$B \rightarrow K^{*} I^{+} I^{-}$a portal for New Physics?
 A new insight on the Anomaly

Joaquim Matias
Universitat Autònoma de Barcelona

LaThuile

Based on: S. Descotes, J. M., J. Virto, Phys. Rev. D88 (2013) 074002
J. M. and N. Serra, arXiv:1402xxxx

February 27, 2014

PLAN of the TALK

PART I Status of the Theoretical Analysis of LHCb data using the clean observables P_{i}^{\prime}. Understanding of the observed anomaly using an effective Hamiltonian approach. First update including experimental correlations.

PART II A fully new insight on the anomaly based on symmetries:
A new relation between P_{2}, the zero of $A_{F B}$ and the anomaly in P_{5}^{\prime}.
PART III An explanation of the small controversy on C_{9}^{\prime}.

Conclusions

The lack of any evidence for NP in direct searches after the discovery of a SM-like Higgs, leave us at present and in the short term as the best paradigm to unveil New Physics (at least in Flavour):

$$
\mathcal{L}=\sum_{i}\left(C_{i}^{S M}+C_{i}^{N P}\right) \mathcal{O}_{i}+\sum_{j} C_{j}^{\prime} \mathcal{O}_{j}^{\prime}
$$

an accurate (over constraining) determination of Wilson coefficients:
a) to observe deviations $\mathbf{C}_{i}{ }^{\text {NP }}$ or \mathbf{b}) emergence of new operators (\mathcal{O}_{j}^{\prime} or scalars).

In particular those associated to operators (and chiral counterparts $\mathcal{O}_{7,9,10}^{\prime}(\mathrm{L} \leftrightarrow \mathrm{R})$:

$$
\mathcal{O}_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu}, \quad \mathcal{O}_{9}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), \quad \mathcal{O}_{10}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
$$

Wilson coefficients $\left[\mu_{b}=\mathcal{O}\left(m_{b}\right)\right]$

Observables

$$
\begin{array}{cr}
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right), A_{l}\left(B \rightarrow K^{*} \gamma\right), S_{K^{*} \gamma}, A_{F B}, F_{L}, & -0.292 \\
\mathcal{B}\left(B \rightarrow X_{s} \ell \ell\right), A_{F B}, F_{L}, & 4.075 \\
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right), \mathcal{B}\left(B \rightarrow X_{s} \ell \ell\right), A_{F B}, F_{L}, & -4.308 \\
\mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right), A_{l}\left(B \rightarrow K^{*} \gamma\right), S_{K^{*} \gamma}, A_{F B}, F_{L} & -0.006 \\
\mathcal{B}\left(B \rightarrow X_{s} \ell \ell\right), A_{F B}, F_{L} & 0 \\
\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right), A_{F B}, F_{L}, & 0
\end{array}
$$

$$
\begin{aligned}
& \mathbf{C}_{7}^{\mathbf{C}_{7}^{e f f}}\left(\mu_{\mathbf{b}}\right) \\
& \mathbf{C}_{9}\left(\mu_{\mathbf{b}}\right) \\
& \mathbf{C}_{10}\left(\mu_{\mathbf{b}}\right) \\
& \mathbf{C}_{7}^{\prime}\left(\mu_{\mathbf{b}}\right) \\
& \mathbf{C}_{9}^{\prime}\left(\mu_{\mathbf{b}}\right) \\
& \left.\mathbf{C}_{10}^{\prime} \mu_{\mathbf{b}}\right)
\end{aligned}
$$

More Precision Observables are necessary to overconstrain the deviations $C_{i}^{\text {NP }}$
$\Rightarrow B \rightarrow K^{*}(\rightarrow K \pi) \mu^{+} \mu^{-}$can fulfill this requirement providing a set of large-recoil clean observables $\mathbf{P}_{1,2,3}, \mathbf{P}_{4,5,6,8}^{\prime}$ and the corresponding $C P$ observables $\mathbf{P}_{1,2,3}^{C P}, \mathbf{P}_{4,5,6,8}^{C P}$

All those new observables $\mathbf{P}_{\mathbf{i}}, \mathbf{P}_{\mathbf{i}}^{\prime}$ come from the angular distribution $\overline{\mathbf{B}}_{\mathbf{d}} \rightarrow \overline{\mathbf{K}}^{* 0}\left(\rightarrow \mathbf{K}^{-} \pi^{+}\right) \mathbf{I}^{+} \mathbf{I}^{-}$with the $K^{* 0}$ on the mass shell. It is described by $\mathbf{s}=\mathbf{q}^{2}$ and three angles $\theta_{\ell}, \theta_{\mathrm{K}}$ and ϕ

$$
\frac{d^{4} \Gamma\left(\bar{B}_{d}\right)}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K} d \phi}=\frac{9}{32 \pi} \mathbf{J}\left(\mathbf{q}^{2}, \theta_{\ell}, \theta_{K}, \phi\right) \quad \Rightarrow \quad \mathbf{f}\left(\mathbf{J}_{1 \mathrm{~s}}, \mathbf{J}_{1 \mathrm{c}}, \mathbf{J}_{2 \mathrm{~s}}, \ldots\right)
$$

θ_{ℓ} : Angle of emission between $\bar{K} * 0$ and μ^{-}in di-lepton rest frame.
θ_{K} : Angle of emission between $\bar{K}^{* 0}$ and K^{-}in di-meson rest frame. ϕ : Angle between the two planes.
\mathbf{q}^{2} : dilepton invariant mass square.

Notice LHCb uses $\theta_{\ell}^{L H C b}=\pi-\theta_{\ell}^{\text {us }}$

- low- \mathbf{q}^{2} : large recoil for $K^{*}: E_{K^{*}} \gg \Lambda_{Q C D}$ or $\mathbf{4} \mathbf{m}_{\ell}^{2} \leq \mathbf{q}^{\mathbf{2}}<\mathbf{9} \mathrm{GeV}^{2}$

Three regions in q^{2} : resonance region $\left(q^{2}=m_{J / \Psi}^{2}, \ldots\right)$ betwen $9<q^{2}<14 \mathrm{GeV}^{2}$.

- large- \mathbf{q}^{2} : low-recoil for $K^{*}: E_{K^{*}} \sim \Lambda_{Q C D}$ or $\mathbf{1 4}<\mathbf{q}^{2} \leq\left(\mathbf{m}_{\mathbf{B}}-\mathbf{m}_{\mathbf{K}^{*}}\right)^{2}$.
- The coefficients J_{i} contain transversity amplitudes $A_{\perp, \|, 0}$ of the K^{*} which in turn

$$
A_{\perp, \|, 0}=\left(C_{i}^{S M}+\mathrm{C}_{\mathrm{i}}^{\mathrm{NP}}\right) \times \text { form factors }
$$

\Rightarrow The cleanest procedure to separate the important Wilson Coefficient information from the Form Factor pollution is the use of P_{i}, P_{j}^{\prime} observables
The coefficients $\mathbf{J}_{\mathbf{i}}$ of the distribution can be reexpressed now in terms of this basis of clean observables:

