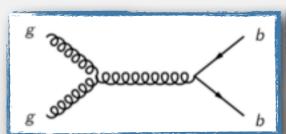
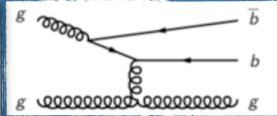
Performance of *b*-jet identification in ATLAS

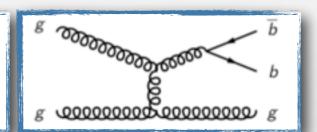
Jelena Jovićević on behalf of the ATLAS collaboration

La Thuile 25 February, 2014

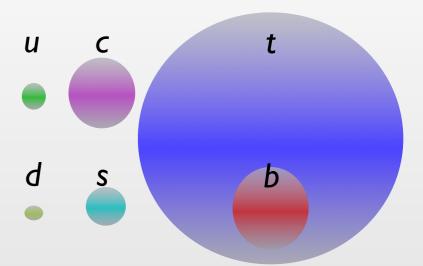
Production of b-quarks at LHC

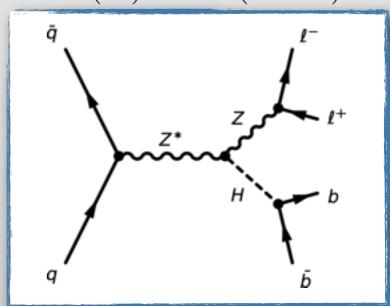



Directly:


flavour creation

flavour excitation


gluon splitting

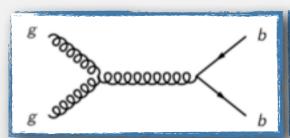

3 generations

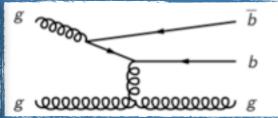
In decays:

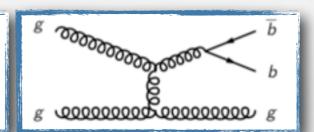
- top quark decays to b quark
 (e.g. important for precise measurements in top sector)
- Standard Model Higgs boson with m_H = 126 GeV, decays to $b\bar{b}$ pair 56% of the time.
 - Important channel to test the Higgs-to-fermion couplings
- SUSY particles can decay to third quark generation

$$H(Z) \to b\bar{b}(\ell^+\ell^-)$$

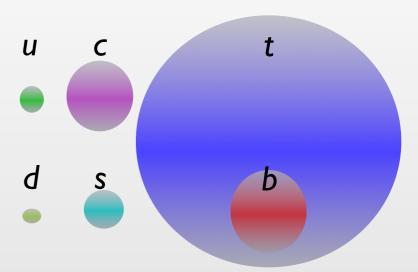
Production of b-quarks at LHC



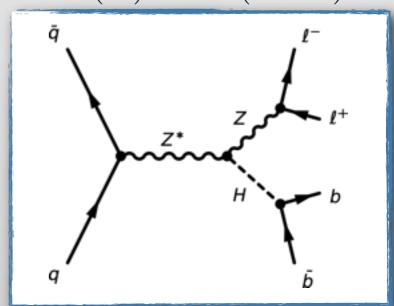

Directly:


flavour creation

flavour excitation


gluon splitting

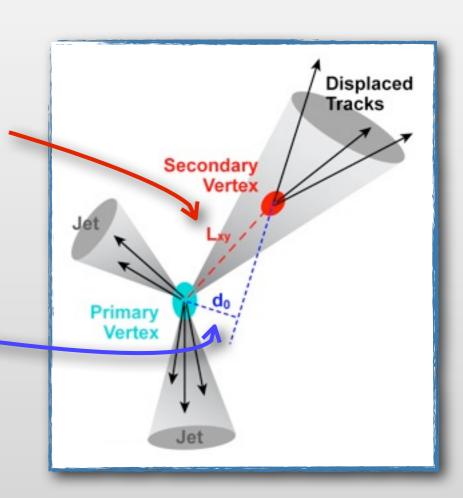
3 generations


In decays:

- top quark decays to b quark
 (e.g. important for precise measurements in top sector)
- Standard Model Higgs boson with m_H = 126 GeV, decays to $b\bar{b}$ pair 56% of the time.
 - Important channel to test the Higgs-to-fermion couplings
- SUSY particles can decay to third quark generation

The b-quark opens a window for important physics measurements!

