

Outline

1. Brief review of neutrino oscillations and current state of measurements
2. Description of the T2K experiment
3. Present our latest oscillation results:
4. Muon neutrino disappearance
5. Electron neutrino appearance

State of Oscillation Measurements

3 Neutrino mixing matrix using the standard parameterization and
List of current parameter values

atmospheric/ accelerator $\theta_{23} \sim 41^{\circ} \pm 7.5^{\circ}$ From Global Fits MINOS/SK		reactor/ accelerator $\begin{gathered} \theta_{13} \sim 9.1^{\circ} \pm 0.6^{\circ} \\ \delta \theta_{13} \sim 7 \% \end{gathered}$	solar $\begin{gathered} \theta_{12} \sim 34^{\circ} \pm 1^{\circ} \\ \delta \theta_{12} \sim 3 \% \end{gathered}$		ajorana phases not yet observed
Mass Splittings	$\begin{align*} & \mathrm{V}_{3} \frac{}{\Delta m_{32}^{2}} \\ & \mathrm{~V}_{2} \frac{}{\mathrm{~V}_{1}} \frac{\mathrm{\Delta m} 22}{2}= \\ & \mathrm{Norm} \end{align*}$	$2.5 \times 10^{-5} \mathrm{eV}^{2} / c^{4}$ $7.5 \times 10^{-5} \mathrm{eV}^{2} / c^{4}$ Hierarchy	$\overline{\Delta m_{12}^{2}}=7.5 \times 10^{-5}$ $\underline{\Delta m_{32}^{2}} \approx 2.5 \times 10^{-5}$ Inverted Hierarch		$\delta \Delta m^{2} 32 / 13 \sim 4 \%$ $\delta \Delta m^{2} 21 \sim 3 \%$

State of Oscillation Measurements

3 Neutrino mixing matrix using the standard parameterization and List of current parameter values
atmospheric/ accelerator $\theta_{23} \sim 41^{\circ} \pm 7.5^{\circ}$

From Global Fits MINOS/SK

Majorana phases
not yet observed

Almost all pars. measured with good precision
Exception: ${ }_{c p}$ which has yet to be measured
$\delta \Delta m^{2} 32 / 13 \sim 4 \%$ $\delta \Delta m^{2} 21 \sim 3 \%$

Search for CP Violation

Can look for leptonic CP violation with oscillations

Testing for CP-violation is a top priority for the field

Method: Compare oscillation probabilities for v and anti-v

$$
\begin{aligned}
& P_{\nu_{\mu} \rightarrow \nu_{e}}-P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}: \\
& \quad=-4 \sin \left(2 \theta_{12}\right) \sin ^{2}\left(2 \theta_{23}\right) \cos ^{2}\left(\theta_{13}\right)\left[\sin \delta_{C P} \sin \theta_{13}\right] \cdot \sin \frac{\Delta m_{32}^{2} L}{4 E} \sin \frac{\Delta m_{31}^{2} L}{4 E} \sin \frac{\Delta m_{21}^{2} L}{4 E}
\end{aligned}
$$

can look for CP-violation this way because all parameters other than $\delta_{C P}$ are now known to be non-zero
note: no matter effects in probability

Search for CP Violation

Another method:

Because reactors measured large θ_{13} with good precision, can start search for $\delta_{\mathrm{cp}} \neq 0$ using precision measurements of
$P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left(\sin ^{2} \theta_{23} \sin ^{2} \theta_{13}\right.$
$\left.-\sin \delta_{C P} \sin \theta_{13} \cos \theta_{13} \sin 2 \theta_{23} \sin 2 \theta_{12} \sin \frac{\Delta m_{21}^{2} L}{4 E}\right) \sin ^{2} \frac{\Delta m_{31}^{2} L}{4 E}+\ldots$

Oc. Prob for different $\delta_{\text {cp }}$

effect of δ cp can be large for a given $\sin ^{2} 2 \theta_{13}$ value
current experiments (like T2K and NOvA) can begin search for hints of non-zero Ocr $^{\text {ch }}$
requires precision on all $\theta, \Delta m^{2}$ value of $\boldsymbol{\theta}_{23}$ important