Correspondence $\mathbf{J}_{\mathbf{i}} \leftrightarrow \mathbf{P}_{\mathbf{i}}^{(\prime)}$:

$$
\begin{aligned}
& \left(\mathrm{J}_{2 \mathrm{~s}}+\bar{J}_{2 \mathrm{~s}}\right)=\frac{1}{4} \mathrm{~F}_{\mathrm{T}} \frac{\mathrm{~d} \boldsymbol{\Gamma}+\mathrm{d} \bar{\Gamma}}{\mathrm{dq}}{ }^{2} \quad\left(\mathrm{~J}_{2 \mathrm{c}}+\overline{\mathrm{J}}_{2 \mathrm{c}}\right)=-\mathrm{F}_{\mathrm{L}} \frac{\mathrm{~d} \boldsymbol{\Gamma}+\mathrm{d} \bar{\Gamma}}{\mathrm{dq} \boldsymbol{q}^{2}} \\
& \mathrm{~J}_{3}+\overline{\mathrm{J}}_{3}=\frac{1}{2} \mathrm{P}_{1} \mathrm{~F}_{\mathrm{T}} \frac{\mathrm{~d} \mathrm{\Gamma}+\mathrm{d} \overline{\boldsymbol{\Gamma}}}{\mathrm{dq}^{2}} \quad \mathrm{~J}_{3}-\bar{J}_{3}=\frac{1}{2} \mathrm{P}_{1}^{\mathrm{CP}} \mathrm{~F}_{\mathrm{T}} \frac{\mathrm{~d} \boldsymbol{\Gamma}+\mathrm{d} \overline{\boldsymbol{\Gamma}}}{\mathrm{dq}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{J}_{9}+\overline{\mathrm{J}}_{9}=-\mathrm{P}_{3} \mathrm{~F}_{\mathrm{T}} \frac{\mathrm{~d} \mathrm{\Gamma}+\mathrm{d} \bar{\Gamma}}{\mathrm{dq}{ }^{2}} \quad \mathrm{~J}_{9}-\overline{\mathrm{J}}_{9}=-\mathrm{P}_{3}^{\mathrm{CP}} \mathrm{~F}_{\mathrm{T}} \frac{\mathrm{~d} \mathrm{\Gamma}+\mathrm{d} \bar{\Gamma}}{\mathrm{dq}{ }^{2}} \\
& \mathrm{~J}_{4}+\bar{J}_{4}=\frac{1}{2} \mathrm{P}_{4}^{\prime} \sqrt{\mathrm{F}_{\mathrm{T}} \mathrm{~F}_{\mathrm{L}}} \frac{\mathbf{d \Gamma}+\mathbf{d} \overline{\boldsymbol{\Gamma}}}{\mathbf{d q ^ { 2 }}} \quad \mathrm{J}_{4}-\bar{J}_{4}=\frac{1}{2} \mathrm{P}_{4}^{\prime \mathrm{CP}} \sqrt{\mathrm{~F}_{\mathrm{T}} \mathrm{~F}_{\mathrm{L}}} \frac{\mathrm{~d} \Gamma+\mathbf{d} \overline{\boldsymbol{\Gamma}}}{\mathbf{d q ^ { 2 }}} \\
& \mathrm{J}_{5}+\bar{J}_{5}=\mathrm{P}_{5}^{\prime} \sqrt{\mathrm{F}_{\mathrm{T}} \mathrm{~F}_{\mathrm{L}}} \frac{\mathrm{~d} \mathrm{\Gamma}+\mathrm{d} \bar{\Gamma}}{\mathbf{d q ^ { 2 }}} \quad \mathrm{~J}_{5}-\bar{J}_{5}=\mathrm{P}_{5}^{\prime C P} \sqrt{\mathrm{~F}_{\mathrm{T}} \mathrm{~F}_{\mathrm{L}}} \frac{\mathrm{~d} \mathrm{\Gamma}+\mathrm{d} \bar{\Gamma}}{\mathrm{dq}^{2}} \\
& J_{7}+\bar{J}_{7}=-P_{6}^{\prime} \sqrt{F_{\mathrm{T}} F_{\mathrm{L}}} \frac{d \Gamma+d \bar{\Gamma}}{d q^{2}} \quad \mathrm{~J}_{7}-\bar{J}_{7}=-\mathrm{P}_{6}^{\prime \mathrm{CP}} \sqrt{\mathrm{~F}_{\mathrm{T}} \mathrm{~F}_{\mathrm{L}}} \frac{\mathrm{~d} \boldsymbol{\Gamma}+\mathrm{d} \bar{\Gamma}}{d q^{2}}
\end{aligned}
$$

[Egede, Hurth, JM, Ramon, Reece'10]
An important step forward was the identification of the symmetries of the distribution:
Transformation of amplitudes leaving distribution invariant.
Symmetries determine the minimal \# observables for each scenario:

$$
n_{o b s}=2 n_{A}-n_{S}
$$

Case	Coefficients	Amplitudes	Symmetries	Observables
$m_{\ell}=0, A_{S}=0$	11	6	4	8
$m_{\ell}=0$	11	7	5	$\mathbf{9}$
$m_{\ell}>0, A_{S}=0$	11	7	4	$\mathbf{1 0}$
$m_{\ell}>0$	12	8	4	$\mathbf{1 2}$

All symmetries (massive and scalars) were found explicitly later on.
[JM, Mescia, Ramon, Virto'12]
Symmetries \Rightarrow \# of observables \Rightarrow determine a basis: each angular observable constructed can be expressed in terms of this basis.
P_{i}, P_{i}^{\prime} defines an Optimal Basis of observables, a compromise between:

- Excellent experimental accessibility and simplicity of the fit.
- Reduced FF dependence (in the large-recoil region: $0.1 \leq q^{2} \leq 9 \mathrm{GeV}^{2}$).

Our proposal for CP-conserving basis:

$$
\left\{\frac{\mathbf{d} \boldsymbol{\Gamma}}{\mathbf{d} \mathbf{q}^{2}}, \mathbf{A}_{\mathrm{FB}}, \mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{\mathbf{3}}, \mathbf{P}_{\mathbf{4}}^{\prime}, \mathbf{P}_{\mathbf{5}}^{\prime}, \mathbf{P}_{6}^{\prime}\right\} \text { or } \mathbf{P}_{\mathbf{3}} \leftrightarrow \mathbf{P}_{8}^{\prime} \text { and } \mathbf{A}_{\mathrm{FB}} \leftrightarrow \mathbf{F}_{\mathrm{L}}
$$

where $P_{1}=A_{T}^{2}$ [Kruger, J.M'05],

$$
\begin{aligned}
& P_{2}=\frac{1}{2} A_{T}^{\text {re }}, P_{3}=-\frac{1}{2} A_{T}^{\mathrm{im}} \text { [Becirevic, Schneider'12] } \\
& P_{4,5,6}^{\prime} \text { [Descotes, JM, Ramon, Virto'13]). }
\end{aligned}
$$

The corresponding CP-violating basis $\left(J_{i}+\bar{J}_{i} \rightarrow J_{i}-\bar{J}_{i}\right.$ in numerators):

$$
\left\{\mathbf{A}_{\mathrm{CP}}, \mathbf{A}_{\mathrm{FB}}^{\mathrm{CP}}, \mathbf{P}_{1}^{\mathrm{CP}}, \mathbf{P}_{2}^{\mathrm{CP}}, \mathbf{P}_{3}^{\mathrm{CP}}, \mathbf{P}_{4}^{\prime \mathrm{CP}}, \mathbf{P}_{5}^{\prime \mathrm{CP}}, \mathbf{P}_{6}^{\prime \mathrm{CP}}\right\} \text { or } \mathbf{P}_{3}^{\mathrm{CP}} \leftrightarrow \mathbf{P}_{8}^{\prime \mathrm{CP}} \text { and } \mathbf{A}_{\mathrm{FB}}^{\mathrm{CP}} \leftrightarrow \mathbf{F}_{\mathrm{L}}^{\mathrm{CP}}
$$

P_{1} and P_{2} observables function of A_{\perp} and $A_{\|}$amplitudes

- \mathbf{P}_{1} : Proportional to $\left|A_{\perp}\right|^{2}-\left|A_{\|}\right|^{2}$
- Test the LH structure of SM and/or existence of RH currents that breaks $A_{\perp} \sim-A_{\|}$
- \mathbf{P}_{2} : Proportional to $\operatorname{Re}\left(A_{i} A_{j}\right)$
- Zero of P_{2} at the same position as the zero of $A_{\text {FB }}$
- P_{2} is the clean version of $A_{F B}$. Their different normalizations offer different sensitivities.

