La Thuile, 23 February-1st March 2014

Double Chooz and recent results

Cécile Jollet IPHC, Université de Strasbourg

on behalf of the Double Chooz Collaboration

Outlook

I. Experiment overview.

2. Double Chooz results:

- Measurement of θ_{13} from neutron capture on Gadolinium and Hydrogen.
- Reactor-off background measurement.

3. Latest results:

- Reactor Rate Modulation Analysis.
- Ortho-Positronium observation in on event-by-event basis.

Experimental concept and neutrinos mixing at reactors

Double Chooz overview

Near detector Distance: ~400 m Overburden: ~120 m.w.e. flat topology Data taking foreseen middle 2014

CLOSE DETECTOR

EAST REACTO

2 PWR reactors P_{th}=4.25 GW each

WEST REACT

Far detector Distance: ~1050 m Overburden: ~300 m.w.e. hill topology Data taking since April 2011

ISTANT DETECTOR

Detection of electron anti-neutrinos

Inverse Beta Decay (threshold at I.8 MeV)

Prompt Signal - Positron ionization+Annihilation

 Delayed Signal - n absorption on Gd (~ 8MeV) or on H (2.2 MeV)

> $\Delta t \sim 30 \ \mu s$ for n-absorption on Gd ~ 200 \ \mu s for n-absorption on H

Two-fold coincidence: strong background suppression

The prompt energy is related to $\overline{\nu}_e$ energy: $E_{prompt}=E_v-T_n-0.8 \text{ MeV}$

The survival probability depends on $E_{\rm v}$

 \Rightarrow Measurement of θ_{13} using rate and spectral deformation

Detector design

Outer Veto: plastic scintillator strips

Chimney: deployment of radioactive source for calibration in the ν -Target and γ -Catcher.

v-Target: 10.3 m^3 scintillator (PXE based) doped with Ig/I of Gd compound in an acrylic vessel (8 mm)

 γ -Catcher: 22.5 m³ scintillator (PXE based) in an acrylic vessel (12 mm)

Buffer: 110 m³ of mineral oil in a stainless steel vessel (3 mm) viewed by 390 PMTs (10 inches)

Inner Veto: 90m³ of scintillator (LAB based) in a steel vessel (10 mm) equipped with 78 PMTs (8 inches)

Shielding: about 250t steel shielding (150 mm)

Background

• There are two different types of background: accidental and correlated.

Accidental BG

- e⁺-like signal: radioactivity from materials, PMTs, surrounding rock (²⁰⁸TI).
- delayed signal: n from cosmic μ spallation, thermalised in detector and captured on Gd.

Correlated BG

- Fast n (by cosmic μ) gives recoil protons (low energy) and are captured on Gd.
- Stopping μ .
- Long-lived (⁹Li, ⁸He) β -n decaying isotopes induced by μ .

Neutrino selection

Two channels are used for neutrino detection:

Gd-capture

- High cross-section for n-capture
- Capture time: 30 μs
- n-capture released energy: 8 MeV (low background)

H-capture

- High statistics (target and γ -catcher)
- Capture time: 200 μs
- n-capture released energy: 2.2 MeV

Cut	Gd capture	H capture		
Muon veto	no triggers in 1 ms after a muon			
Light noise rejection				
E(prompt)	0.7-12.2 MeV			
E(delayed)	6-12 MeV	1.5-3 MeV		
Δt (time)	2-100 μs	ΙΟ-600 μs		
Δd (distance)		<0.9 m		
Multiplicity	no extra events around signal			
Showering muon veto	$\Delta t_{\mu} \ (E_{\mu} > 600 \ MeV) > 500 \ ms$			
No coincidence with OV signal				

Neutrino candidates

Backgrounds

Gd-capture (Signal/Noise~16)

H-capture (Signal/Noise~I)

Neutrino candidates: rate uncertainties

	Gd capture	H capture
Predicted neutrino candidates (no oscillation)+ Background	8936.8	36680
Selected neutrino candidates	8249 (228 days)	36284 (240 days)

Signal and background normalization uncertainties relative to the predicted signal

Gd capture				
Source	Uncertainty [%]			
Reactor Flux	1.67%			
Detector Response	0.32%			
Statistics	1.06%			
Efficiency	0.95%			
Cosmogenic Isotope Background	1.38%			
FN/SM	0.51%			
Accidental Background	0.01%			
Total	2.66%			

H capture

Source	Uncertainty [%]
Reactor flux	1.8
Statistics	1.1
Accidental background	0.2
Cosmogenic isotope background	1.6
Fast neutrons	0.6
Light noise	0.1
Energy scale	0.3
Efficiency	1.6
Total	3.1

θ_{13} measurement: Rate+Shape analysis

Gd capture

H capture

Combining Gd and H analysis: $sin^{2}(2\theta_{13})=0.109\pm0.035$

Data with both reactors off

Double Chooz registered 7.53 days of data with both reactors off.

- Unique Double Chooz capability.
- Rate consistent with predictions.
- New constraints for oscillation fits.

