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Dark Matter

Galactic rotation curves, BAO, CMB,
gravitational lensing, and other measurements
point to 27% of the universe being composed
on non-baryonic dark matter
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Weakly Interacting Massive Particles

® Weakly Interacting Massive Particles (WIMPs) are
a leading candidate dark matter particle

® Only interact with baryonic matter through the
weak force => very hard to detect!

® WIMPs, if they exist, could make up ALL the dark
matter (this is known as the WIMP Miracle)

® Require physics beyond the standard model,
typically either super symmetry or extra
dimensions
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Two-Phase Xe Detectors

Z position from S| — S2 timing
X-Y positions from S2 light pattern

Time
Excellent 3D imaging §~mm resolution)
- eliminates edge events S2
- rejects multiple scatters
Gamma ray, neutron backgrounds
reduced by self-shielding
field | |
3 Drift time
Reject gammas, betas by charge (S2) to /J: & S1
light (S1) ratio. Expect > 99.5% rejection. &%
——¥ ionization electrons
N UV scintillation photons (~175 nm) mage by CH Faham (Brown)
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Detector Construction

LUX operates 4850 feet
(1480 m) underground at the
Sanford Underground

Research Facility (SURF)

LUX Inside Water Tank LUX Internals
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Electron Recoil Discrimination
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log 1 O(SZb/S1 ) X,y,Z corrected

S1 x,y,z corrected (phe)

® [UX uses the difference in S2/S1 ratio of nuclear recoils (WIMP-like) to
discriminate against electron recoils (gammas and internal betas)
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relative differential rate

Detection Efficiency

o LUXAmBe Neutron Calibration S1 data (lhs)

— Monte Carlo S1 LUXSIim/NEST (lhs)
10 ¢

gray & red Efficiency from AmBe data

10+ —
[ -0 "
i -0~ Efficiency from LUX Tritium data,

applied to ER background model for PLR

Flat energy source nuclear recoil sims, applied to WIMP
signal model for PLR
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Three different methods used to determine LUX detection efficiency versus

S|
All three in agreement!

80% efficient at 2 phe threshold
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Very good agreement with data

Background Component

Source

1073 x evts/keVee/kg/day

Internal Components

Gamma-rays including PMTS (80%), 1.8 £ 0.2stat + 0.3sys
Cryostat, Teflon
. Cosmogenic
127 -
Xe (36.4 day half-life) 0.87 > 0.28 during run 0.5 £ 0.02stat £ 0.1sys
214Ph 222Rn 0.11-0.22(90% cL)
Reduced from
85
Kr 130 ppb to 3.5 + 1 ppt 013£0.075
Predicted Total 2.6 £ 0.2stat £ 0.4sys
Observed Total 3.1 £ 0.2stat

Extremely low backgrounds at low energies

Model based on radioactive counting of detector components and
simulation
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Fiducialization

Measured DRU (89 livedays, 89 eff)  log,,(DRUee) Measured DRU (44 livedays, 44 eff)  log,,(DRUee)
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® Xenon is self-shielding: using only the inner xenon reduces backgrounds
from external gammas

® Background is dropping: notice lower backgrounds in the second half of the
WIMP search run (right plot) as opposed to the entire run (left plot)
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127X e Background

ER PDF (131019¢c2) — norm sum(19.7) —

compare to WS 88d x 118kg (Gaitskell)
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® Cosmogenically activated isotope of xenon S1c (phe)

® Gives off low-energy x-rays:.2 keVee,| keVee, and 5 keVee which become a
background when accompanying gammas escape

® Decays away with a 36.4 day half-life
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WIMP Search Data
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| +: Blue: Electron Recoil Band
! % Red: Nuclear Recoil Band
24_| \
- + \
|
A\ .
5 ol > e Black: Data

log , O(Szb/S1 ) X,y,Z corrected

0 10 20 30 40
S1 x,y,z corrected (phe)

|60 events observed in fiducial volume between 2 and 30 phe S|
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Spin-independent
WIMP Limits
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Low-Mass Limit
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® [ UX data is inconsistent with putative signals from CoGeNT and CDMS II Si
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nsitivity
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300 day run planned for 2014-2015