- P_{3} and $P_{6,8}^{\prime}$ are proportional to $\operatorname{Im} A_{i} A_{j}$ and small if there are no large phases. All are <0.1.
- $P_{i}^{C P}$ are all negligibly small if there is no New Physics in weak phases.
P_{4}^{\prime} and P_{5}^{\prime} observables function of $A_{\perp, \|}$ and also A_{0} amplitudes
- $\mathbf{P}_{4,5}^{\prime}$: Proportional to $\operatorname{Re}\left(A_{i} A_{j}\right)$
- $\left|P_{4,5}\right| \leq 1$ but $\left|P_{4,5}^{\prime}\right|$ can be >1.

In the large-recoil limit

$$
\begin{aligned}
A_{\perp, \|}^{L} & \propto\left[\mathcal{C}_{9}^{\mathrm{eff}}-\mathcal{C}_{10}+\frac{2 \hat{m}_{b}}{\hat{s}} \mathcal{C}_{7}^{\mathrm{eff}}\right] \xi_{\perp}\left(E_{K^{*}}\right) \quad A_{\perp, \|}^{R} \propto\left[\mathcal{C}_{9}^{\mathrm{eff}}+\mathcal{C}_{10}+\frac{2 \hat{m}_{b}}{\hat{s}} \mathcal{C}_{7}^{\mathrm{eff}}\right] \xi_{\perp}\left(E_{K^{*}}\right) \\
A_{0}^{L} & \propto\left[\mathcal{C}_{9}^{\mathrm{eff}}-\mathcal{C}_{10}+2 \hat{m}_{b} \mathcal{C}_{7}^{\mathrm{eff}}\right] \xi_{\|}\left(E_{K^{*}}\right) \quad A_{0}^{R} \propto\left[\mathcal{C}_{9}^{\mathrm{eff}}+\mathcal{C}_{10}+2 \hat{m}_{b} \mathcal{C}_{7}^{\mathrm{eff}}\right] \xi_{\| \|}\left(E_{K^{*}}\right)
\end{aligned}
$$

- In the SM $C_{9}^{S M} \sim-C_{10}^{S M}$, this cancellation strongly suppresses $A_{\perp, \|}^{R}$ above $4 \mathrm{Gev}^{2}: A_{\perp, \|}^{L} \gg A_{\perp, \|}^{R}$. This makes $P_{4} \rightarrow 1$ and $P_{5} \rightarrow-1$ for $q^{2} \rightarrow 8 \mathrm{GeV}^{2}$ quite fast BUT the fact that $\left|A_{\|}\right|>\left|A_{\perp}\right|$ and that $P_{4}^{\prime} \propto A_{0}^{L *} A_{\|}^{L}+A_{0}^{R} A_{\|}^{R *}$ and $P_{5}^{\prime} \propto A_{0}^{L *} A_{\perp}^{L}-A_{0}^{R} A_{\perp}^{R *}$ makes less efficient the convergence in the case of P_{5}^{\prime}.
- In presence of New Physics affecting only C_{9} the cancellation $C_{9} \sim-C_{10}$ is less efective, consequently $A_{\perp, \|}^{R}$ is less suppressed and one should expect to see the effect of $C_{9} \neq C_{9}^{S M}$ in P_{5}^{\prime}.

Analysis of new LHCb data On

$$
B \rightarrow K^{*} \mu^{+} \mu^{-}
$$

Present bins: $[0.1,2],[2,4.3],[4.3,8.68],[1,6],[14.18,16],[16,19] \mathrm{GeV}^{2}$.

Observable	Experiment	SM prediction	Pull	
$\left\langle P_{1}\right\rangle_{[0}$	$-0.19_{-0.35}^{+0.40}$	$0.007_{-0.044}^{+0.043}$	-0.5	(large error bars).
$\left\langle P_{1}\right\rangle_{[2,4.3]}$	$-0.29_{-0.46}^{+0.65}$	$-0.051_{-0.046}^{+0.046}$	-0.4	
$\left\langle P_{1}\right\rangle_{[4.3,8.68]}$	$0.36_{-0.31}^{+0.30}$	$-0.117_{-0.052}^{+0.056}$	+1.5	value of the second a
$\left\langle P_{1}\right\rangle_{[1,6]}$	$0.15{ }_{-0.41}^{+0.39}$	$-0.055_{-0.043}^{+0.041}$	+0.5	bins of $A_{\text {FB }}$ is consist
$\left\langle P_{2}\right\rangle_{[0.1,2]}$	$0.03_{-0.15}^{+0.14}$	$0.172_{-0.021}^{+0.020}$	-1.0	a $2.9 \sigma(1.7 \sigma)$ deviation in cond (third) bin of P_{2}.
$\left\langle P_{2}\right\rangle_{[2,4.3]}$	$0.50-0.07$	$0.234_{-0.086}^{+0.060}$	+2.9	
$\left\langle P_{2}\right\rangle_{[4.3,8.68]}$	$-0.25_{-0.08}^{+0.07}$	$-0.407_{-0.037}^{+0.049}$	+1.7	
$\underline{\left\langle P_{2}\right\rangle_{[1,6]}}$	$0.33_{-0.12}^{+0.11}$	$0.084_{-0.078}^{+0.060}$	+1.8	$A_{\text {FB }}$ (same as the zero of P_{2}).
$\left\langle A_{\text {FB }}\right\rangle_{[0.1,2]}$	$-0.02_{-0.13}^{+0.13}$	$-0.136_{-0.048}^{+0.051}$	+0.8	Both effects can be
$\left\langle A_{\text {FB }}\right\rangle_{[2,4.3]}$	$-0.20_{-0.08}^{+0.08}$	$-0.081_{-0.069}^{+0.055}$	-1.1	accommodated with $\mathcal{C}_{7}^{\mathbb{N P}}<0$
$\left\langle A_{\text {FB }}\right\rangle_{[4.3,8.68]}$	$0.16_{-0.05}^{+0.06}$	$0.220_{-0.113}^{+0.138}$	-0.5	and/or $\mathcal{C}_{9}^{\mathrm{NP}}<0$.
$\left\langle A_{\text {FB }}\right\rangle_{[1,6]}$	$-0.17_{-0.06}^{+0.06}$	$-0.035_{-0.034}^{+0.037}$	-2.0	

