pm 0.003$$

$$A_{FB}^{lep} = 0.076 \pm 0.072(\text{stat.}) \pm 0.037(\text{sys.}) = 0.072 \pm 0.081$$

SM: $A_{FB}^{\Delta\eta} = 0.048 \pm 0.004$
Succe of Uncertainty Value
(A_{FB}^{lep})
Succe of Uncertainty 0.006
Jet Energy Scale 0.004
Symmetric Modeling 0.001
Total Systematic 0.030
Statistical 0.052
Total Uncertainty 0.060

Lepton-based asymmetry in the I+jets channel

- Only one observable based only on leptons:
 - \rightarrow same methodology as in the dilepton channel:
 - * decomposition in the symmetric and asymmetric parts
 - * fit the asymmetric part which allows to extrapolation outside the detector acceptance



Combination with the dilepton channel → using the BLUE method

$A_{ m FB}^{ m lep}=0.$	$090\substack{+0.028\\-0.026}$
-------------------------	--------------------------------

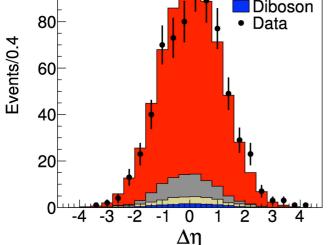
 2σ larger than SM predictions

		CDF Run II Preliminar	
Source of uncertainty	$L+J (9.4 fb^{-1})$	DIL (9.1fb^{-1})	Correlation
Backgrounds	0.015	0.029	0
Recoil modeling (Asymmetric modeling)	$^{+0.013}_{-0.000}$	0.006	1
Symmetric modeling	-	0.001	
Color reconnection	0.0067	-	
Parton showering	0.0027	-	
PDF	0.0025	-	
JES	0.0022	0.004	1
IFSR	0.0018	-	
Total systematic	$^{+0.022}_{-0.017}$	0.030	
Statistics	0.024	0.052	0
Total uncertainty	$^{+0.032}_{-0.029}$	0.060	

 $A_{\rm FB}^{\ell} = \frac{N(qy_{\ell} > 0) - N(qy_{\ell} < 0)}{N(qy_{\ell} > 0) + N(qy_{\ell} < 0)}.$

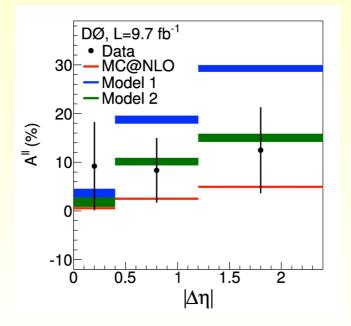
Lepton-based asymmetry in the dilepton channel

 $A^{\ell\ell} = \frac{N(\Delta\eta > 0) - N(\Delta\eta < 0)}{N(\Delta\eta > 0) + N(\Delta\eta < 0)}$

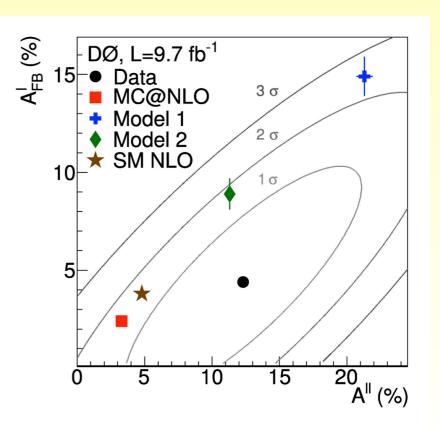

PRD 88, 112002 (2013) see A. Chapelain's talk at the YSF yesterday

Method

→ correct for selection effects (no migration across bins) within the fiducial region


- after background subtraction
- \rightarrow then extrapolate to the full acceptance using MC

 $N(a \times n > 0) - N(a \times n < 0)$


syster	natics:

	Corre	ected	Extrap	
	$A_{ m FB}^\ell$	$A^{\ell\ell}$	$A_{ m FB}^\ell$	$A^{\ell\ell}$
Source				
Object ID	0.54	0.50	0.59	0.60
Background	0.66	0.74	0.72	0.88
Hadronization	0.52	0.62	0.62	0.92
MC statistics	0.19	0.23	0.23	0.37
Total	1.02	1.12	1.14	1.46

 $A_{\rm FB}^{\ell} = (4.4 \pm 3.7 \text{ (stat)} \pm 1.1 \text{ (syst)})\%,$ $A^{\ell\ell} = (12.3 \pm 5.4 \text{ (stat)} \pm 1.5 \text{ (syst)})\%.$

 $A_{
m FB}^{\ell}/A^{\ell\ell} = 0.36 \pm 0.20$ SM: 0.79±0.10

Lepton-based asymmetry in the I+jets channel

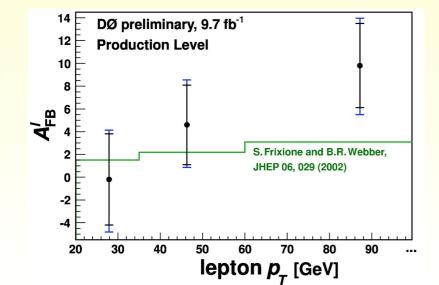
No need for full tt reconstruction

 \rightarrow use the I+3jets in addition to I+ \geq 4jets:

increase $t\bar{t}$ statistics but with higher background, reduce the acceptance corrections

 \rightarrow study the dependence vs tt kinematics looking at the measurement vs lepton p_T

Method


 \rightarrow likelihood to discriminate tt fitted together with the asymmetry

→ calibration the W+jets asymmetry using control region (I+3jets, no b-tag)

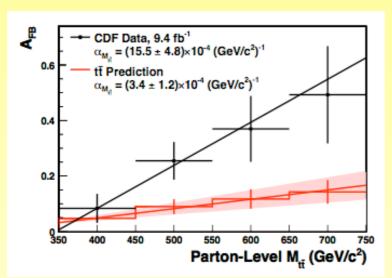
→ unfold for acceptance effects

 $A_{FB} (|y_1| < 1.5) = 4.7 \pm 2.3 (stat.)^{+1.1}_{-1.4} (syst.)$

SM (MC@NLO): AFB = 2.3 %

 $A_{\rm FB}^{\ell} = \frac{N(q \times \eta > 0) - N(q \times \eta < 0)}{N(q \times \eta > 0) + N(q \times \eta < 0)}$

q,**y**,

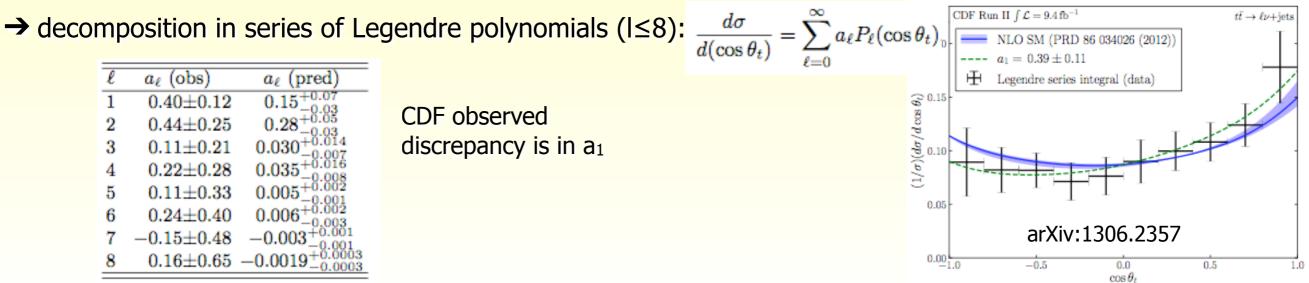


tt-based asymmetry

• Method

 \rightarrow reconstruct the tt final state in the I+jets channel (X² based fit)

