New constrains on neutrinoless double- β decay from the GERDA experiment

Matteo Agostini on behalf of the GERDA Collaboration

Technische Universität München (TUM), Germany

Les Rencontres de Physique de la Vallée d'Aoste 23 Feb - 01 Mar 2014

- Neutrinoless double- β decay
- The GERDA experiment
- GERDA Phase I prior to data unblinding
- GERDA Phase I $0\nu\beta\beta$ analysis
- Conclusions and outlook on GERDA PhaseII

- \bullet Neutrinoless double- β decay
- The GERDA experiment
- GERDA Phase I prior to data unblinding
- GERDA Phase I $0\nu\beta\beta$ analysis
- Conclusions and outlook on GERDA PhaseII

Neutrinoless double- β decay Double- β decays

Second order nuclear transitions \rightarrow decay of two neutrons into two protons

2-neutrino double- β decay ($2\nu\beta\beta$):

- $(A, Z) \to (A, Z+2) + 2e^- + 2\bar{\nu}_e$
- allowed in the Standard Model
- measured in several isotopes
- $T_{1/2}^{2
 u}$ in the range $10^{19} 10^{24}$ yr

Neutrinoless double- β decay Double- β decays

Second order nuclear transitions \rightarrow decay of two neutrons into two protons

2-neutrino double- β decay ($2\nu\beta\beta$):

- $(A, Z) \to (A, Z + 2) + 2e^- + 2\bar{\nu}_e$
- allowed in the Standard Model
- measured in several isotopes
- $T_{1/2}^{2
 u}$ in the range $10^{19} 10^{24}$ yr

Neutrinoless double- β decay ($0\nu\beta\beta$):

- $(A,Z) \rightarrow (A,Z+2) + 2e^{-2}$
- lepton number violation ($\Delta L = 2$)
- physics beyond the Standard Model (e.g. light Majorana ν, R-handed weak currents, SUSY particles)
- ν Majorana mass component (Schechter-Valle theorem)
- $T_{1/2}^{0\nu}$ limits in the range $10^{21} 10^{26}$ yr (10^{25} yr for 76 Ge)
- claim for a signal (subgroup of HdM experiment)

Neutrinoless double- β decay Neutrinoless double- β decay & neutrino physics

Assuming light-Majorana neutrino exchange as dominant $0\nu\beta\beta$ channel:

- $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |\mathcal{M}_{0\nu}(A, Z)|^2 \langle m_{\beta\beta} \rangle^2$
- effective Majorana mass: $\langle m_{\beta\beta} \rangle \equiv \left| \sum_{i} U_{ei}^2 m_i \right| = \left| c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{i2\alpha} + s_{13}^2 m_3 e^{i2\beta} \right|$
- ν mass spectrum (inverted/normal hierarchy, absolute mass scale)

n

n

W

W

Neutrinoless double- β decay

State of the art of $0\nu\beta\beta$ search with ⁷⁶Ge and ¹³⁶Xe

- \bullet Neutrinoless double- β decay
- The GERDA experiment
- GERDA Phase I prior to data unblinding
- GERDA Phase I $0\nu\beta\beta$ analysis
- Conclusions and outlook on GERDA PhaseII

The GERDA experiment Institutions

The GERDA experiment Sensitivity and background goals

Phase I (Nov 2011 - May 2013):

- 15-20 kg of target mass (87% ^{76}Ge)
- bkg $\sim 10^{-2}\,\text{cts}/(\text{keV}{\cdot}\,\text{kg}{\cdot}\,\text{yr})$ at $Q_{\beta\beta}$
- exposure 21.6 kg·yr
- sensitivity to scrutinize KK claim

Phase II (migration ongoing):

- new custom-produced BEGe detectors (additional 20 kg, 87% ⁷⁶Ge)
- bkg $\lesssim 10^{-3}$ cts/(keV· kg· yr) at Q_{$\beta\beta$} (active techniques for bkg suppression)
- exposure $\gtrsim 100 \, \text{kg·yr}$
- start exploring ${\cal T}^{0
 u}_{1/2}$ in the $10^{26}\,{
 m yr}$ range

The GERDA experiment Detectors

The GERDA experiment Shielding strategy and apparatus

- bare Ge detectors in liquid Argon (LAr)
- \bullet shield: high-purity LAr/H_2O

- radio-pure material selection
- deep underground (LNGS, 3800 m.w.e.)