$$H(Z) \to b\bar{b}(\ell^+\ell^-)$$


Signatures of b-quarks

Once produced, b-quarks hadronise forming B-hadrons inside jets

B-hadron characteristics:

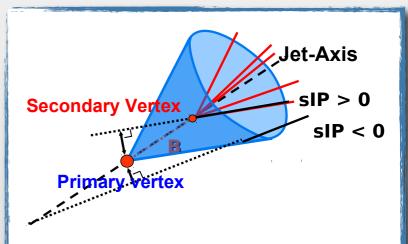
- Large mass (typically 5 6 GeV)
- Long life time ~1.5 ps and large decay length (Lxy)
 - presence of a secondary vertex
- Secondary vertex generates displaced tracks
 - large impact parameter (d₀)
- A chance of semi-leptonic decay
 - nearby soft lepton

ATLAS is able to exploit all these characteristics! (thanks to its excellent tracking and vertexing performance)

The b - jet identification algorithms

Primary vertex selection: vertex with highest $\sum_{tracks} p_T^2$ - good pile-up rejection

Impact parameter (IP) based: IP3D

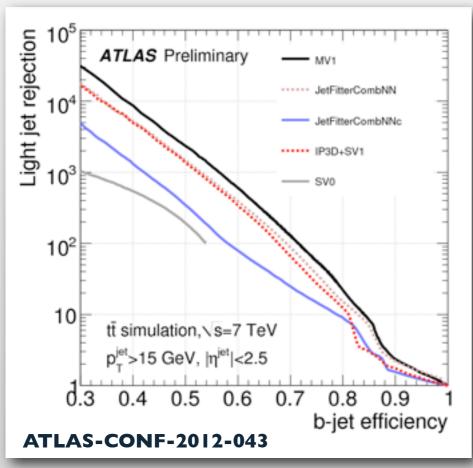

- uses transverse and longitudinal IP significances
 - $d_0/\sigma(d_0) \& z_0/\sigma(z_0)$ to discriminate between **b jets** and **light-jets**
- considers the "relative sign" of the IP $(d_0 > 0 \text{ for b-jets})$

Secondary vertex based: SV0, SVI

- aims to reconstruct displaced vertices
- exploits track-based invariant mass and flight length significance
- small mis-tag rate, limited efficiency

Decay chain reconstruction based: JetFitter

- aims at reconstructing full hadron decay chain (from b/c quarks)
- takes into account **track & vertices** info, **fraction of the energy** carried by charged particles within the jet, **flight length significance** in a neural net
- separate outputs for b, c and light jets



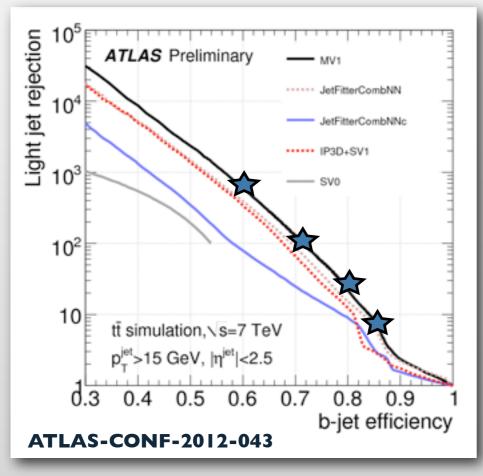
Combined algorithm - MVI

Combine individual algorithms to achieve higher rejection of light quark jets and to cover a wider range of b-tagging efficiencies!

Light jet rejection vs. b-jet efficiency

MVI algorithm:

- multivariate technique, based on inputs from other 3 algorithms: IP3D, SVI and IP3D+JetFitter
- takes into account input correlations
- output for b, c and light jets (p_T & η dependent)
- most commonly used in ATLAS


Provides the best rejection of light flavour jets for a given b-jet efficiency

Combined algorithm - MVI

Combine individual algorithms to achieve higher rejection of light quark jets and to cover a wider range of b-tagging efficiencies!

Light jet rejection vs. b-jet efficiency

MVI algorithm:

- multivariate technique,
 based on inputs from other 3 algorithms:
 IP3D, SVI and IP3D+JetFitter
- takes into account input correlations
- output for b, c and light jets (p_T & η dependent)
- most commonly used in ATLAS

Provides the best rejection of light flavour jets for a given b-jet efficiency

Efficiency needs to be evaluated in data for reliable usage in physics analyses!