Still not background limited

Expect a factor of 5 improvement in sensitivity!
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Deuterium-Deuterium
Beam Calibrations
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Response for Nuclear Recoils

pertains to St
0.3 S

yield relative to Co-57 gamma
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Sorensen IDM 2010 (2010) - 0.73 kV/em
Sorensen NIM AB01 (2009) - 0.73 kV/iem
Sorensen NIM AB01 (2009) - 0.73 kVicm
Manzur PRCS81 (2010) - 1 kVicm
Manzur PRCS1 (2010) - 4 kV/iem
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LUX makes the conservative assumption that nuclear recoils below 3 keV

Studying these properties of xenon further would allow us to extend our limit
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top hit pattern:
X-y localization

Monochromati — —
2.5 MeV neutrghs -_At . E__S_gp_aratlon
0
0 : energy calculation
I
p s|dwes/ayd
dm,m 1 — cos
E, E, n'ltXe

2
Mp + M 2
( n X e) Samuel Chan, Carlos Faham for the LUX Collaboration
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lonization (S2)

« Reconstruct number of electrons at
interaction site by matching ionization
signal model with observed event
distribution using binned maximum-
likelihood

- Systematic error of 7% from threshold
correction for (lowest energy) 0.7-1.0
keVnra bin

- Red systematic error bar shows
common

scaling factor uncertainty. Dominated by
uncertainty in electron extraction
efficiency.

- Lowest event energy included for
analysis is 0.7 keVnra

Blue Crosses - Reconstructed number of
electrons at interaction site accounting for
threshold effects in signal analysis

Black Dashed Line - Szydagis et al. (NEST)
Predicted lonization Signal at 181 V/cm

LUX 2014 PRL Conservative

Threshold Cut-Off

Double Scatter (S1, 2xS2s > 50 phe)
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lonization (S2)

- Systematic error of 7% from LUX 2014 PRL Conservative

threshold correction for (lowest Threshold Cut-Off
energy) 0.7-1.0 keVnra bin

* Red systematic error bar shows
common scaling factor uncertainty.

Double Scatter (S1, 2xS2s > 50 phe)

T
Dominated by uncertainty in >, 1 FlatSys.
: o © 10 Erroron Blue
electron extraction efficiency. - Points .|_
 Current analysis cut-off at 0.7 = (1-sigma)
et |
keVhra 0
S
2, -
Blue Crosses - LUX Measured Qy; 181 V/ E
cm (absolute energy scale) >
Green Crosses - Manzur 2010; 1 kV/cm S LUX
(absolute energy scale) T Preliminary
Purple Band - Z3 Horn Combined FSR/ S Reconstructed lonization Yield with
SSR; 3.6 kV/cm (energy scale from best fit - Associated Statistical Uncertainty

MC) 10’ - 1
10 10
Energy Measured from Scattering Angle [keVnr

]

a
Black Dashed Line - Szydagis et al. (NEST)

Predicted lonization Yield at 181 V/cm
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Scintillation (S1)

® Use single scatters with suitable Single Scatter (S1, 1xS2s > 50 phe)
selection criteria 120 REST MG -win 81 and 50pho 52 , Trreshalds Appled
=== NEST MC - No Thresholds Applied
®* NEST based MC used to simulate 100 |
expected single scatter energy |F7rLeJ|i)r(nin ary
spectrum with LUX threshold, purity, 80 1
electron extraction, energy o L |
. : c bt Select slice of S2,: to
resolution effects applied 3 60 "B | use for $1 comparison
® Normalized from 200 - 400 phe :H
(6.5-13.5 keVnra)
® First bin conservatively begins at
50 phe S2ucto avoid spurious single
electron coincidence % 100 200 300 400 500

szbc (phe)
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Scintillation (S1)