The GERDA experiment Backgrounds and mitigation techniques

Background sources:

- natural radioactivity (²³²Th and ²³⁸U chains):
 γ-rays (e.g. ²⁰⁸Tl, ²¹⁴Bi)
 - $\circ~\alpha\text{-emitting}$ isotopes from surface contamination (e.g. $^{210}\mathrm{Po})$ or $^{222}\mathrm{Rn}$ in LAr
- cosmogenic isotopes in Ge decaying inside the detectors (⁶⁸Ge, ⁶⁰Co)
- long-lived cosmogenic Ar isotopes (³⁹Ar,⁴²Ar)

Mitigation strategy:

- detector anti-coincidence
- time-coincidence (Bi-Po or ⁶⁸Ge)
- pulse shape analysis (bulk localized energy deposition)
- LAr-scintillation (in Phase II)

- \bullet Neutrinoless double- β decay
- The GERDA experiment
- GERDA Phase I prior to data unblinding
- GERDA Phase I $0\nu\beta\beta$ analysis
- Conclusions and outlook on GERDA PhaseII

GERDA Phase I – prior to data unblinding Detector array assembly

- 3 + 1 strings
- 8 enrGe coaxial detectors (2 not considered in the analysis)
- 5 enrGe BEGe detectors (1 not considered in the analysis)
- $\bullet~1$ $^{\rm nat}Ge$ coaxial detectors

^{enr}Ge mass for physics analysis: 14.6 kg (coaxial) + 3.0 kg (BEGe)

GERDA PhaseI – prior to data unblinding Overview of the data taking

- data taking Nov11 May13 (492 d)
- \bullet average duty cycle 88%
- total exposure 21.6 kg⋅yr
- (bi)weekly calibration with Th-228 (blue spikes)
- runs 25-32,34-43,44-46 GERDA 13-0 live time fraction 0.6 0.4 0.2 11111 THE REPORT OF THE Backo Nov-11 Feb-12 Jun-12 Oct-12 Jan-13 May-13 date 0.30 coaxial diodes, E: 1550-3000 keV counts/(kg day) 0.25 0.20 0.1 0.10 operations with the 0.05 detector assembly 0.00 Jan-12 Apr-12 Jul-12 Oct-12 Dec-12 Apr-13 date

- BEGe detectors from Jul12
- 3 data sets:

dataset	exposure
coaxial (golden) coaxial (silver) BEGe	17.9 kg∙yr 1.3 kg∙yr 2.4 kg∙yr
	0,

GERDA Phase I – prior to data unblinding Calibration of the energy scale (²²⁸Th)

GERDA PhaseI - prior to data unblinding Stability of the energy scale and resolution

Calibration runs:

- calibration every one/two weeks
- off-line energy reconstruction (semi-Gaussian filter)
- energy resolution stable
- \bullet energy shift between successive calibrations $\lesssim 1\,\text{keV}$ @ $\mathsf{Q}_{\beta\beta}$

0 uetaeta data set:

- peak position within 0.3 keV at correct position
- resolution 4% larger than in calibration runs
- mean FWHM at $Q_{\beta\beta}$ (mass/exposure weighted):

 $coax \longrightarrow 4.8 \pm 0.2 \text{ keV}$

 $\mathsf{BEGe} \longrightarrow 3.2 \pm 0.2 \, \mathsf{keV}$

GERDA PhaseI – prior to data unblinding Prominent structures in the energy spectrum

GERDA Phase I – prior to data unblinding Background modeling

GERDA Phase I – prior to data unblinding Pulse shape discrimination

Coaxial detectors:

- artificial neural network TMIpANN
- \bullet cut defined using $^{228}{\rm Th}$ calibration data cut fixed to 90% acceptance of 2.6 MeV DEP
- cross checks:
 - $\circ 2\nu\beta\beta$ acc. = (85±2)%
 - $\circ~$ 2.6 MeV $\gamma\text{-line}$ compton-edge acc. = 85-94%
 - $\circ~$ Co-56 DEP (1576 & 2231 keV) acc. = 83-95%

0
uetaeta acceptance $=90^{+5}_{-9}\%$

background acc at
$$Q_{\beta\beta}{=}\sim\!\!45\%$$

- \bullet Neutrinoless double- β decay
- The GERDA experiment
- GERDA Phase I prior to data unblinding
- GERDA Phase I $0\nu\beta\beta$ analysis
- Conclusions and outlook on GERDA PhaseII

GERDA Phase I – $0\nu\beta\beta$ analysis Energy spectrum around $Q_{\beta\beta}$

GERDA Phase I – $0\nu\beta\beta$ analysis Energy spectrum around $Q_{\beta\beta}$

$\begin{array}{l} {\sf GERDA\ Phase I} - 0\nu\beta\beta \ {\sf analysis} \\ {\sf Statistical\ analysis} \end{array}$

Baseline analysis (profile likelihood):

- maximum likelihood spectral fit (constant+Gauss in 1930-2190 keV range)
- multiple data sets (common $T_{1/2}^{0\nu}$)
- $T_{1/2}^{0\nu} \ge 0$ (coverage tested)
- systematic uncertainties in the fit

Results (GERDA only):

- best fit for $N_{0
 uetaetaeta}=0$ signal cts
- $N_{0
 uetaeta} < 3.5$ cts at 90% C.L.
- $T_{1/2}^{0
 u} > 2.1 \cdot 10^{25} \, \text{yr}$ (90% C.L.)
- MC Median sensitivity (for no signal): $T_{1/2}^{0\nu}>2.4\cdot 10^{25}\, {\rm yr} \ (90\% \ {\rm C.L.})$

Results (GERDA + IGEX [1] + HdM [2]):

- best fit for $N_{0
 uetaetaeta}=0$ signal cts
- $T_{1/2}^{0
 u} > 3.0 \cdot 10^{25} \, \text{yr} \, (90\% \, \text{C.L.})$

PRL 111, 122503 (2013); [1] Phys.Rev. D65, 092007 (2002); [2] Eur.Phys.J. A12, 147 (2001) Matteo Agostini (TU Munich)

GERDA Phase I – $0\nu\beta\beta$ analysis Comparison with Phys.Lett. B586 198 (2004)

- \bullet Neutrinoless double- β decay
- The GERDA experiment
- GERDA Phase I prior to data unblinding
- GERDA Phase I $0\nu\beta\beta$ analysis
- Conclusions and outlook on GERDA Phase II

- \bullet GERDA Phase I collected 21.6 kg·yr of exposure
- blind analysis —> no positive $0\nu\beta\beta$ signal: $T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \text{ yr at } 90\% \text{ C.L. (GERDA only)}$ $T_{1/2}^{0\nu} > 3.0 \cdot 10^{25} \text{ yr at } 90\% \text{ C.L. (GERDA+IGEX+HdM)}$
- Long standing claim excluded at 99% C.L. (model-independent result)

Outlook on Phase II

Transition to Phase II ongoing. Major upgrade of many components:

- increase of target mass (+20 kg)
- new hardware to detect the LAr scintillation light (anti-coincidence veto)
- new custom made BEGe detectors providing enhanced pulse shape discrimination performance

Expectations:

- $\bullet\ {\sim}35\,kg$ of Ge detectors
- background $\lesssim 10^{-3}\, cts/(keV\cdot\,kg\cdot\,yr)$ at $Q_{\beta\beta}$
- start the exploration of $T_{1/2}^{0\nu}$ values in the 10^{26} yr range