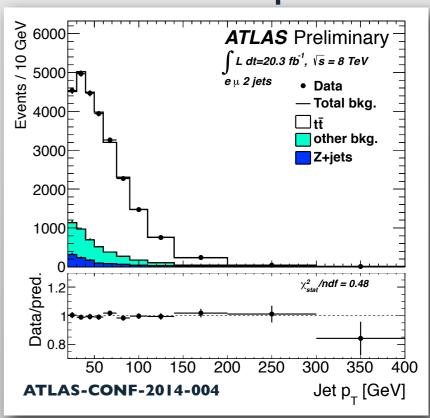
We calibrate several operating points of the inclusive b-tagging efficiency of MVI

Calibration techniques

For the light jet efficiency: 2 methods

 inclusive jet samples (method based on symmetries of track resolution function and vertex mass based method) https://cds.cern.ch/record/1435194

For the c-jet efficiency: 2 methods


- in sample with D* mesons https://cds.cern.ch/record/1435193
- W+c samples https://cds.cern.ch/record/1640162

For the b-jet tagging efficiency: 6 methods

- in multijet samples with muons 2 methods https://cds.cern.ch/record/1435197
- in $t\bar{t}$ events 4 methods https://cds.cern.ch/record/1460443
 - relatively pure source of b assuming BR($t \rightarrow Wb$) = I
 - purity in final states $e\mu + 2/3$ jets - 73/54% pure in *b* $ee + \mu\mu + 2/3$ jets - 67/52% pure in *b*

Jet $\mathbf{p_T}$ distribution in the $t\bar{t}$ enriched sample

PDF based calibration method

- New $t\bar{t}$ based method for the b-jet efficiency calibration.
- Make better use of data by exploiting per event jet flavour correlation.
 - Allows b-tagging efficiency for a cut on the weight (w) to be measured to a high precision
- Model the system using likelihood employs PDFs \mathcal{P} (2 jet example)

$$\mathcal{L}(p_{T,1}, p_{T,2}, w_1, w_2) = \begin{bmatrix} f_{bb} \mathcal{P}_{bb} (p_{T,1}, p_{T,2}) \mathcal{P}_b (w_1 | p_{T,1}) \mathcal{P}_b (w_2 | p_{T,2}) \\ + f_{bj} \mathcal{P}_{bj} (p_{T,1}, p_{T,2}) \mathcal{P}_b (w_1 | p_{T,1}) \mathcal{P}_j (w_2 | p_{T,2}) \\ + f_{jj} \mathcal{P}_{jj} (p_{T,1}, p_{T,2}) \mathcal{P}_j (w_1 | p_{T,1}) \mathcal{P}_j (w_2 | p_{T,2}) \\ + 1 \leftrightarrow 2]/2,$$

$$\mathcal{P}_{ff}(p_{T,1},p_{T,2})$$
 MC

2D PDF for [p_{T,1}, p_{T,2}] for flavour combination bj, bb, jj

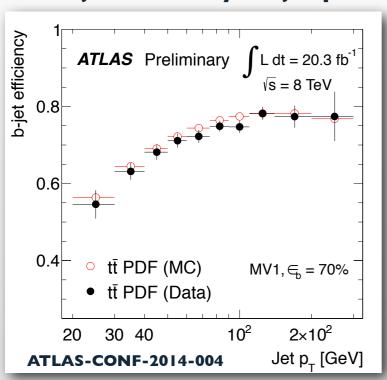
$$\mathcal{P}_b(w, p_T)$$
 Measured on data

$$\mathcal{P}_j(w, p_T)$$

 $\mathcal{P}_j(w,p_T)$ PDF for the b-tagging discriminant for b(j) jet

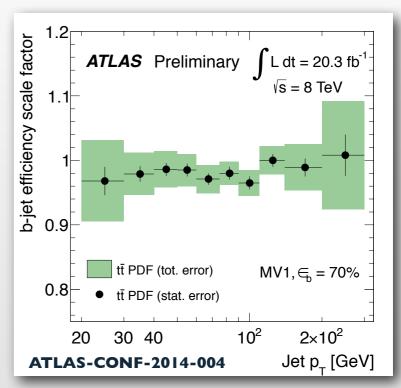
$$f_{bb}, f_{bj}, f_{jj} = 1 - f_{bb} - f_{bj}$$

flavour fractions in 2 jet case


$$f_{bb},\,f_{bj},\,f_{jj}=1-f_{bb}-f_{bj}$$
 MC Efficiency determination
$$\epsilon_b(p_T)=\int_{w_{cut}}^\infty dw' \mathcal{P}_b(w',p_T)$$