Oscillations at T2K

T2K designed to measure

(viv. $\nu_{11} \underline{v}_{\mu}$ Disappearance: goal to measure $\boldsymbol{\theta}_{23}$ and $\boldsymbol{\Delta} \boldsymbol{m}^{\mathbf{2}}{ }_{32}$
$P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)=1-\left(\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{23}+\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23}\right) \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)+\ldots$
(ㄴ14) $\boldsymbol{\nu}_{0}$ Ve Appearance: goal to measure $\boldsymbol{\theta}_{\mathbf{1 3}}$ and constrain $\boldsymbol{\delta}_{\mathbf{C P}}$ $P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left(\sin ^{2} \theta_{23} \sin ^{2} \theta_{13}\right.$

$$
\left.-\sin \delta_{C P} \sin \theta_{13} \cos \theta_{13} \sin 2 \theta_{23} \sin 2 \theta_{12} \sin \frac{\Delta m_{21}^{2} L}{4 E}\right) \sin ^{2} \frac{\Delta m_{31}^{2} L}{4 E}+\ldots
$$

Where are the tau's?
At T2K energy ($\sim 0.6 \mathrm{GeV}$), v_{T} charged current interactions energetically forbidden as cannot produce τ lepton
— result: most \underline{v}_{μ} seem to "disappear"

TZK Experiment

T2K Consists of Three Components

J-PARC
 ND280
 Super-K

La Thuile 2014
T. Wongjirad (Duke U.)

TZK Experiment

J-PARC

J-PARC creates a beam of mostly muon neutrinos

Beam is directed toward 2 detectors located 2.5° off-axis from the center of the beam

TZK Experiment

J-PARC ND280 Super-K

Near Detector
Complex
measures
neutrino beam
prior to
oscillations

La Thuile 2014

TzK Experiment

Far Detector Super-Kamiokande

J-PARC Beam

2.5 Off-axis beam from JPARC maximizes oscillation effect at SuperK

Previous experiments suggest

 largest oscillation dip near 600 MeV

Fit of near detector data tunes parameters of flux and xsec model for both near and far detectors

Bunerk

Neutrinos at SuperK used for Osc. Analysis

Large water Cherenkov detector with 22.5 ktonne of fiducial mass instrumented with 13 K PMTs

Charge particles travel through water and produce Cherenkov light - leaves ring of PMT hits on wall

PMT hit pattern gives information for reconstructing momentum and for lepton flavor ID, i.e μ vs. e

Oscillation Analyses

Oscillation Analyses

- ${ }^{-1} v_{\mu}$ disappearance
© ${ }^{\text {(}}$ ve appearance

Oscillation Analyses

Muon Neutrino Disappearance

New result - released last week

(vi1) $\nu_{12} \underline{v_{\mu}}$ Disappearance: goal to measure $\boldsymbol{\theta}_{23}$ and $\Delta \boldsymbol{m}^{2}{ }_{32}$

$$
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)=1-\left(\cos ^{4} \theta_{13} \sin ^{2} \underline{2 \theta_{23}}+\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23}\right) \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{\underline{4 E}}\right)+\ldots
$$

External Constraint Used

θ_{13} constraint according to PDG2012
 Combined from recent measurements Daya Bay, Double Chooz, RENO

Oscillation Analyses

Muon Neutrino Appearance

New result - released last week

(vin) $v_{n u} \underline{v_{u}}$ Disappearance: goal to measure $\boldsymbol{\theta}_{23}$ and $\Delta m^{2}{ }_{32}$

$$
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)=1-\left(\cos ^{4} \theta_{13} \sin ^{2} \underline{2 \theta_{23}}+\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23}\right) \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)+\ldots
$$

Note: T2K Analyses use full oscillation formula

External Constraint Used

θ_{13} constraint from reactor experiments
Using recent measurements several reactor neutrino experiments Daya Bay, Double Chooz, RENO

v_{μ} Disappearance

Oscillation parameters extracted from observed neutrino energy spectrum at Superk