- LUX Leff values currently reported at

181 V/cm as opposed to the traditional LUX 2014 PRL Conservative
zero field value. Threshold Cut-Off

« X error bars representative of error on

mean Of population in bin 310 Single Scatter (S1, 1xS2s > 50 phe)

- Energy scale defined using LUX
measured Qy

* Method can be extended below
existing 2 keVnra point

o
-
»

=10
Blue Crosses - LUX Measured Leff; reported at
181 V/cm (absolute energy scale)
Green Crosses - Manzur 2010; 0 V/cm Flat Sys. |

Error on Blue

(absolute energy scale) i» LU X Points
Purple Band - Horn Combined Zeplin Ill FSR/ '\ (1 sigma)
SSR; 3.6 kV/cm, rescaled to 0 V/ cm (energy Prellmlnary n
scale from best fit MC)

3*102

10° 10’ 10°

Black Dashed Line - Szydagis et al (NEST) Energy (keV )

Predicted Scintillation Yield at 181 V/cm
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| UX-ZEPLIN (LZ)
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e 20X larger volume
® [ower backgrounds from PMTs

® Planned to run for 3 years
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Summary

® |LUX now has the most sensitive WIMP search in
the world, including at low masses

® Result is inconsistent with putative low mass
WIMP signals

® Expect 5X improvement in sensitivity in next run
® |mproved understanding of low-energy response

® Opens the possibility to push limit to lower
WIMP masses

® Thank you for your attention!
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Position Reconstruction

Z coordinate is determined by the time between S| and S2 (electron drift speed of |.5] mm/
microsecond)

Light Response Functions (LRFs) are found by iteratively fitting the distribution of S2 signal for
each PMT.

XY position is determined by fitting the S2 hit pattern relative to the LRFs.

Reconstruction of XY from events near the anode grid resolves grid wires with 5 mm pitch.

200 T,
15 2
10 %
S &2 B
: 80
5 of £
= o 70 I
S ¥ eh 60 1
E Ve Bk 2 B ety .
-20; gl T 20?
t_l_LLJ,LLJJ_LL_l_LLL_L*‘_LL_l_L_l-_j. 1111 'u Ll 10
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Rel -2 15 A 05 0

Distance across the wires, cm
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Events and Cuts

118 kg fiducial

Cut Explanation Events Remaining
All Triggers S2 Trigger >99% for S2raw>200 phe 83,673,413
Detector Stability s Lovel O Votagen o ressure: %€ 82,918,901
Single Scatter Events dentification of S1 and S2. Single Scatter cut. 6,585,686
S1energy é%ceerztyzisoo.g?g% keVee, ~3-18 keVnr) 26,824
S2 energy Removes singl clctin  small $2 adge events 20,989
52 Single Elecion Quiet Cut | >0 re s szetes 19796
Drift Time Cut away from grids ggtfZ?if?‘fi;yeffgnzjaﬂ’de and gate regions, 8731
Fiducial Volume radius and drift cut | R2dlus < 18 cm, 38 < drift time < 305 us, 160
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Detector Calibrations

External neutron sources: AmBe (&,n) and 2>2Cf
(spontaneous fission)

Internal beta sources:

® 83mKr: |.8 hr. half-life, produces two mono-energetic
betas at 32.] and 9.4 keV
® Excellent for studying position dependence of
detector response
o

Tritiated methane: beta with 18.6 keV end point for
calibrating electron recoil response to low energies
83Rb coated charcoal plumbed

external source holder

........................................................................

v Collimation Hole -
v Reducer (Tungsten)

Handle

Casing (SS) I

Source

Tungsten Shield

<

o )
& ! - Tungsten Shield

Casing (SS) Back Plate
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83mK Calibrations