Perform statistical combination of channels - reduced uncertainties

Results - PDF based calibration


b-jet efficiency vs. jet p_T

Data to Monte Carlo correction factors

Calibration

Data/MC correction factors

Correction factors applied in physics analyses to account for mismodeling of the b-jet identification efficiency.

p_T interval	Corr. Factor	Stat error	Syst error	Tot error
[20; 30]	0.968	0.022	0.059	0.063
[30; 40]	0.979	0.012	0.030	0.033
[40; 50]	0.986	0.010	0.027	0.028
[50; 60]	0.985	0.010	0.023	0.025
[60; 75]	0.971	0.009	0.020	0.022
[75; 90]	0.980	0.010	0.015	0.018
[90; 110]	0.965	0.010	0.018	0.020
[110; 140]	1.000	0.010	0.020	0.022
[140; 200]	0.989	0.014	0.033	0.036
[200; 300]	1.008	0.032	0.077	0.084

Dominant systematics

Theory %()						
Hadronisation ($t ar t$)	0.3 - 2.0					
Modeling ($tar{t}$)	0.4 - 1.7					
Modeling PS $(tar{t})$	0.5 - 1.9					
Top p_T reweighting $(t\bar{t})$	0.2 - 4.6					
Modeling Z+jets	0.2 - 2.4					
Modeling diboson	0.7 - 3.1					
Z+jets normalisation	0.4 - 1.7					
Experimental (%)						
Jet energy scale	0.3 - 4.1					
Jet energy resolution	0.1 - 2.6					
Mistag rate	0.3 - 2.8					

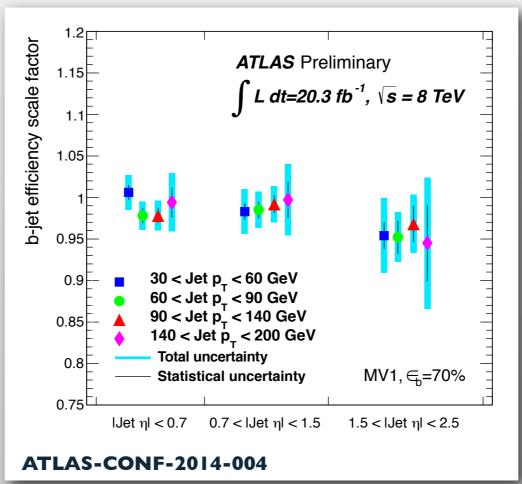
Results - PDF based calibration

Correction factors applied in physics analyses to account for mismodeling of the b-jet identification efficiency.

p_T interval	Corr. Factor	Corr. Factor Stat error S		Tot error
[20; 30]	0.968	0.022	0.059	0.063
[30; 40]	0.979	0.012	0.030	0.033
[40; 50]	0.986	0.010	0.027	0.028
[50; 60]	0.985	0.010	0.023	0.025
[60; 75]	0.971	0.009	0.020	0.022
[75; 90]	0.980	0.010	0.015	0.018
[90; 110]	0.965	0.010	0.018	0.020
[110; 140]	1.000	0.010	0.020	0.022
[140; 200]	0.989	0.014	0.033	0.036
[200; 300]	1.008	0.032	0.077	0.084

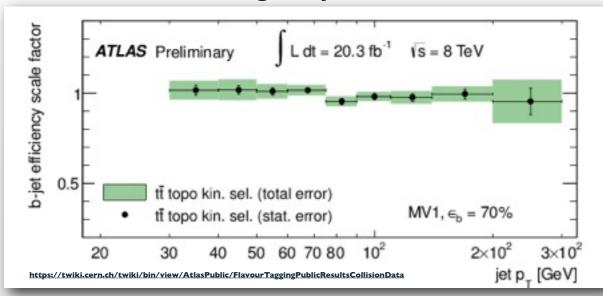
Statistical uncertainties very small - efficiently using data!
Systematically limited.