Gd analysis:

Measured background rate: 1.0 ± 0.4 events/day Expected background rate: 2.2 ± 0.6 events/day (with residual $\overline{v_e}$ subtracted)

H analysis:

Measured background rate: 10.8 ± 3.4 events/day Expected background rate: 5.3 ± 1.3 events/day (with residual \overline{v}_e and accidental subtracted)

C. Jollet (Strasbourg University)

Phys. Rev. D87 (2013) 011102

Reactor Rate Modulation (RRM) Analysis

arXiv:1401.5981

n-Gd analysis

- Rate-only background independent analysis:
 - Observed vs expected $\overline{v_e}$ candidates rate at different reactor power.
 - Fit provides sin²(2θ₁₃) and the total background rate.
- No background model assumed.
- background reactor-off measurement included.

• RRM combined fit using n-Gd and n-H $\overline{\nu}_e$ candidates:

sin²(2013)=0.102±0.028(stat.)±0.033(syst.)

Positronium formation

Positronium formation

ortho-Positronium observation in DC

- The o-Ps lifetime has been measured with a dedicated setup in DC liquids, it is about 3.4 ns.
- The time between the 2 processes i.e. e⁺ ionization signal and the two 511 keV γ-rays emission is no longer negligible which permit to distinguish them.
- We developed an algorithm to select the events in which o-Ps was formed, based on the presence of a double bump signature on the Pulse Shape (PS) distribution.
- The PS of one event is made of the distribution of the arrival time of the pulses recorded by each PMT (around 300 pulses per event).
- The PS of neutrino events is similar to that of radioactive sources (⁶⁰Co or ¹³⁷Cs), even if an energy dependence is noticeable.

ortho-Postronium tagging algorithm in DC

- We assume that each signal has a PS as the one obtained for Co (Cs) events that we use as reference.
- A fit function is built with the combination of 2 reference PS separated by a delay Δt .
- The fit is meaningful for energy range 1.2-3 MeV (at high energy, the 2nd signal is hidden by the tail of the 1st one).

o-Ps fit examples on neutrino events (Gd analysis)

ortho-Postronium observation

- Comparing Co Δt distribution (where no o-Ps is expected) with neutrino distribution, we observe a clear excess of events at large Δt .
- The lifetime and the o-Ps production fraction are estimated fitting the Δt distribution with an exponential function.

Δt distribution determined by the fit **Preliminary**

ortho-Positronium measurement

Fit of the ∆t distribution ⁶⁰Co is used as reference PS for the fit **Preliminary**

 Taking into account the energy dependence on the PS and the low energy events selection (1.2-3 MeV), the final values are computed as the average between Co and Cs as reference PS for the fit.

	oPs fraction(%)	oPs lifetime (ns)
Measured with DC using ⁶⁰ Co and ¹³⁷ Cs ref. PS with all syst.	42 ± 5(stat.) ± 12 (sys.)	3.68 ± 0.15(stat.) ± 0.17(sys.)
Measured with the dedicated setup NuToPs	47.6 ± 1.3	3.42 ± 0.03

- The results are in good agreement with the expectations.
- First observation of the o-Ps on an event-by-event basis in a reactor experiment.
- The detection of the o-Ps is an additional handle for background reduction in anti-neutrino interaction experiments.

Summary/Conclusions

- Only with Far Detector:
 - Double Chooz provided independent measurements of θ₁₃ (Gd and H n-capture).
 - Results on θ_{13} are achieved combining Gd and H analysis:

sin²(2013)=0.109±0.035

- Background-model-independent measurement of θ_{13} (Reactor Rate Modulation).
- The Near Detector is under construction:
 - The start of data taking is foreseen middle of 2014.
 - With two detectors, the final precision will be about 10%.
- Double Chooz collaboration has performed physics beyond θ_{13} :
 - Background studies (reactor off-off) (PRD 87, 011102(R), 2013)
 - Lorentz violation (PRD 86, 112009, 2012)
 - Neutrino directionality
 - Ortho-Positronium observation

Summary/Conclusions and Collaboration

Near Detector -December 2013

Brazil

CBPF UNICAMP UFABC

Germany France APC CEA/DSM/ **IRFU:** SPP **SPhN** SEDI SIS SENAC CNRS/IN2P3: Subatech IPHC

EKU

MPIK

RWTH

Aachen

Tübingen

Heidelberg

U. Hamburg

Japan

Tohoku U. **INR RAS** Tokyo Inst. Tech. IPC RAS Tokyo Metro. U. RRC Niigata U. **Kurchatov** Kobe U. Tohoku Gakuin U.

Russia

TU München Hiroshima Inst. Tech.

Spain

CIEMAT-Madrid

USA

U. Alabama ANL **U.** Chicago Columbia U. UCDavis **Drexel U.** IIT KSU LLNL MIT **U. Notre Dame U. Tennessee**

ortho-Positronium measurement

- The results are in good agreement with the expectations.
- First observation of the o-Ps on an event-by-event basis in a reactor experiment.
- The detection of the o-Ps is an additional handle for background reduction in anti-neutrino interaction experiments.