MC Spectrum at SuperK for different oscillation values
$\stackrel{\infty}{\stackrel{\infty}{c}}$

v_{μ} Disappearance

Event Selection

Choose events with most reliable reconstruction of neutrino energy

Aim is to select events from CCQE channel

Signal Channel

charged current quasi-elastic

At SuperK, select events with single muon

For CCQE, single muon mom. + beam direction gives neutrino energy

$$
E_{\mathrm{reco}}=\frac{m_{p}^{2}-\left(m_{n}-E_{b}\right)^{2}-m_{\mu}^{2}+2\left(m_{n}-E_{b}\right) E_{\mu}}{2\left(m_{n}-E_{b}-E_{\mu}+p_{\mu} \cos \theta_{\mathrm{beam}}\right)}
$$

v_{μ} Disappearance

Event Selection

From data, choose single muon events in far detector

Each stage of selection agrees well with MC

- FCFV: Fully contained in detector and event inside fiducial volume
- 1-ring: 1 particle in Super-K
- $\boldsymbol{\mu}$-like: track using flavor ID
- \mathbf{p}_{μ} : momentum > 200 MeV
- Decay e: Decay electrons <= 1

v_{μ} Disappearance

Analysis includes systematic uncertainties in spectrum from flux, interaction models, and SuperK detector errors

v_{μ} Disappearance

Fit to 120 Single Muon Events

$\sin ^{2} \theta_{23}[\mathrm{NH}]$ $([\mathrm{IH}])$	$0.514_{-0.056}^{+0.055}$ (0.511 ± 0.055)				
$\Delta \mathrm{m}^{2}{ }_{32}[\mathrm{NH}]$ $\left(\Delta \mathrm{m}^{2}{ }_{13}[\mathrm{IH}]\right)$	$(2.51 \pm 0.1) \times 10^{-3} \mathrm{eV}^{2}$				
$\left((2.48 \pm 0.1) \times 10^{-3} \mathrm{eV}^{2}\right)$		$	$	$\mathrm{N}_{\exp }[\mathrm{NH}]$	
:---:	:---:				
$([\mathrm{IH}])$	$(121.41$				

Fit run twice with different hierarchy assumption [NH] Normal [IH] Inverted

v_{μ} Disappearance Result

T2K has the current best 90\% CL constraint on $\sin ^{2}\left(\theta_{23}\right)$

T2K contours made with Feldman-Cousins prescription
$\theta_{23} \sim 41^{\circ} \pm 7.5^{\circ}$ $\mathrm{T} 2 \mathrm{~K} \Rightarrow 45.8^{\circ} \pm 6.4^{\circ}$
$\delta \theta_{13} \sim 7 \% \quad \delta \theta_{12} \sim 3 \% \quad \delta \Delta m^{2} 21 \sim 3 \% \quad \delta \Delta m^{2} 32 / 13 \sim 4 \%$

Oscillation Analysis

Electron Neutrino Appearance

(vin) ν_{e} Ve Appearance: measurement of $\boldsymbol{\theta}_{13}$ and constrain $\boldsymbol{\delta}_{\mathrm{c}}$

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left(\sin ^{2} \theta_{23} \sin ^{2} \theta_{13}\right.
$$

External

 Constraints Used
θ_{12} and $\Delta m^{2}{ }_{21}$ constrained by solar experiments

θ_{23} and $\Delta m^{2} 32$ constrained by previous T2K measurement

v_{e} Appearance

Ve appearance uses (p, θ) distribution for fit

Using CCQE interactions for signal (like v_{μ} disappearance)

- Selected events are single electron tracks at SuperK
- Reliable particle reconstruction
- (p, θ) used to help separate signal and background

v_{e} Appearance

Event Selection

From data, choose single electron events in far detector

v_{e} Appearance

Probability density per (p, θ) bin with uncertainties in density shown

Uncertainty in (p, θ) Bins

Systematic Uncertainties

Flux/xsec contrained by ND280	2.9
SuperK-only xsecs	13.8
SuperK Efficiencies/ Hadronic interactions in water	9.9
Total	$\mathbf{1 8 . 3}$

v_{e} Appearance

Fit to 28 Single Electron Events

Exclude zero $\sin ^{2} 2 \theta_{13}$ to 7.3σ

v_{e} Appearance

Comparison to reactor measurements of $\sin ^{2} 2 \theta_{13}$

Overlay of reactor measurement (via $\bar{\nu}_{e}$ disappearance) and T2K allowed regions for $\sin ^{2}\left(2 \theta_{13}\right)$ as a function of $\delta_{c p}$

T2K regions shown with different values of assumed $\sin ^{2} \theta_{23}$

Note: These are 1D allowed regions as a function of $\delta_{c p}$

v_{e} Appearance

Comparison to reactor measurements of $\sin ^{2} 2 \theta_{13}$

Overlay of reactor measurement (via $\bar{\nu}_{e}$ disappearance) and
T2K allowed regions for $\sin ^{2}\left(2 \theta_{13}\right)$ as a function of $\delta_{c p}$

