

## V Oscillation Results From

T. Wongjirad (Duke) on behalf of T2K



# Outline

- 1. Brief review of neutrino oscillations and current state of measurements
- 2. Description of the T2K experiment
- 3. Present our latest oscillation results:
  - 1. Muon neutrino disappearance
  - 2. Electron neutrino appearance

# **State of Oscillation Measurements**

#### 3 Neutrino mixing matrix using the standard parameterization and List of current parameter values



# **State of Oscillation Measurements**

#### 3 Neutrino mixing matrix using the standard parameterization and List of current parameter values



## **Search for CP Violation**

Can look for leptonic CP violation with oscillations



Testing for CP-violation is a top priority for the field

Method: Compare oscillation probabilities for v and anti-v

$$\begin{split} P_{\nu_{\mu} \rightarrow \nu_{e}} &- P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}} :\\ &= -4 \sin(2\theta_{12}) \sin^{2}(2\theta_{23}) \cos^{2}(\theta_{13}) \left[ \sin \delta_{CP} \sin \theta_{13} \right] \cdot \sin \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \sin \frac{\Delta m_{21}^{2} L}{4E} \right] \\ & \text{ can look for CP-violation this way because all parameters other than } \delta_{CP} \text{ are now known to be non-zero} \end{split}$$

note: no matter effects in probability

# **Search for CP Violation**

#### Another method:

Because reactors measured large  $\theta_{13}$  with good precision, can start search for  $\delta_{CP} \neq 0$  using precision measurements of

$$P(\nu_{\mu} \to \nu_{e}) = (\sin^{2}\theta_{23}\sin^{2}\theta_{13})$$

 $-\sin \delta_{CP} \sin \theta_{13} \cos \theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \sin \frac{\Delta m_{21}^2 L}{4E} \sin^2 \frac{\Delta m_{31}^2 L}{4E} + \dots$ 



effect of  $\delta_{CP}$  can be large for a given  $sin^22\theta_{13}$  value

current experiments (like T2K and NOvA) can begin search for hints of non-zero  $\delta_{\text{CP}}$ 

requires precision on all  $\theta$ ,  $\Delta m^2$ value of  $\theta_{23}$  important



#### T2K designed to measure

 $v_{\mu}$  Disappearance: goal to measure  $\theta_{23}$  and  $\Delta m^{2}_{32}$ 

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - (\cos^{4}\theta_{13}\sin^{2}2\theta_{23} + \sin^{2}2\theta_{13}\sin^{2}\theta_{23})\sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E}\right) + \dots$$

 $v_e$  Appearance: goal to measure  $\theta_{13}$  and constrain  $\delta_{CP}$  $P(\nu_{\mu} \to \nu_{e}) = (\sin^{2}\theta_{23}\sin^{2}\theta_{13})$  $-\sin\delta_{CP}\sin\theta_{13}\cos\theta_{13}\sin2\theta_{23}\sin2\theta_{12}\sin\frac{\Delta m_{21}^2L}{\Lambda E})\sin^2\frac{\Delta m_{31}^2L}{\Lambda F}+\dots$ 



 $\langle w \rangle \rangle \rangle$  Where are the tau's?

At T2K energy (~0.6 GeV),  $v_{\tau}$  charged current interactions energetically forbidden as cannot produce τ lepton — result: most  $v_{\mu}$  seem to "disappear"



## T2K Consists of Three Components

## J-PARC ND280 Super-K



La Thuile 2014





## J-PARC ND280



J-PARC creates a beam of mostly muon neutrinos

Beam is directed toward 2 detectors located 2.5° off-axis from the center of the beam

La Thuile 2014

Super-K





## J-PARC ND280

## Super-K

Near Detector Complex measures neutrino beam prior to oscillations

La Thuile 2014







## J-PARC ND280

## Far Detector **Super-Kamiokande** detects muon and electron neutrinos and measures oscillations

La Thuile 2014

T. Wongjirad (Duke U.)



Super-K

2.5° Off-axis beam from JPARC maximizes oscillation effect at SuperK

Previous experiments suggest largest oscillation dip near 600 MeV

On-axis beam spectrum broad

RC Ré

Neutrino energy spectrum at 2.5° off-axis is narrow and peaked right at dip

At 2.5° off-axis, maximum fraction of spectrum oscillates, improving analysis sensitivity

am <u>dump</u>





## ND280





Fit of near detector data tunes parameters of flux and xsec model for both near and far detectors