Observable	Experiment	SM prediction	Pull
$\left\langle P_{4}^{\prime}\right\rangle_{[0.1,2]}$	$0.00_{-0.52}^{+0.52}$	$-0.342_{-0.026}^{+0.031}$	+0.7
$\left\langle P_{4}^{\prime}\right\rangle_{[2,4.3]}$	$0.74_{-0.60}^{+0.54}$	$0.569_{-0.063}^{+0.073}$	+0.3
$\left\langle P_{4}^{\prime}\right\rangle_{[4.3,8.68]}$	$1.18_{-0.32}^{+0.26}$	$1.003_{-0.032}^{+0.028}$	+0.6
$\left\langle P_{4}^{\prime}\right\rangle_{[1,6]}$	$0.58_{-0.36}^{+0.32}$	$0.555_{-0.058}^{+0.067}$	+0.1
$\left\langle P_{5}^{\prime}\right\rangle_{[0.1,2]}$	$0.45_{-0.24}^{+0.21}$	$0.533_{-0.041}^{+0.033}$	-0.4
$\left\langle P_{5}^{\prime}\right\rangle_{[2,4.3]}$	$0.29_{-0.39}^{+0.40}$	$-0.334_{-0.113}^{+0.097}$	$+\mathbf{1 . 6}$
$\left\langle P_{5}^{\prime}\right\rangle_{[4.3,8.68]}$	$-0.19_{-0.16}^{+0.16}$	$-0.872_{-0.041}^{+0.053}$	$+\mathbf{4 . 0}$
$\left\langle P_{5}^{\prime}\right\rangle_{[1,6]}$	$0.21_{-0.21}^{+0.20}$	$-0.349_{-0.100}^{+0.088}$	+2.5
$\left\langle P_{4}^{\prime}\right\rangle_{[14.18,16]}$	$-0.18_{-0.70}^{+0.54}$	$1.161_{-0.332}^{+0.190}$	-2.1
$\left\langle P_{4}^{\prime}\right\rangle_{[16,19]}$	$0.70_{-0.52}^{+0.44}$	$1.263_{-0.248}^{+0.119}$	-1.1
$\left\langle P_{5}^{\prime}\right\rangle_{[14.18,16]}$	$-\mathbf{0 . 7 9} 9_{-0.22}^{+\mathbf{0} .27}$	$-\mathbf{0 . 7 7 9 _ { - 0 . 3 6 3 } ^ { + 0 . 3 2 8 }}$	+0.0
$\left\langle P_{5}^{\prime}\right\rangle_{[16,19]}$	$-\mathbf{0 . 6 0} 0_{-0.18}^{+0.21}$	$-\mathbf{0 . 6 0 1}$	
$\mathbf{0 . 0 . 3 6 7}$	+0.0		

Definition of the anomaly:

- $\mathbf{P}_{\mathbf{5}}^{\prime}$: There is a striking $4.0 \sigma(1.6 \sigma)$ deviation in the third (second) bin of P_{5}^{\prime}.

Consistent with large negative contributions in $\mathcal{C}_{7}^{\mathrm{NP}}$ and/or $\mathcal{C}_{9}^{\mathrm{NP}}$.

- \mathbf{P}_{4}^{\prime} : in agreement with the SM , but within large uncertainties, and it has future potential to determine the sign of $\mathcal{C}_{10}^{\mathrm{NP}}$.
- \mathbf{P}_{6}^{\prime} and \mathbf{P}_{8}^{\prime} : show small deviations with respect to the SM, but such effect would require complex phases in $\mathcal{C}_{9}^{\mathrm{NP}}$ and/or $\mathcal{C}_{10}^{\mathrm{NP}}$.

Us: $(-0.19-(-0.872)) / \sqrt{0.16^{2}+0.053^{2}}=4.05$ and Exp: $(-0.19-(-0.872+0.053)) / \sqrt{0.16^{2}+0.053^{2}}=3.73$

Our SM predictions+LHCb data

Figure: Experimental measurements and SM predictions for some $B \rightarrow K^{*} \mu^{+} \mu^{-}$observables. The black crosses are the experimental LHCb data. The blue band corresponds to the SM predictions for the differential quantities, whereas the purple boxes indicate the corresponding binned observables.

Goal: Determine the Wilson coefficients $\mathcal{C}_{7,9,10}, \mathcal{C}_{7,9,10}^{\prime}: \mathcal{C}_{i}=\mathcal{C}_{i}^{S M}+\mathcal{C}_{i}^{N P}$
Standard χ^{2} frequentist approach: Asymmetric errors included, estimate theory uncertainties for each set of $\mathcal{C}_{i}^{N P}$ and all uncertainties are combined in quadrature.

IMPORTANT: Experimental correlations are included in the updated plot
We do three analysis: a) large-recoil data b) large+low-recoil data c) [1-6] bin
Observables:

- $B \rightarrow K^{*} \mu^{+} \mu^{-}$: We take observables $P_{1}, P_{2}, P_{4}^{\prime}, P_{5}^{\prime}, P_{6}^{\prime}$ and P_{8}^{\prime} in the following binning:
-large-recoil: [0.1, 2], [2, 4.3], [4.3, 8.68] GeV ${ }^{2}$.
-low recoil: $[14.18,16],[16,19] \mathrm{GeV}^{2}$
-wide large-recoil bin: $[1,6] \mathrm{GeV}^{2}$.
- Radiative and dileptonic B decays: $\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}, \mathcal{B}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)_{[1,6]}$ and $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right), A_{l}\left(B \rightarrow K^{*} \gamma\right)$ and the $B \rightarrow K^{*} \gamma$ time-dependent CP asymmetry $S_{K^{*} \gamma}$

Result of our analysis (large+low recoil data+rad) if we allow all Wilson coefficients to vary freely:

Coefficient	1σ	2σ	3σ
$\mathcal{C}_{7}^{\mathrm{NP}}$	$[-0.05,-0.01]$	$[-0.06,0.01]$	$[-0.08,0.03]$
$\mathcal{C}_{9}^{\mathrm{NP}}$	$[-1.6,-0.9]$	$[-1.8,-0.6]$	$[-2.1,-0.2]$
$\mathcal{C}_{10}^{\mathrm{NP}}$	$[-\mathbf{0 . 4}, \mathbf{1 . 0}]$	$[-1.2,2.0]$	$[-2.0,3.0]$
$\mathcal{C}_{7^{\prime}}^{\mathrm{NP}}$	$[-\mathbf{0 . 0 4}, \mathbf{0 . 0 2]}$	$[-0.09,0.06]$	$[-0.14,0.10]$
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	$[-0.2,0.8]$	$[-0.8,1.4]$	$[-1.2,1.8]$
$\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	$[-\mathbf{0 . 4}, \mathbf{0 . 4}]$	$[-1.0,0.8]$	$[-1.4,1.2]$

Table: $68.3 \%(1 \sigma), 95.5 \%(2 \sigma)$ and $99.7 \%(3 \sigma)$ confidence This table tells you again that there is strong evidence for a $\mathcal{C}_{9}^{\mathrm{NP}}<\mathbf{0}$, preference for $\mathcal{C}_{7}^{\mathrm{NP}}<\mathbf{0}$ and no clear-cut evidence for $\mathcal{C}_{10,7 /, 9,10,}^{N P} \neq 0$.

This does not imply that they will be at the end zero but that present data does not point clearly for a positive or negative value. intervals for the NP contributions to WC.