T2K regions shown with different values of assumed $\sin ^{2} \theta_{23}$
Note: These are 1D allowed regions as a function of $\delta_{c p}$

v_{e} Appearance

Use reactor experiments to constrain $\sin ^{2} 2 \theta_{13}$
And use T2K to fit $\delta_{\text {cp }}$

Blue line with dots give FeldmanCousins critical values for 90% CL

90\% CL Excluded Region

 [NH]: 0.19т - 0.80т [IH]: -0.04т - 1.03тincludes marginalization of $\sin ^{2}\left(2 \theta_{13}\right), \sin ^{2}\left(\theta_{23}\right)$ and $\Delta m^{2} 32$

Intriguing first step towards investigating CP violation in the lepton sector!

What's Next for

Update v_{e} appearance with latest v_{μ} disappearance constraints on $\sin ^{2}\left(\theta_{23}\right)$ and $\Delta m^{2} 32$

Will do this through a combined v_{e} appearance and v_{μ} disappearance analysis coming soon (as opposed to applying as external constraint)

Also, expect first anti-neutrino data run in 2014

Conclusions

Just released the current best constraints on $\sin ^{2}\left(\theta_{23}\right)$
V_{e} appearance measured at discovery level significance (i.e. zero θ_{13} at 7.3б)

Combined with reactor measurements of θ_{13}, T2K is able to exclude some values of $\delta_{c p}$ to $90 \% \mathrm{CL}$

T2

On behalf of T2K, thank you for your attention

Support Slides

Neutrino Oscillations Review

Neutrinos can change from one flavor to another

(1) \rightleftharpoons (2)

Observed by many experiments measuring neutrinos of all different sources and flavors

Superk MINOS IceCUBE ANTARES BDUNT

KamLAND Daya Bay RENO Double Chooz LSND

Superk KamLAND SNO SAGE
Borexino Homestake GALLEX

MINOS NOvA OPERA K2K T2K MiniBooNE

Neutrino Oscillations Review

Neutrino oscillations occur because

- neutrinos have mass
- flavor states are mixture of mass states

Example 2 v model

Flavor States Mixing Matrix Mass States

$$
\binom{\nu_{a}}{\nu_{b}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{\nu_{1}}{\nu_{2}} \begin{aligned}
& \mathrm{w} / \text { mass } m_{1} \\
& \mathrm{w} / \text { mass } m_{2}
\end{aligned}
$$

For a neutrino, V_{a}, with energy, E, traveling a distance, L,

$$
P_{a \rightarrow b}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2}}{4 \hbar c} \frac{L}{E}\right) \quad \begin{aligned}
& \text { where } \\
& \Delta m^{2}=m^{2} 1-m^{2}
\end{aligned}
$$

Get oscillating probability as function of L/E
mixing angle, θ, governs amplitude

Experiments report $\theta, \Delta m^{2}$ values

State of Oscillation Measurements

3 Neutrino mixing matrix using the standard parameterization and
List of current parameter values

State of Oscillation Measurements

3 Neutrino mixing matrix using the standard parameterization and List of current parameter values

atmospheric/ accelerator $\theta_{23} \sim 41^{\circ} \pm 7.5^{\circ}$ From Global Fits MINOS/SK		reactor/ accelerator $\begin{gathered} \theta_{13} \sim 9.1^{\circ} \pm 0.6^{\circ} \\ \delta \theta_{13} \sim 7 \% \end{gathered}$	solar $\begin{gathered} \theta_{12} \sim 34^{\circ} \pm 1^{\circ} \\ \delta \theta_{12} \sim 3 \% \end{gathered}$		Majorana phases not yet observed
Mass Splittings	$\begin{aligned} & \mathrm{V}_{3} \frac{}{\Delta m_{32}^{2}} \\ & \mathrm{~V}_{2} \frac{}{\mathrm{~V}_{1}} \frac{\Delta m_{12}^{2}}{\mathrm{Norm}}= \end{aligned}$	$\begin{aligned} & 2.5 \times 10^{-5} \mathrm{eV}^{2} / c^{4} O R \\ & 7.5 \times 10^{-5} \mathrm{eV}^{2} / c^{4} \end{aligned}$ al Hierarchy	$\begin{aligned} & \overline{\Delta m_{12}^{2}}=7.5 \times 10^{-5} \\ & \frac{\Delta m_{32}^{2}}{} \approx 2.5 \times 10^{-5} \\ & \text { Inverted Hierarc } \end{aligned}$		$\begin{aligned} & \delta \Delta m^{2} 32 / 13 \sim 4 \% \\ & \delta \Delta m^{2} 21 \sim 3 \% \end{aligned}$