Dominant systematics


Theory %()						
Hadronisation ($t\bar{t}$)	0.3 - 2.0					
Modeling ($tar{t}$)	0.4 - 1.7					
Modeling PS $(tar{t})$	0.5 - 1.9					
Top p_T reweighting $(t\bar{t})$	0.2 - 4.6					
Modeling Z+jets	0.2 - 2.4					
Modeling diboson	0.7 - 3.1					
Z+jets normalisation	0.4 - 1.7					
Experimental (%)						
Jet energy scale	0.3 - 4.1					
Jet energy resolution	0.1 - 2.6					
Mistag rate	0.3 - 2.8					

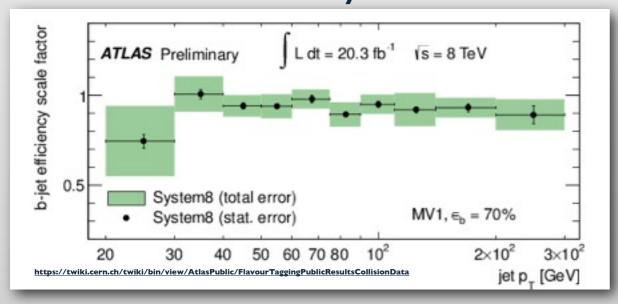
- Method allows for an arbitrary binning in any jet kinematic quantity
- Performed binning in both p_T and η to verify no η dependence from the less sensitive previously used calibrations

Data/MC correction factors as a function of the jet pseudorapidity

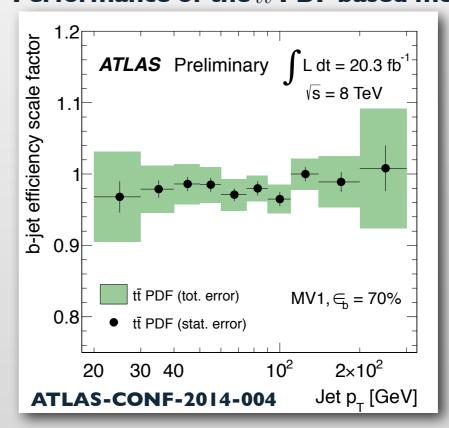


• The scale factors were tested as a function of η inclusively in p_T using the $\chi 2$ test and no significant dependence is observed.

Improvement with PDF based method



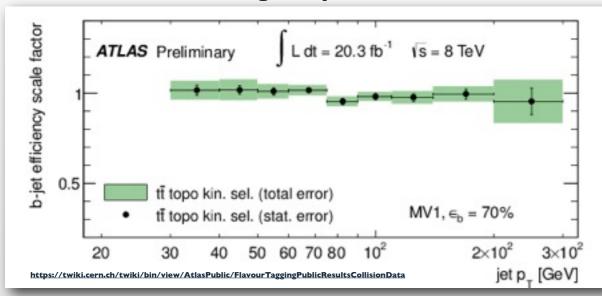
Performance of the tag and probe method in $tar{t}$ event