In conclusion our pattern of [PRD88 (2013) 074002] is

$$
\mathrm{C}_{9}^{\mathrm{NP}} \sim[-1.6,-0.9], \quad \mathrm{C}_{7}^{\mathrm{NP}} \sim[-0.05,-0.01], \quad \mathrm{C}_{9}^{\prime} \sim \pm \delta \quad \mathrm{C}_{10}, \mathrm{C}_{7,10}^{\prime} \sim \pm \epsilon
$$

where δ is small (at maximum half $\left|\mathbf{C}_{9}^{N P}\right|$) and ϵ is smaller. A simplified version is $C_{9}^{N P}=-1.5$
Best fit points: (too large)

Large recoil: $\mathrm{C}_{9}^{\mathrm{NP}}=-1.6, C_{10}^{\mathrm{NP}}=+0.2, C_{7}^{\mathrm{NP}}=-0.02, \mathrm{C}_{9,}^{\mathrm{NP}}=-1.4, C_{7 /}^{\mathrm{NP}}=+0.005, C_{10}^{\mathrm{NP}}=-0.13$. Large+Low: $C_{9}^{\mathrm{NP}}=-1.2, C_{10}^{\mathrm{NP}}=+0.4, C_{7}^{\mathrm{NP}}=-0.03, \mathbf{C}_{9}^{\mathrm{NP}}=+\mathbf{0 . 4}, C_{7 \prime}^{\mathrm{NP}}=-0.012, C_{10 \prime}^{\mathrm{NP}}=-0.04$

Let's look now to one observables strongly dependent on FF the $\mathrm{BR}\left(x 10^{7}\right)$ that we use as cross check.

where the blue curve is SM and the red curve corresponds to $C_{9}^{N P}=-1.5$. Interestingly the central value goes in the right direction, but given the error bars all is consistent with data.

Updated result using $\mathbf{P}_{\mathbf{i}}, \mathbf{P}_{\mathbf{i}}^{\prime}, \mathbf{A}_{\mathrm{FB}}$ and experimental correlations.

From the analysis of the set
$\mathbf{P}_{\mathbf{i}}, \mathbf{P}_{\mathbf{i}}^{\prime}, \mathbf{A}_{\mathrm{FB}}+\mathbf{B R}+\exp$. correlations we get:
4.3 σ (large-recoil)
3.6 σ (large + low recoil)
2.8σ for [1-6] bin.

Colored: large-recoil and dashed: large+low recoil orange: [1-6] bin

- We checked (for completeness) that we find same significance using $\mathbf{P}_{\mathbf{i}}, \mathbf{P}_{\mathbf{i}}^{\prime}, \mathbf{F}_{\mathbf{L}}$ instead of \mathbf{A}_{FB}. Positive: Our SM F_{L} fully compatible with all data (not only LHCb) and less correlated. Negative: Result using F_{L} is less solid than using $A_{F B}$ since it depends on choice of FF.

We are further refining the theoretical analysis, in couple of months we will update it.

The simplified best fit point $C_{9}^{N P}=-1.5$ (in red) for the relevant observables.

Recent measurements of the decay channel $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$has shown different peaking structures in the dimuon spectrum in the low-recoil region $q^{2}>16 \mathrm{GeV}^{2}$.

This is due to the interference of this decay mode with at least the $\psi(4160)$ resonance. Other resonances are less clear in significance but also there.

This kind of peaking structure it is expected also in $B \rightarrow K^{*} \mu^{+} \mu^{-}$, consequently, predictions and information from low-recoil region has to be taken with extreme caution.

Can we test if the anomaly in P_{5}^{\prime} is isolated?

Answer:

We should wait for $3 f^{-1}$ data

BUT

already now there are interesting hints...

Let's review first the symmetry formalism for the massless angular distribution:

$$
\mathbf{n}_{\|}=\binom{A_{\|}^{L}}{A_{\|}^{R *}}, \quad \mathbf{n}_{\perp}=\binom{A_{\perp}^{L}}{-A_{\perp}^{R *}}, \quad \mathbf{n}_{0}=\binom{A_{0}^{L}}{A_{0}^{R *}} .
$$

All the coefficients $\boldsymbol{J}_{\mathbf{i}}$ can be expressed in terms of the products $\mathbf{n}_{\mathbf{i}}^{\dagger} \mathbf{n}_{\mathbf{j}}$ (example):

$$
J_{3}=\frac{1}{2}\left(\left|n_{\perp}\right|^{2}-\left|n_{\|}\right|^{2}\right), \quad J_{4}=\frac{1}{\sqrt{2}} \operatorname{Re}\left(n_{0}^{\dagger} n_{\|}\right), \quad J_{5}=\sqrt{2} \operatorname{Re}\left(n_{0}^{\dagger} n_{\perp}\right), \quad J_{9}=-\operatorname{lm}\left(n_{\perp}^{\dagger} n_{\|}\right)
$$

A symmetry of the angular distribution will be a unitary transformation $n_{i} \rightarrow U n_{i}$

$$
n_{i}^{\prime}=U n_{i}=\left[\begin{array}{ll}
e^{i \phi_{\mathrm{L}}} & 0 \\
0 & e^{-i \phi_{\mathrm{R}}}
\end{array}\right]\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{rr}
\cosh i \tilde{\theta} & -\sinh i \tilde{\theta} \\
-\sinh i \tilde{\theta} & \cosh i \tilde{\theta}
\end{array}\right] n_{i}
$$

U defines the four symmetries of the massless angular distribution:

- two global phase transformations (ϕ_{L} and ϕ_{R}),
- a rotation θ among the real and imaginary components of the amplitudes independently
- another rotation $\tilde{\theta}$ that mixes real and imaginary components of the transversity amplitudes.

Solving the system of equations of $A_{\perp, \|, 0}$ in terms of J_{i} (using three of the symmetries) we found:

$$
e^{i\left(\phi_{-}^{L}-\phi_{\perp}^{L}\right)}=\frac{2\left(2 J_{2 s}-J_{3}\right)\left(J_{5}+2 i J_{8}\right)-\left(2 J_{4}+i J_{7}\right)\left(J_{6 s}-2 i J_{9}\right)}{\sqrt{16 J_{2 s}^{2}-4 J_{3}^{2}-J_{6 s}^{2}-4 J_{9}^{2}} \sqrt{2 J_{1 c}\left(2 J_{2 s}-J_{3}\right)-4 J_{4}^{2}-J_{7}^{2}}},
$$

This equation is related to the freedom associated to the fourth unused symmetry transformation $\tilde{\theta}$. Imposing that its modulo is one we find:

$$
\begin{aligned}
J_{2 c}= & -2 \frac{\left(2 J_{2 s}+J_{3}\right)\left(4 J_{4}^{2}+\beta_{\ell}^{2} J_{7}^{2}\right)+\left(2 J_{2 s}-J_{3}\right)\left(\beta_{\ell}^{2} J_{5}^{2}+4 J_{8}^{2}\right)}{16 J_{2 s}^{2}-\left(4 J_{3}^{2}+\beta_{\ell}^{2} J_{6 s}^{2}+4 J_{9}^{2}\right)} \\
& +4 \frac{\beta_{\ell}^{2} J_{6 s}\left(J_{4} J_{5}+J_{7} J_{8}\right)+J_{9}\left(\beta_{\ell}^{2} J_{5} J_{7}-4 J_{4} J_{8}\right)}{16 J_{2 s}^{2}-\left(4 J_{3}^{2}+\beta_{\ell}^{2} J_{6 s}^{2}+4 J_{9}^{2}\right)},
\end{aligned}
$$

Indeed an identical equation can be written in terms of the $\overline{J_{i}}$.