- → background subtraction (~ 20% of the selection sample)
- \rightarrow correct to parton-level using matrix inversion unfolding (SVD) in 2D

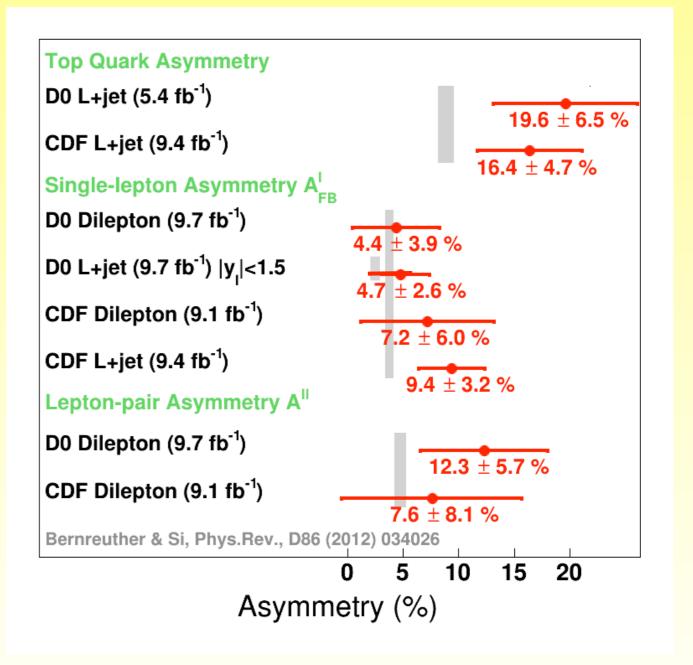

$A_{ m FB}$	$=rac{N(\Delta y>0)-N(\Delta y<0)}{N(\Delta y>0)+N(\Delta y<0)}$
	$\Delta y = y_t - y_{\bar{t}}$

PRD 87, 092002 (2013) Inclusive Slope Slope Correction level $A_{\rm FB}$ $\alpha_{\Delta y}$ $\alpha_{M,z}$ $(8.9 \pm 2.3) \times 10^{-4} (\text{GeV}/c^2)$ Reconstruction 0.063 ± 0.019 $(11.4 \pm 2.5) \times 10^{-2}$ $(10.9 \pm 2.8) \times 10^{-4} (\text{GeV}/c^2)^{-1}$ $(15.5 \pm 3.3) \times 10^{-2}$ Background-subtracted 0.087 ± 0.026 $(15.5 \pm 4.8) \times 10^{-4} (\text{GeV}/c^2)^{-1}$ $(25.3 \pm 6.2) \times 10^{-2}$ 0.164 ± 0.047 Parton

• Additional informations: measurement of the $d\sigma/dcos\theta_t$

 \rightarrow full shape of the differential cross section instead of 2 bins (cos $\theta_t > 0$ and cos θ_t)

 θ_t is the angle between the top and the incoming proton in the $t\bar{t}$ rest frame


slope: 2.4 σ different from the SM prediction: (3.4±1.2)x10⁻⁴

Summary of the charge asymmetries at the Tevatron

- inclusive asymmetries
 - → lepton-based asymmetries:
 rather good agreement with the QCD predictions
 → tt̄-based asymmetries:
 slightly higher than predictions
- differential measurements
 → CDF sees an excess in the asymmetry slopes
 - vs M_{tt} and $|\Delta y|$ (2-3 σ)
 - → not seen in D0 with 5.4 fb⁻¹

Conclusion

- Top-quark physics is one of the highlights of the Tevatron physics program
 → almost 20 years after its discovery during Run I, a lot of the top-quark properties have now been scrutinized at the Tevatron
- Still a lot of activities in the top quark sector at the Tevatron
 - \rightarrow finalize the measurements with the full dataset
 - → focus on measurements complementary to LHC (charge asymmetry, spin correlation) or competitive with the LHC (mass, $t\bar{t}$ and single top cross sections)
 - → CDF/D0 combination + first combination with the LHC