 $t ar{t}$ tag and probe - uncertainties 3% -14%

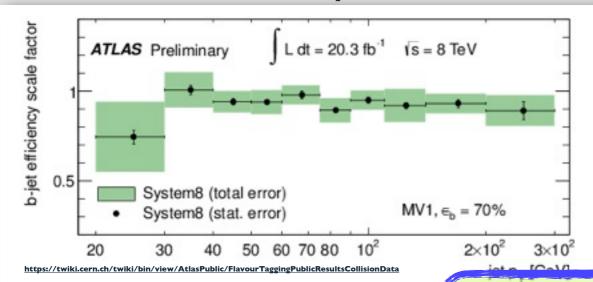
Performance of the System8 method

System8 - uncertainties 5% - 20%

Performance of the $t\bar{t}$ PDF based method

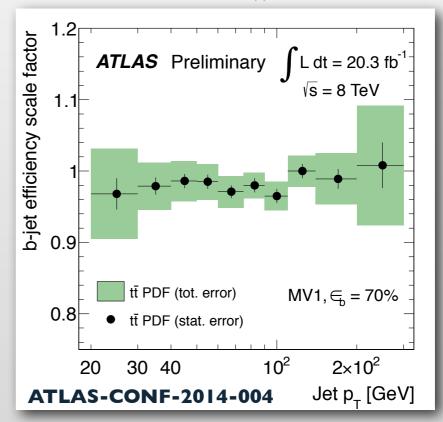


Improvement with PDF based method



Performance of the tag and probe method in $tar{t}$ event

tt tag and probe uncertainties 3% - 14%


Performance of the System8 method

Reduction on average: Statistical unc. 55% Total unc. 36%

Performance of the $t\bar{t}$ PDF based method

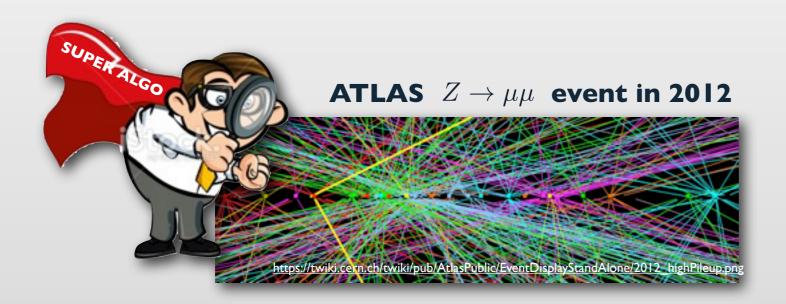
tt PDF based uncertainties < 2% - 8%

System8 -

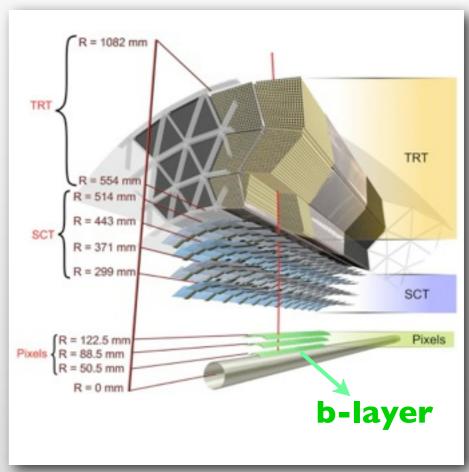
Large reduction of uncertainties with uncertainties 5% - 20% respect to the previously used methods!

Conclusions

- Processes with b-quark(s) in the final state important for the physics program.
- Identification of b-jets based on physics of the b-quark hadronisation and B-meson properties
 - enabled by excellent tracking and vertexing performance in ATLAS.
- Several algorithms for the b-jet identification developed in ATLAS
 and combined into the sophisticated multivariate technique algorithm MVI.
- Efficiency of the b-jet identification measured in data using several methods
- Recently developed PDF based calibration method in $t\bar{t}$ enriched sample reduces significantly theoverall uncertainty with respect to previous methods


ATLAS is well equipped to successfully pursue the physics program which relies on performant b-jet identification!

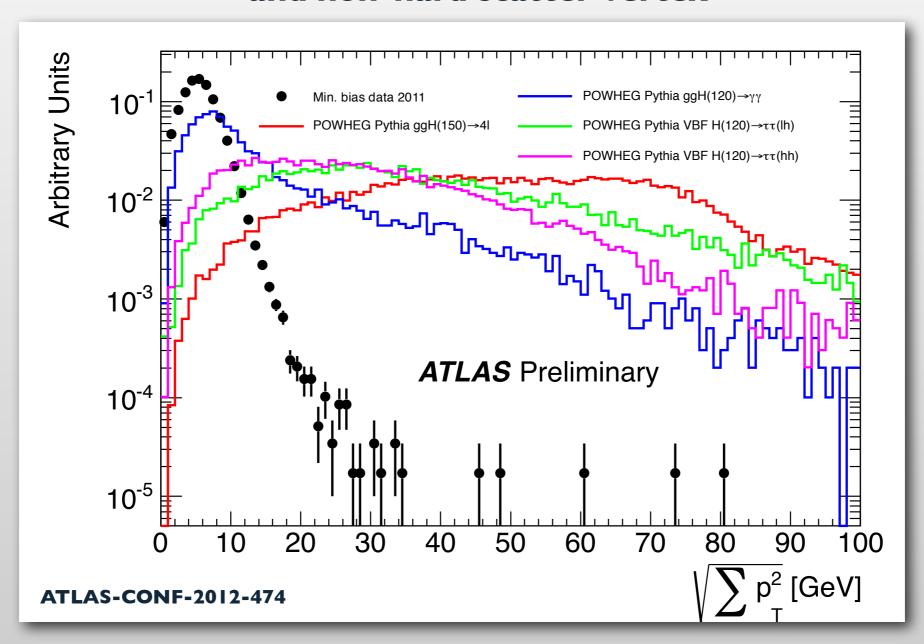
ATLAS allows for it!