This equation can be expressed in terms of P_{i} and $P_{i}^{C P}$ observables to get:

$$
\bar{P}_{2}=+\frac{1}{2 \bar{k}_{1}}\left[\left(\bar{P}_{4}^{\prime} \bar{P}_{5}^{\prime}+\delta_{1}\right)+\frac{1}{\beta} \sqrt{\left(-1+\bar{P}_{1}+\bar{P}_{4}^{\prime 2}\right)\left(-1-\bar{P}_{1}+\beta^{2} \bar{P}_{5}^{\prime 2}\right)+\delta_{2}+\delta_{3} \bar{P}_{1}+\delta_{4} \bar{P}_{1}^{2}}\right]
$$

where

$$
\bar{P}_{i}=P_{i}+P_{i}^{C P} \quad \beta=\sqrt{1-4 m_{\ell}^{2} / s}
$$

The sign in front of the square root is taken "+" everywhere by comparison with exact result in SM, at low-recoil both solutions (+ and -) converge. (Plot with $\delta_{i} \rightarrow 0$)

REMARK:

- This is an exact equation valid for any q^{2} (low, large) and obtained from symmetries. - It involves $6 P_{i}$ of the basis plus one redundant.

An identical equation can be written in terms of $\hat{P}_{i}=P_{i}-P_{i}^{C P}$, substituting $\bar{P}_{i} \rightarrow \hat{P}_{i}$ everywhere. More importantly all terms inside the δ_{i} are strongly suppressed (by small strong and weak phases):

$$
\delta_{i} \sim \mathcal{O}\left(\left(\operatorname{Im} A_{i}\right)^{2}, 1-\bar{k}_{1}\right) \quad \text { and } \quad \bar{k}_{1}=1+F_{L}^{C P} / F_{L}
$$

Hypothesis: No New Physics in weak phases entering Wilson coefficients and not scalars/tensors. Both hypothesis can be tested, measuring $P_{i}^{C P}$ and S_{1}.

To an excellent approximation we have:
$P_{2}=\frac{1}{2}\left[P_{4}^{\prime} P_{5}^{\prime}+\frac{1}{\beta} \sqrt{\left(-1+P_{1}+P_{4}^{\prime 2}\right)\left(-1-P_{1}+\beta^{2} P_{5}^{\prime 2}\right)}\right]$
This equation can be used in binned form if:

- Observables are nearly constant inside the bin
- Or the size of the bin is very small.

We correct for this by $\left\langle P_{2}\right\rangle \rightarrow\left\langle P_{2}\right\rangle+\Delta_{\text {exact-relation }}^{\mathrm{NP}}$ where $\Delta_{\text {exact-relation }}^{\mathrm{NP}}$ is order 10^{-2} except for [0.1-2] bin and [1-6] bin.

Figure: Green: SM exact, dashed inside approximation, Red: NP $C_{9}^{N P}=-1.5$ exact, dashed inside approximation

- The terms δ_{i} has been computed in the SM and in presence of New Physics [constrained range] being always bounded within $10^{-1}-10^{-2}$.

The striking consequence of this equation is that it allows you to use data to predict the impact of the anomaly in P_{5}^{\prime} in a completely different observable: P_{2}

Imposing that the square root is well defined one finds:

$$
P_{5}^{\prime 2}-1 \leq P_{1} \leq 1-P_{4}^{\prime 2}
$$

- Indeed this is an exact bound that could be alternatively obtained from

$$
\left|P_{4}\right|=\left|P_{4}^{\prime}\right| / \sqrt{1-P_{1}} \leq 1 \quad \text { and } \quad\left|P_{5}\right|=\left|P_{5}^{\prime}\right| / \sqrt{1+P_{1}} \leq 1
$$

$\left|P_{4,5}\right| \leq 1$ comes from the geometrical interpretation of those observables in terms of n_{i}.

- The new upper bound is very stringent for the [4.3.8.68] bin, cutting most of the space for a positive $P_{1}: P_{1}^{[4.3,8.68]}<0.33$
- The lower bound is particularly relevant for the $[16,19]$ bin of $P_{1}: P_{1}^{[16,19]}>-0.68$.

Implication II: At the position of the zero q_{0}^{2} of P_{2} (same as $A_{F B}$) the following relation holds:

$$
\left.\left[P_{4}^{2}+P_{5}^{2}\right]\right|_{q^{2}=q_{0}^{2}}=1 \quad \text { or }\left.\quad\left[P_{4}^{\prime 2}+P_{5}^{\prime 2}\right]\right|_{q^{2}=q_{0}^{2}}=1-\eta\left(q_{0}^{2}\right)
$$

where

$$
\eta\left(q_{0}^{2}\right)=P_{1}^{2}+\left.P_{1}\left(P_{4}^{\prime 2}-P_{5}^{\prime 2}\right)\right|_{q^{2}=q_{0}^{2}}
$$

SM Zero of $A_{F B}: q_{0}^{2 S M}=3.95 \pm 0.38$ (our), 3.90 ± 0.12 (Buras'08), 2.9 ± 0.3 (Khodjamirian'10) GeV^{2} Experimental LHCb data: $q_{0}^{2 L H C b}=4.9 \pm 0.9 \mathrm{GeV}^{2}$

Assume that a future precise measurement of the zero confirms $q_{0}^{2 e x p} \sim 4.9 \mathrm{GeV}^{2}$ with small error.
If $P_{4}^{\prime} \sim 1$ and $P_{1} \geq 0$ at $q_{0}^{2}=4.9 \mathrm{GeV}^{2}$ (like present data seems to suggest) then one should find $P_{1}\left(q_{0}^{2}\right) \leq 1-P_{4}^{\prime 2} \sim 0$, $\eta\left(q_{0}^{2}\right) \sim 0$ and $\mathrm{P}_{5}^{\prime}\left(\mathrm{q}_{0}^{2}\right) \sim 0$
(notice that in SM $\left.P_{5}^{\prime}\left(q_{0}^{2}\right)=-0.75\right)$

A precise measurement of q_{0}^{2} (zero of $A_{F B}$) outside the $S M$ region would serve as an indirect confirmation of the anomaly

Implication III: We can establish a new relation between the anomaly bin in P_{5}^{\prime} and P_{2} :

$$
\left\langle P_{2}\right\rangle=\frac{1}{2}\left[\left\langle P_{4}^{\prime}\right\rangle\left\langle P_{5}^{\prime}\right\rangle+\sqrt{\left(-1+\left\langle P_{1}\right\rangle+\left\langle P_{4}^{\prime}\right\rangle^{2}\right)\left(-1-\left\langle P_{1}\right\rangle+\left\langle P_{5}^{\prime}\right\rangle^{2}\right)}\right]+\Delta_{\text {exact }}^{b i n}
$$

where $\Delta_{\text {exact }}^{b i n}=-0.04$ for NP best fit point at 2 nd and 3 rd bin, while $\Delta_{\text {exact }}^{b i n}=-0.01$ for $1 \mathrm{GeV}^{2}$ size.

GRAY band: SM prediction. BLUE cross: Measured value of P_{2} RED rectangle: $C_{9}^{N P}=-1.5 \mathrm{NP}$ prediction.
Green cross is $\left\langle P_{2}\right\rangle$ obtained from combining data of $\left\langle P_{4,5}^{\prime}\right\rangle$, $\left\langle P_{1}\right\rangle$, considering asymmetric errors and bound on P_{1}

- Bin [2,4.3]: LHCb data: $+0.50_{-0.07}^{+0}$,Relation: $+0.46_{-0.19}^{+0}$
0.2σ measured (blue cross) versus relation (green cross)
- $\operatorname{Bin}[4.3,8.68]:$ LHCb data: $-0.25_{-0.08}^{+0.07}$, Relation: $+0.10_{-0.13}^{+0.13}$
2.4σ measured (blue cross) versus relation (green cross), 1.9 σ from relation to NP best fit point (red box), 3.6σ from relation to SM .