Hierarchy ambiguity because oscillations depend only on Δm^{2}

Comparison to last T2K result

Comparison to Sensitivity

Maximal Mixing/Disappearance

Because θ_{13} is non-zero:
Maximal Mixing and Maximal Disappearance is not the same!
Maximal Mixing when $\sin ^{2} \theta_{23}=0.5$

$$
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)=1-\left(\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{23}+\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23}\right) \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right)+\ldots
$$

Expression gives maximum amount of disappearance when

$$
\sin ^{2} \theta_{23}=1 /\left(2 \cos ^{2} \theta_{13}\right)
$$

$$
\begin{gathered}
\sin ^{2} \theta_{23}=0.5 \\
\text { when } \sin ^{2} \theta_{13}=0
\end{gathered}
$$

$$
\begin{gathered}
\sin ^{2} \theta_{23}=0.513 \\
\text { when } \sin ^{2} \theta_{13}=0.098 \\
\text { (PDG2012 Value) }
\end{gathered}
$$

> Actual maximal disappearance value is 0.514 [NH], 0.511 [IH] (the terms past next-leading order causes small shift)

Beam Simulation

- Hadronic interactions due to proton slamming into carbon target
- Tracking of resulting particles through target and magnetic field
- Tuning of hadron production to external measurements (NA6I/SHINE)

Neutrino

 Flux

Interaction

Generator

- Model and Cross sections from theory
- Detector Geometry

Neutrino Events

Detector Simulation

- Electronics
- Particle Propagation

Future Sensitivity

$\sin ^{2} \theta_{23}$

(a) $100 \% \nu$-running.
$\Delta m^{2} 32$

(a) $100 \% \nu$-running.

Better because events at dip slightly less than predicted by maximal disappearance

Future Sensitivity

$\sin ^{2} \theta_{13}$

(a) $100 \% \nu$-running.

Plot assumes $\sin ^{2} \theta_{13}=0.1$

Measured $\sin ^{2} \theta_{13}=0.14$ so more events that expected

Future Sensitivity

[NH] Normal hierarchy, [IH] Inverted hierarchy
Sensitivity for Resolving $\sin \delta_{C P} \neq 0$
7.8×10^{21} POT (50\% POT $v+50 \%$ POT anti- v)

Assuming true: $\sin ^{2} 2 \theta_{13}=0.1, \Delta \mathrm{~m}_{32}^{2}=2.4 \times 10^{-3} \mathrm{eV}^{2}$
θ_{13} constrained by $\delta\left(\sin ^{2} 2 \theta_{13}\right)=0.005$
A. Minamino - KEK Seminar

Future Sensitivity

[NH] Normal hierarchy, [IH] Inverted hierarchy

T2K + NOvA Sensitivity for Resolving $\sin \delta_{C P} \neq 0$

Both T2K/NOvA -> full POT (50\% POT v + 50\% POT anti-v) Shown in [NH] case.

Region where $\sin \delta=0$ can be

Sensitivity to resolve $\sin \delta=0$ excluded by 90\% C.L.
Assuming 5\% (10\%) normalization uncertainty on signal (background) A. Minamino - KEK Seminar Assuming true: $\sin ^{2} 2 \theta_{13}=0.1, \Delta \mathrm{~m}_{32}=2.4 \times 10^{-3} \mathrm{eV}^{2}, \theta_{13}$ constrained by $\delta\left(\sin ^{2} 2 \theta_{13}\right)=0.005$

Future Sensitivity

[NH] Normal hierarchy, [IH] Inverted hierarch!

T2K + NOvA Sensitivity to Mass Hierarchy

Both T2K/NOvA -> full POT (50\% POT v + 50\% POT anti-v) Shown in [NH] case.

Red: T2K alone, Blue: NOvA alone, Black: T2K + NOvA

Region where MH can be distinguished by 90\% C.L.