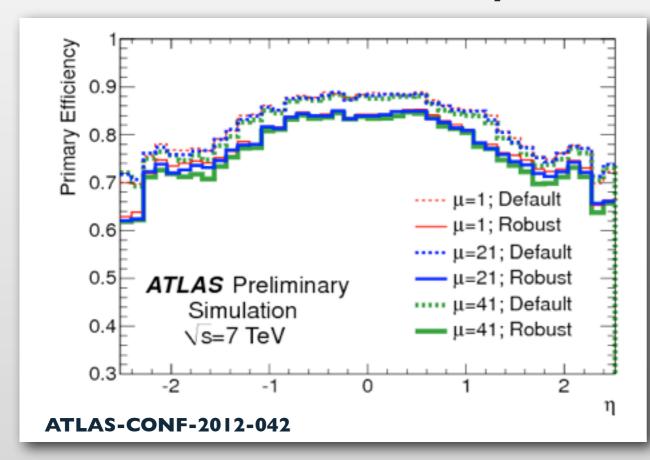
Excellent tracking

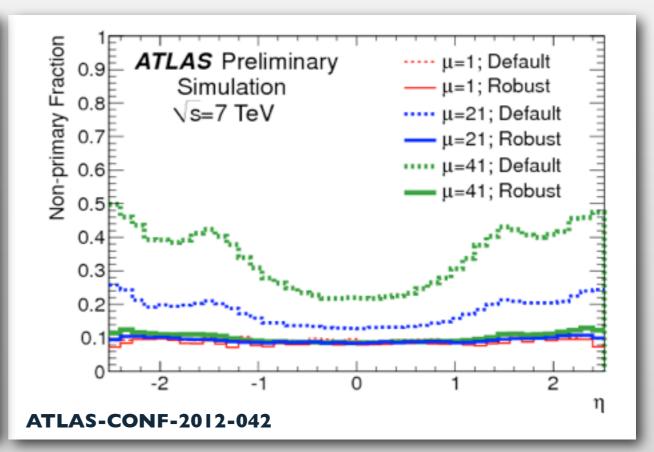
 Robust reconstruction algorithms performant under the high occupancy in the inner detector

ATLAS Inner detector


Excellent vertexing

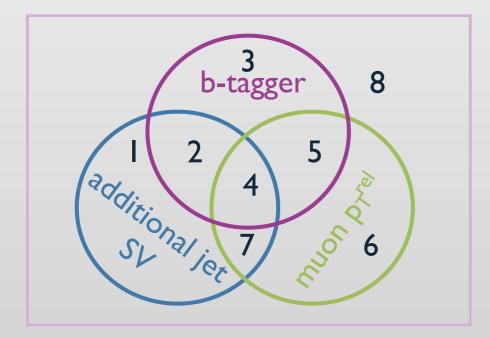
- Efficiency ~95%
- Resolution (vertices with 70 tracks)
 - ▶ transverse: ~30 µm
 - ► longitudinal: ~50 µm


Discriminant between hard and non-hard scatter vertex



Track reconstruction efficiency in minimum bias MC samples

Fraction of fake tracks in 3 pile-up configurations



Backup - Historically used methods

In sample with muons

- multijet events with soft muons
- exploit characteristics of the muons associated with jets
- **System8** method applies 3 independent criteria do data

 Build the system of 8 equation between observed and expected counts

In enriched $t \bar t$ samples

- statistically significant at 8 TeV!
- $t \to Wb$ \to enriched with b
- Apply kinematic selections to enhance very high purity
- I. **Count** fraction of tagged jets in jet multiplicity bins
- 2. **Extract b-tag efficiency** by counting the fraction of tagged events in data and in simulation.

$$f_{btag}^{data} = \epsilon_b f_{b-jets}^{sim} + \sum_{non-b} \epsilon_{non-b}^{sim} f_{non-b}$$
 fraction of tagged jets in data fraction of (mis)tagged

Main difference in respect to the other methods (2 jet case)

Information if the second jet in the event can be used

$$f_{\text{tagged}} = f_b \epsilon_b + (1 - f_b) \epsilon_j \rightarrow$$

$$f_{2 \text{ tags}} = f_{bb} \epsilon_b^2 + f_{bj} \epsilon_j \epsilon_b + (1 - f_{bb} - f_{bj}) \epsilon_j^2$$

$$f_{1 \text{ tag}} = 2f_{bb} \epsilon_b (1 - \epsilon_b) + f_{bj} \left[\epsilon_j (1 - \epsilon_b) + (1 - \epsilon_j) \epsilon_b \right] + (1 - f_{bb} - f_{bj}) 2\epsilon_j (1 - \epsilon_j),$$

- In the case of N bins in kinematic variables, N^2 possible combinations for 2 jet channel -> 2 x N^2 non-linear equations (N eff for b, N for on b).
- Instead, model the system using unbinned likelihood (can be extended to an arbitrary binning in any jet kinematic quantity).