Extremely simplified where $P_{4}^{\prime} \sim 1$ (if $P_{1} \sim 0$): $P_{2} \sim \frac{1}{2} P_{5}^{\prime}$

It is not surprising that the second bin in P_{2} fits perfectly, while the third bin in P_{2} is on the right direction but not perfect.

Reason It is very difficult to get excellent agreement with the third bin of P_{5}^{\prime} inside a global fit.

- Our best fit point obtained from large-recoil data is
$\left(C_{7}^{N P}, C_{9}^{N P}, C_{10}^{N P}, C_{7}^{\prime}, C_{9}^{\prime}, C_{10}^{\prime}\right)=(-0.02,-1.6,+0.18,+0.005,-1.4,-0.13)$ gives $\left\langle P_{5}^{\prime}\right\rangle_{[4.3,8.68]}=-0.49$ and reduces tension with data -0.19 ± 0.16 at 1.8σ.
- The best fit point with $C_{9}^{N P}=-1.5$ gives $\left\langle P_{5}^{\prime}\right\rangle_{[4.3,8.68]}=-0.61$
- The best fit point from Altmannshofer \& Straub gives $\left\langle P_{5}^{\prime}\right\rangle_{[4.3,8.68]}=-0.74$ in much worst disagreement with data. Same problem applies to Hambrock et al.' 13 and Bobeth et al'13 (they all missed the 3-bin information and naturally got a wrong bias in favor of a large positive C_{9}^{\prime}). S. Meinel [private communication] extrapolated lattice results to large-recoil and agree with us.

Most plausible scenario: Third bin in P_{5}^{\prime} will go down (reducing distance with SM) while third bin in P_{2} might go up (enlarging distance with SM): Global picture much more consistent.

Implication IV: The first low-recoil bin $[14.18,16]$ can also be tested using this equation

LHCb data on P_{2} in this bin gives: $-\mathbf{0 . 5 0} \mathbf{- 0 . 0 0}_{+\mathbf{0 . 0 3}}$
LHCb data on $P_{4}^{\prime}, P_{1}, P_{5}^{\prime}$ implies that P_{2} should be: $+\mathbf{0 . 5 0} 0_{-\mathbf{0 . 2 7}}^{+\mathbf{0}}$ (if +) or $-\mathbf{0 . 5 0} 0_{+\mathbf{0}}^{+\mathbf{0} 33}$ (if -)
This shows a discrepancy of 3.7σ (if +) or agreement (if -) but both solutions + and - should give same result at low-recoil \Rightarrow probably a statistical fluctuation or a problem at low recoil

Implication V: ALTERNATIVELY Full fit of the angular distribution with a small dataset

Under the assumption of real Wilson coefficients one has

- Free parameters $F_{L}, P_{1}, P_{4,5}^{\prime}$.
- P_{2} is a function of the other observables and $P_{6,8}^{\prime}$ are set to zero.
P_{5} ' residual distribution

Figure: Residual distribution of P_{5}^{\prime} when fitting with 100 events. The fit of a gaussian distribution is superimosed.

Our pattern: $\mathrm{C}_{9}^{\text {NP }} \sim[-1.6,-0.9], \quad \mathrm{C}_{7}^{\text {NP }} \sim[-0.05,-0.01], \quad \mathrm{C}_{9}^{\prime} \sim \pm \delta \quad \mathrm{C}_{10}, \mathrm{C}_{7,10}^{\prime} \sim \pm \epsilon$

- All analysis done afterwards using either lattice at low-recoil [Wingate et al'13] or only a fraction of all bins for Form-Factor dependent observables [Straub et al. EPJC'13] or bayesian [Bobeth et al'13] confirmed the impact of a possible negative NP contribution on the semileptonic operator O_{9}.

Small Controversy concerning C_{9}^{\prime} : Two claims in literature:
Our: With present data if you take all bin data C_{9}^{\prime} can be positive, negative or zero but small.
A\&S: An analysis using only [1-6] bin and low-recoil requires $C_{9}^{\prime} \sim-C_{9}^{N P}$ to be positive and large. Why the two analysis get different results for C_{9}^{\prime} ?
Point 1 Large-recoil: The single bin [1-6] is very insensitive to the sign of C_{9}^{\prime}. On the contrary the 3 low- q^{2} bins are quite sensitive to C_{9}^{\prime}, in particular, the 3rd shows a strong preference for C_{9}^{\prime} negative.

Point 2 Low-recoil: These bins alone prefers C_{9}^{\prime} positive (we also founded it) so any analysis focusing on low-recoil should find a preference for C_{9}^{\prime} positive.

In conclusion we reaffirm that with present data a complete full bin analysis should find no clear-cut evidence for a large positive C_{9}^{\prime} otherwise you would be in conflict with the anomaly. On the contrary if only low-recoil and [1-6] bins is used a C_{9}^{\prime} positive and large is found.

- The analysis of LHCb data on the 4-body angular distribution of $B \rightarrow K^{*}(\rightarrow K \pi) \mu^{+} \mu^{-}$using clean $P_{i}^{(1)}, A_{F B}+$ radiative observables gives the pattern:

$$
\mathrm{C}_{9}^{N P} \sim[-1.6,-0.9], \quad \mathrm{C}_{7}^{N P} \sim[-0.05,-0.01], \quad \mathrm{C}_{9}^{\prime} \sim \pm \delta \quad \mathrm{C}_{10}, \mathrm{C}_{7,10}^{\prime} \sim \pm \epsilon
$$

where δ is small (at maximum half $\left|\mathbf{C}_{\mathbf{9}}^{\mathrm{NP}}\right|$) and ϵ is smaller.

- We have addressed, using symmetries, the question: is the anomaly isolated?
- The anomaly in P_{5}^{\prime} should also appear in P_{2} in a specific way: The intriguing result is that the deviation in P_{2} goes in the direction predicted by the anomaly.
- The higher position of the zero of $A_{F B}$ the smaller the value of P_{5}^{\prime} at this point (for a $P_{4}^{\prime} \mathrm{SM}$-like)
- A strong upper and lower bound on $P_{1}: P_{5}^{\prime 2}-1 \leq P_{1} \leq 1-P_{4}^{\prime 2}$
- The first low-recoil bin of P_{4}^{\prime} exhibits a 3.7σ tension between the measured and obtained value using " + " solution, pointing possibly to a statistical fluctuation or a low-recoil problem.
- All analysis done a posteriori to our analysis confirms a negative contribution to C_{9}. Concerning C_{9}^{\prime}, with present data a complete full bin analysis finds no clear-cut evidence for a large positive C_{9}^{\prime} that would be in conflict with the anomaly.