Sensitivity to resolve MH
A. Minamino - KEK Seminar

Assuming true: $\sin ^{2} 2 \theta_{13}=0.1, \Delta \mathrm{~m}^{2}{ }_{32}=2.4 \times 10^{-3} \mathrm{eV}^{2}, \theta_{13}$ constrained by $\delta\left(\sin ^{2} 2 \theta_{13}\right)=0.005$

Multi-Nucleon Interactions

There has been considerable interest lately in multi-nucleon interactions for neutrino-nucleus scattering

Involves processes where neutrino interact occurs with 2 or more nucleons

Contrasts to interactions with a single nucleon, which is what our generator encodes

Such interactions gained interest when they were seen to be able to possible explain the disagreement between the CCQE cross section measurement and prediction by MiniBooNE data was low

Offer a new mode of interaction to explain deficit seen

Multi-Nucleon Interactions

Note that there would not only be a missing mode in model, but that the energy bias would be different

We do have an interaction mode in our model, pionless deltadecay, that seems to cover some of the ams regions of energy bias as multi-nucleon events would (according to Nieves model)

Multi-Nucleon Interactions

If such interactions exist and are a sizable channel in comparison to CCQE interactions, then for interactions in T2K, this would be a missing channel in our neutrino interaction model

In order to investigate the size of such an effect we performed MC fake experiments:

1. We added to the MC events from multi-nucleon interactions as described in the model by Nieves (note this not a statement on model preference, but was just the easiest model to implement at the time as it was available in the NuWro generator)
2.We then simulated a full analysis - starting with the near detector fit all the way to the far detector fit - with our normal analysis
2. Our goal was to ask: if we left out this interaction channel, what is the average change in our measurement of $\sin ^{2} \theta_{23}$ and $\Delta m^{2} 32$

Multi-Nucleon Interactions

For each toy fake experiment

1. We generated a fake data set for both the near and far detector that was made with a random throw in our current model parameters. The variation was within the uncertainty of the parameters
2. We performed the full analysis (near and far fits) twice:

- Once without the multi-nucleon interactions [Nominal Fit]
- Once with the multi-nucleon interactions added [Multi-N Fit]

3. Note that for both fits above - we use our current analysis which does NOT include the multi-nucleon interaction in its fit of the spectrum to the data

Our goal was to ask: if we left out this interaction channel, what is the average change in our measurement of $\sin ^{2} \theta_{23}$ and $\Delta m^{2}{ }_{32}$?

Multi-Nucleon Interactions

Result of our toy fake experiments:

1. The bias in due to Multi-N's is small ($<1 \%$) compared to existing uncertain tie in both the mixing angle and mass splitting squared
2. However, the added variation in the bias due to the Multi-N's is comparable to our current systematics but small relative to current statistical error
3. Our conclusion is that at our current statistics, the effect is negligible for now. But the future, we will want to add these interactions into model
4. There is existing effort to do so

Neutrino Oscillations

In 1998, Super-Kamiokande measured the rate of neutrinos originating from the atmosphere as a function of direction

Observed that the rate of upward-going neutrinos (which traveled through the earth) was less than expected

First discovery of neutrino oscillations: neutrinos created as one flavor can later be detected as another flavor!

First evidence that at least one neutrino has mass (albeit a very small one)

$\cos \theta=+1$

Neutrino Oscillations

For three flavors, expression much more complicated
But it turns out that one mass splitting is larger than the other

[Normal Hierarchy]

[Inverted Hierarchy]

$$
\Delta m_{13}^{2} \approx 2.5 \times 10^{-5} \mathrm{eV}^{2} / c^{4}
$$

V3
(ambiguity because oscillations only measure mass differences)

This allows for useful approximations of the oscillation probability
Note that when T2K does analyses, we use the full 3-flavor formula including matter effects

Neutrino Oscillations

Useful 3-flavor approximations (neglecting matter effects) (when T2K does the analyses we use the full formula)
$\underline{\mathrm{V}_{e} \text { Disappearance }}$

$$
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right) \quad[\text { at } L \sim 1 \mathrm{~km}]
$$

Measured most recently by several reactor neutrino experiments

Daya Bay, Double Chooz, RENO

- Appearance and Disappearance distinction useful

Notes: • θ_{13} and θ_{23} occur together often

- v_{e} appearance has $\delta c p$ term

Neutrino Oscillations

Useful 3-flavor approximations (neglecting matter effects) (when T2K does the analyses we use the full formula)