Fiducial volume determination Position-based S|
= corrections
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® 83mKr produces two mono-chromatic betas/x-rays uniformly
through the detector volume => great source for calibration
position dependence of detector response!
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Electron Recoil Leakage

1

10

leakage fraction

5

10 15 20
S1 x,y,z corrected (phe)

Fraction of electron recoil events below nuclear recoil mean (50%
acceptance) versus S|

90%

99%

99.9%

99.99%

Average of 99.6% electron recoil discrimination with 50% nuclear recoil
acceptance

discrimination
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Nuclear Recoil
Calibrations

® Comparison of nuclear recoil
band mean in data and
simulation

® Notice width and mean are
different from pure (single
scatter) nuclear recoil
simulations

® Real data is affected by
gamma contamination
and misidentified multiple
scatters

log ] 0(82b/81) X,Y,Z corrected (mean)

1.8

1.6

1.4

1.2

1.8

1.6

1.4

1.2

Iog10 (S2 /S1 ) mean

AmBe simulation
© AmBe calibration data |
pure nuclear recoil simulation

20 30 40 50

Cf-252 simulation
o (Cf-252 calibration data |
pure nuclear recoil simulation

20 30 40 50
S1 x,y,z corrected (phe)

Monday, February 24, 14



Electron Lifetime

® Xenon circulated through
purification system at 27 SLPM

® Electron lifetime measured using
83mKr betas

® Was between 87 £ 9and 134 +
|5 ¢m during WIMP search (LUX
drift length: ~50 cm)

e—life [us]

1000

900

800

700

600

500

400

300

200

100

[ [ [ | I \
| | | II |
| | | II |

B | | | T

- :E#

L : =5 II: : II ! -

\ \ | I
I 1

% T N = =
\ I | I |
| —_— | " — II |

- e S ll l

i l o ll l
| | | II |
| | | II |

| \ \ | I \

—_ \ \ | I |
\ \ | I \

B \ \ | I \
\ \ | I \

= | o S
| | | II |
\ \ | I \

L \ \ I I \
\ \ | I \
| | | II |

| | | | | Il Il 1l
Apr May Jun Jul Aug

150

100

50

drift-length [cm]

Monday, February 24, 14



Acceptance Used in WIMP
Search Analysis
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Profile Likelihood
Analysis

C_NS_NCOmPt_NXe—127—NRn222 """"""""""""
Lws = N Ps(x; o, 9 )+NcomptPER(g; 0compt)
N .
_,2-_1 ________________
'''''''' +Nxe-127PER(Z; 0xe—127) + NRn PER(Z; ORN)

“
-
-
‘4
-

£ l

Backgrounds as nuisance
parameters:

- detector efficiencies included

- 30% uncertainty on overall rate

WIMP signal PDF:
- WIMP dE/dR for given mass
- efficiency from validated NR sims
- N;s is parameter of interest
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1 he Bullet

v el

Cluster

Above: image of two galaxies passing through each other, showing the hot gas
(red) and center-of-mass from gravitational lensing (blue)

Strongest evidence to data that dark matter phenomenon is not due to
Modified Newtonian Dynamics
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Dark Mattr

First suggested by Fritz Zwicky in
the 1930 while studying the
Coma Cluster

Later studied by Vera Rubin in the
1970’

At large radii within galaxy
clusters, the rotational velocity of
galaxies within the cluster does

not go to zero

The explanation: there is extra
mass that neither absorbed nor
emitted light, referred to as dark

matter

Fritz Zwicky

Rotation curves of galaxies
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f ‘_ LUX Detector

RS -4 Thermosyphon

Copper
shield

Top PMT
array

Anode grid

PTFE
reflector
panels and
field cage

Low-radioactivity
Titanium Cryostat

Cathode grid

370 kg total xenon mass
250 kg active liquid xenon
| 18 kg fiducial mass

Bottom PMT
array
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Detector Construction

Ly -""a z_‘_q"‘ : ’ ..'
- B ‘ 2
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