BACK-UP slides

Large-recoil: NLO QCDfactorization $+\mathcal{O}\left(\Lambda / m_{b}\right)$. Soft form factors $\xi_{\perp, \|}\left(q^{2}\right)$ from

$$
\xi_{\perp}\left(q^{2}\right)=m_{B} /\left(m_{B}+m_{K^{*}}\right) \mathbf{V}\left(\mathbf{q}^{2}\right) \quad \xi_{\|}\left(q^{2}\right)=\left(m_{B}+m_{K^{*}}\right) /(2 E) \mathbf{A}_{1}\left(\mathbf{q}^{2}\right)-\left(m_{B}-m_{K^{*}}\right) /\left(m_{B}\right) \mathbf{A}_{2}\left(\mathbf{q}^{2}\right)
$$

- FF at $q^{2}=0$ and slope parameters are computed by [Khodjamirian et al.'10] (KMPW) using LCSR. $\left(\xi_{\perp}(0)=0.31_{-0.10}^{+0.20}\right.$ and $\left.\xi_{\|}(0)=0.10_{-0.02}^{+0.03}\right)$. Notice that power corrections are included here via full FF.
Tensor form factors $\mathcal{T}_{\perp, \|}$ are computed in QCDF following [Beneke, Feldmann, Seidel'01,'05] including factorizable and non-factorizable contributions.

Low-recoil: LCSR are valid up to $q^{2} \leq 14 \mathrm{GeV}^{2}$. We extend FF determination [Bobeth \& Hiller \& Dyk'10] till $19 \mathrm{Gev}^{2}$ and cross check the consistency with lattice QCD.
In HQET one expects the ratios to be near one

$$
\mathbf{R}_{1}=\frac{\mathbf{T}_{1}\left(\mathbf{q}^{2}\right)}{\mathbf{V}\left(\mathbf{q}^{2}\right)}, \quad \mathbf{R}_{2}=\frac{\mathbf{T}_{2}\left(\mathbf{q}^{2}\right)}{\mathbf{A}_{1}\left(\mathbf{q}^{2}\right)}, \quad \mathbf{R}_{3}=\frac{q^{2}}{m_{B}^{2}} \frac{\mathbf{T}_{3}\left(\mathbf{q}^{2}\right)}{\mathbf{A}_{2}\left(\mathbf{q}^{2}\right)}
$$

Our approach at low-recoil: we determine $T_{1,2}$ by exploiting the ratios $R_{1,2}$ allowing for up to a 20% breaking, i.e., $R_{1,2}=1+\delta_{1,2}$. All other form factors extrapolated from KMPW. We find perfect agreement between our determination of $T_{1,2}$ using $R_{1,2}$ and lattice data.

Integrated observables

Contact theory and experiment:
Indeed the observables are measured in bins.
Present bins: $[0.1,2]$, $[2,4.3]$, $[4.3,8.68],[1,6],[14.18,16],[16,19] \mathrm{GeV}^{2}$.

The integrated version of observables $P_{1,2,3}, P_{4,5,6}^{\prime}$ are defined by

$$
\begin{array}{llll}
\left\langle P_{1}\right\rangle_{\text {bin }}=\frac{1}{2 \mathcal{N}_{\text {bin }}} \int_{\text {bin }} d q^{2}\left[J_{3}+\bar{J}_{3}\right], & \left\langle P_{3}\right\rangle_{\text {bin }}=-\frac{1}{4 \mathcal{N}_{\text {bin }}} \int_{\text {bin }} d q^{2}\left[J_{9}+\bar{J}_{9}\right] & \left\langle P_{5}^{\prime}\right\rangle_{\text {bin }}=\frac{1}{2 \mathcal{N}_{b i n}^{\prime}} \int_{\text {bin }} d q^{2}\left[J_{5}+\overline{J_{5}}\right], \\
\left\langle P_{2}\right\rangle_{\text {bin }}=\frac{1}{8 \mathcal{N}_{\text {bin }}} \int_{\text {bin }} d q^{2}\left[J_{6 s}+\bar{J}_{6 s}\right] & \left\langle P_{4}^{\prime}\right\rangle_{\text {bin }}=\frac{1}{\mathcal{N}_{b i n}^{\prime}} \int_{\text {bin }} d q^{2}\left[J_{4}+\bar{J}_{4}\right], \quad\left\langle P_{6}^{\prime}\right\rangle_{\text {bin }}=\frac{-1}{2 \mathcal{N}_{\text {bin }}^{\prime}} \int_{\text {bin }} d q^{2}\left[J_{7}+\bar{J}_{7}\right],
\end{array}
$$

where the normalization $\mathcal{N}_{\text {bin }}^{\prime}$ is defined as

$$
\mathcal{N}_{b i n}=\int_{\text {bin }} d q^{2}\left[J_{2 s}+\bar{J}_{2 s}\right] \quad \mathcal{N}_{b i n}^{\prime}=\sqrt{-\int_{b i n} d q^{2}\left[J_{2 s}+\bar{J}_{2 s}\right] \int_{\text {bin }} d q^{2}\left[J_{2 c}+\bar{J}_{2 c}\right]} .
$$

The double-folded distributions give access to these observables. Similar definitions for $\left\langle P_{i}^{C P}\right\rangle_{\text {bin }}$ with $J_{i}-\bar{J}_{i}$.
There is also a redundant clean observable $P_{8}^{\prime}=Q^{\prime}$ (if there are no scalars) associated to J_{8} that can be introduced for practical reasons:

$$
\left\langle P_{8}^{\prime}=Q^{\prime}\right\rangle_{\text {bin }}=\frac{-1}{\mathcal{N}_{\text {bin }}^{\prime}} \int_{\text {bin }} d q^{2}\left[J_{8}+\bar{J}_{8}\right]
$$

For a long time huge efforts were devoted (still now) to measure the position of the zero of the forward-backward asymmetry $A_{F B}$ of $B \rightarrow K^{*} \mu^{+} \mu^{-}$.

Reason:

- At LO the soft form factor dependence cancels exactly at q_{0}^{2} (dependence appears at NLO).
- A relation among $\mathbf{C}_{9}^{\text {eff }}$ and $\mathbf{C}_{7}^{\text {eff }}$ arises at the zero:

$$
\mathbf{C}_{9}^{\mathrm{eff}}\left(q_{0}^{2}\right)+2 \frac{m_{b} M_{B}}{q_{0}^{2}} \mathbf{C}_{7}^{\mathrm{eff}}=0
$$

The idea of exact cancellation of the poorly known soft form factors at $\mathbf{L O}$ at the zero of $A_{F B}$ was incorporated in the construction of the transverse asymmetry (this is the meaning of the word "clean")
[Kruger, J.M'05]

$$
P_{1}=A_{T}^{(2)}\left(q^{2}\right)=\frac{J_{3}}{2 J_{2 s}}=\frac{\left|A_{\perp}\right|^{2}-\left|A_{\| \mid}\right|^{2}}{\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}
$$

$$
P_{2}=\frac{A_{T}^{r e}}{2}=\frac{J_{6 s}}{8 J_{2 s}}=\frac{\operatorname{Re}\left(A_{\perp}^{L *} A_{\|}^{L}-A_{\perp}^{R} A_{\| I}^{R *}\right)}{\left|A_{\perp}\right|^{2}+\left|A_{\| \mid}\right|^{2}}
$$

where $A_{\perp, \|}$ correspond to two transversity amplitudes of the K^{*}.

- Both asymmetries exhibit an exact cancellation of soft form factors not only at a point (like $A_{F B}$) but in the full low $-q^{2}$ range. First examples of clean observables that could be measured.
- $A_{T}^{(2)}$ is constructed to detect presence of RH currents ($A_{\perp} \sim-A_{\|}$in the SM), $A_{T}^{r e}$ complements $A_{F B}$ since it contains similar information, but in a theoretically better controlled way.