Measured by accelerator
 experiments: T2K, MINOS, NOvA

V_{μ} Disappearance

$$
P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)=1-\left(\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{23}+\sin ^{2} 2 \theta_{13} \sin ^{2} \theta_{23}\right) \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)
$$

Ve Appearance

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=\left(\sin ^{2} \theta_{23} \sin ^{2} \theta_{13}-\sin \delta_{C P} \sin \theta_{13} \cos \theta_{13} \sin 2 \theta_{23} \sin 2 \theta_{12} \sin \frac{\Delta m_{12}^{2} L}{4 E}\right) \sin ^{2} \frac{\Delta m_{13}^{2} L}{4 E}
$$

- Appearance and Disappearance distinction useful

Notes: • θ_{13} and θ_{23} occur together often

- v_{e} appearance has δ_{cp} term

What can we learn?

Many open questions related to neutrino oscillations, but briefly discuss two that are most relevant to current T2K results

- Is $\sin ^{2}\left(2 \theta_{23}\right)=1.0$?
- Do neutrinos exhibit CP-violation?
- Is our oscillation model complete?

Is This Everything?

Besides CP violation, we want to know if this is the whole story.
Another long term goal of the field is precision measurements of the mixing angles and tests of "unitarity"

In other words, can all our measurements of oscillations be explained by the three standard model neutrinos? E.g. might there be additional neutrinos?

Oscillation Analysis

Culmination of the work of hundreds of collaborators

Circa 2010. Many members not shown.

Oscillation Analysis

Beam Simulation

- Hadronic interactions due to proton slamming into carbon target
- Tracking of resulting particles through target and magnetic field
- Tuning of hadron production to external measurements (NA6I/SHINE)

Neutrino
 Interaction

 Flux

Generator

- Model and Cross sections from theory
- Detector Geometry

Neutrino Events

Detector Simulation

- Electronics
- Particle Propagation

J-PARC Beam

Beam produced by:

30 GeV proton impacting graphite target.

Resulting mesons focused by magnetic fields via "horns".

Mesons decay into neutrinos in "decay hall".

ND280 Complex

ND280 Complex

INGRID Detector

Located on-axis
Iron/Scintillator Layers
Measures rate and beam position/profile

ND280 Complex

Stability of v interaction rate normalized by \# of protons (INGRID)
Fluctuation of v interaction rate (/1019p.0.t) is less than 0.7% whole run period

Stability of beam direction is much better than 1 mrad during whole run period

ND280 Complex

Measures v Flux/Spectrum

ND280 Measurement

Fit of ND280 events constrains flux and xsec models

For oscillation analyses, events split into 3 classes based on final state topology.

Charged Current zero charged pions

Charged Current one charged pion

Charged Current Other

Super-Kamiokande

Super-K detects charged particle tracks traveling through water

Charged particles produce cone of Cherenkov light observed by PMTs. Particles leave ring-shaped hit pattern on wall

Time and charge information from hits allows momentum reconstruction

Super-Kamiokande

Lepton Flavor ID from Hit Pattern

Muons scatter minimally in water
μ Leaves sharp ring pattern

Electrons scatter/shower while traveling through water

v_{e} Appearance

Effect of $\sin ^{2} \theta_{23}$ and $\Delta m^{2}{ }_{32}$ on fit

Marginalized parameters using previous T2K constraint

Significance of v_{e} appearance discovery not changed: Exclude zero $\sin ^{2} 2 \theta_{13}$ to 7.3σ

Best fit changes to
$0.140 \rightarrow 0.133[\mathrm{NH}]$
$0.170 \rightarrow 0.166[\mathrm{IH}]$

v_{μ} Disappearance

Event Selection

Signal purity is high, even after a significant amount of oscillations

Event breakdown by interaction categories from MC

v_{e} Appearance

(p, θ) helps separate background from signal

(p, θ)
Fraction of events for each category $\sin ^{2} \theta_{13}=0.1, \delta_{c P}=0$

Neutrino energy distribution

$$
\sin ^{2} \theta_{13}=0.1, \delta_{c P}=0
$$

$v_{e} \mathrm{CC}$ from appearance and from beam combined in blue region