2 dim PDF for [p_{T,1}, p_{T,2}] for flavour combination bj (bb,ljj

PDF for the b-tagging discriminant for b(j) jet

$$\mathcal{L}\left(p_{\mathrm{T},1}, p_{\mathrm{T},2}, w_{1}, w_{2}\right) = \left[f_{bb}\mathcal{P}_{bb}\left(p_{\mathrm{T},1}, p_{\mathrm{T},2}\right)\mathcal{P}_{b}\left(w_{1}|p_{\mathrm{T},1}\right)\mathcal{P}_{b}\left(w_{2}|p_{\mathrm{T},2}\right)\right. \\ \left. + f_{bj}\mathcal{P}_{bj}\left(p_{\mathrm{T},1}, p_{\mathrm{T},2}\right)\mathcal{P}_{b}\left(w_{1}|p_{\mathrm{T},1}\right)\mathcal{P}_{j}\left(w_{2}|p_{\mathrm{T},2}\right)\right. \\ \left. + f_{jj}\mathcal{P}_{jj}\left(p_{\mathrm{T},1}, p_{\mathrm{T},2}\right)\mathcal{P}_{j}\left(w_{1}|p_{\mathrm{T},2}\right)\mathcal{P}_{j}\left(w_{2}|p_{\mathrm{T},2}\right)\right. \\ \left. + 1 \leftrightarrow 2 \right]/2,$$

P_{bb} and Pjj symmetrised - reduces stat fluctuations in MC

Systematics breakdown

p_T interval [GeV]	20-30	30-40	40-50	50-60	60-75	75-90	90-110	110-140	140-200	200-300
SF	0.968	0.979	0.986	0.985	0.971	0.980	0.965	1.000	0.989	1.008
Total error [%]	6.5	3.4	2.8	2.5	2.3	1.8	2.1	2.2	3.6	8.4
Stat. error [%]	2.3	1.2	1.0	1.0	0.9	1.0	1.0	1.0	1.4	3.2
Syst. error [%]	6.1	3.1	2.7	2.3	2.1	1.5	1.9	2.0	3.3	7.6
	Systematic Uncertainties [%]									
Hadronisation $(t\bar{t})$	1.0	0.6	1.5	1.4	1.1	0.5	0.8	0.3	1.0	2.0
Modelling $(t\bar{t})$	1.1	0.4	1.0	1.1	1.0	0.5	0.7	0.9	0.7	1.7
Top $p_{\rm T}$ reweighting $(t\bar{t})$	0.2	0.3	0.3	0.2	0.2	0.1	0.1	0.4	1.4	4.6
More/less PS (tt̄)	0.5	0.6	0.9	0.8	0.9	1.0	0.9	0.8	1.4	1.9
More/less PS (single top)	0.2	0.0	0.1	0.1	0.2	0.1	0.2	0.2	0.0	0.0
Modelling (Z+jets)	0.8	0.3	0.2	0.5	0.3	0.2	0.3	0.3	0.9	2.4
Modelling (dibosons)	0.7	0.7	0.6	0.6	0.6	0.6	0.7	0.8	1.3	3.1
Norm. single top	0.5	0.4	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.0
Norm. Z+jet	0.9	0.6	0.9	0.4	0.7	0.5	0.6	0.7	1.1	1.7
Norm. $Z+b/c$	0.1	0.1	0.2	0.1	0.1	0.0	0.1	0.0	0.1	0.2
Norm. lepton fakes	0.3	0.3	0.2	0.3	0.2	0.2	0.3	0.3	0.3	0.4
Pile-up reweighting	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.1
Electron eff./res./scale	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Muon eff./res./scale	0.2	0.3	0.2	0.3	0.1	0.2	0.1	0.1	0.0	0.0
$E_{\mathrm{T}}^{\mathrm{miss}}$ soft-terms	0.1	0.1	0.2	0.0	0.2	0.0	0.1	0.2	0.3	0.5
Jet energy scale	4.1	2.2	1.2	0.7	0.7	0.3	0.7	0.8	1.2	2.6
Jet energy resolution	2.6	1.0	0.3	0.3	0.1	0.2	0.2	0.0	0.2	0.2
Jet vertex fraction	0.8	0.1	0.0	0.1	0.1	0.1	0.2	0.2	0.2	0.2
Mis-tag rate	2.8	1.1	0.5	0.4	0.3	0.2	0.3	0.4	0.5	1.1