Collaboration

backup slides

State of the art of $0\nu\beta\beta$ search with ⁷⁶Ge and ¹³⁶Xe

Comparison between ⁷⁶Ge and ¹³⁶Xe experiments

- GERDA provides a model-independent test of the signal claim
- comparison with ¹³⁶Xe experiments possible only through:
 - assumptions on the leading channel (e.g. exchange of light Majorana neutrinos)
 - matrix element computations (selection used in the plot is taken from arXiv:1305.0056)

GERDA+EXO+KamLAND-Zen:

Bayes factor $P(H_1)/P(H_0) = 2.2 \cdot 10^{-3}$

(computed for the smallest NME ratio Xe/Ge)

[arXiv:1106.1334]

[arXiv:1106.1334]

Background model – $2\nu\beta\beta$ half-life

Background model – $2\nu\beta\beta$ half-life

Background model – α -emitting isotopes

Colored probability intervals: [R. Aggarwal and A. Caldwell, Eur. Phys. J. Plus 127 24 (2012)]

Phase II detector design and performance

- Broad Energy Ge (BEGe) detectors: ▷ commercial product (Canberra) ▷ excellent spectroscopic performance (resolution, low threshold, low noise) \triangleright pulse shape discrimination (PSD)
- ► >30 BEGe detectors produced and tested

1500

energy [keV]

2000

Matteo Agostini (TU Munich)

0

500

1000

2.5

2

1.5

0.5

0

FWHM [keV]

Charge collection and signal formation

- Charge collection:
- \triangleright electrons > n + electrode
- \triangleright holes -> detector center -> p+ electrode
- Signal formation:
- \vartriangleright electron contribution usually irrelevant
- \vartriangleright narrow current peak induced by hole drift
- \vartriangleright peak features independent from interaction site

 \triangleright single site interactions $(0\nu\beta\beta$ -like) \triangleright multiple-site interactions (typically γ -induced)

A/E method:

E: integral of the current signal (energy) A: maximum of the current signal

(Budjas et al. JINST 4 P10007, Agostini et al. JINST 6 P03005) Matteo Agostini (TU Munich)

Charge collection and signal formation

- Charge collection:
- \triangleright electrons > n + electrode
- \triangleright holes -> detector center -> p+ electrode
- Signal formation:
- \vartriangleright electron contribution usually irrelevant
- \vartriangleright narrow current peak induced by hole drift
- \vartriangleright peak features independent from interaction site

A/E method:

- $\boldsymbol{\mathsf{E}}:$ integral of the current signal (energy)
- A: maximum of the current signal

(Budjas et al. JINST 4 P10007, Agostini et al. JINST 6 P03005) Matteo Agostini (TU Munich)

Signal identification and background reduction

Background expected in Phase II:

- ► γ -rays from ²⁰⁸Tl and ²¹⁴Bi -> measured with many γ -sources ► internal decays ($0\nu\beta\beta$ and cosmogenic isotopes) -> pulse shape simulation ► α -rays on the p+ electrode -> experimental scan with collimated ²⁴¹Am source
- \blacktriangleright $\beta\text{-rays}$ on the n+ electrode $~~-\!\!>~~$ experimental measurements with ^{90}Sr and ^{106}Ru

Detection of LAr scintillation

LAr-scintillation (combined design):

 \blacktriangleright low-background photo-multipliers $ \blacktriangleright$ WLS fibers read-out with Si photo-multipliers

Phase II detectors and liquid argon scintillation

BEGe detectors:

- excellent energy resolution (1.6 keV @ 1.3 MeV)
- enhanced pulse shape discrimination performance
- 30 new $^{enr} {\rm Ge}$ detectors ready at LNGS (20 kg)

LAr-scintillation (combined design):

- low-background photo-multipliers
- WLS fibers with Si photo-multipliers

Pulse shape analysis combined with LAr-scintillation (in LArGe setup): measured suppression factor of $(5.2 \pm 1.3) \cdot 10^3$ at $Q_{\beta\beta}$ for close Th-228