Parameters from ND fit passed to model of far detector spectrum



La Thuile 2014

# SuperK



#### Neutrinos at SuperK used for Osc. Analysis

Large water Cherenkov detector with 22.5 ktonne of fiducial mass instrumented with 13K PMTs

Charge particles travel through water and produce Cherenkov light — leaves ring of PMT hits on wall

PMT hit pattern gives information for reconstructing momentum and for lepton flavor ID, i.e  $\mu$  vs. e





# Oscillation Analyses v<sub>µ</sub> disappearance v<sub>e</sub> appearance

# **Oscillation Analyses**

## Muon Neutrino Disappearance

## New result — released last week



External Constraint Used



θ<sub>13</sub> constraint according to PDG2012
Combined from recent measurements *Daya Bay, Double Chooz, RENO*

# **Oscillation Analyses**

## Muon Neutrino Appearance

## New result — released last week



 $v_{\mu}$  Disappearance: goal to measure  $\theta_{23}$  and  $\Delta m^{2}_{32}$ 

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \theta_{23}$$

 $n^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right) + \dots$ 

Note: T2K Analyses use full oscillation formula





θ<sub>13</sub> constraint from reactor experiments

Using recent measurements several reactor neutrino experiments Daya Bay, Double Chooz, RENO

Oscillation parameters extracted from observed neutrino energy spectrum at SuperK



 $p(m_p, 0)$ 

 $E_b$  = nucleus binding energy

#### **Event Selection**

Choose events with most reliable reconstruction of neutrino energy

#### Aim is to select events from CCQE channel

## Signal Channel charged current quasi-elastic (CCQE) $\mu(E_{\mu}, p_{\mu})$ $\nu_{\mu}(E_{\nu}, p_{\nu})$ $\cos(\theta_{\text{beam}})$ .

For CCQE, single muon mom. + beam direction gives neutrino energy

$$E_{\rm reco} = \frac{m_p^2 - (m_n - E_b)^2 - m_\mu^2 + 2(m_n - E_b)E_\mu}{2(m_n - E_b - E_\mu + p_\mu\cos\theta_{\rm beam})}$$

#### At SuperK, select events with single muon

La Thuile 2014

 $n(m_n - E_b, 0)$  (n)

#### **Event Selection**

From data, choose single muon events in far detector



Each stage of selection agrees well with MC

- FCFV: Fully contained in detector and event inside fiducial volume
- 1-ring: 1 particle in Super-K
- *µ*-like: track using flavor ID
- **p**<sub>*µ*</sub>: momentum >200 MeV
- Decay e: Decay electrons <= 1</li>

Analysis includes systematic uncertainties in spectrum from flux, interaction models, and SuperK detector errors





| sin²θ <sub>23</sub> [NH]<br>([IH]) | $\begin{array}{c} 0.514^{+0.055}_{-0.056} \\ (0.511 \pm 0.055) \end{array}$ |
|------------------------------------|-----------------------------------------------------------------------------|
| $\Delta m_{32}^2$ [NH]             | $(2.51 \pm 0.1) \times 10^{-3} \text{ eV}^2$                                |
| ( $\Delta m_{13}^2$ [IH])          | $((2.48 \pm 0.1) \times 10^{-3} \text{ eV}^2)$                              |
| N <sub>exp</sub> [NH]              | 121.41                                                                      |
| ([IH])                             | (121.39)                                                                    |

Fit run twice with different hierarchy assumption [NH] Normal [IH] Inverted



La Thuile 2014

# v<sub>µ</sub> Disappearance Result

#### T2K has the current best 90% CL constraint on $sin^2(\theta_{23})$



La Thuile 2014

# **Oscillation Analysis**

## Electron Neutrino Appearance



 $\theta_{12}$  and  $\Delta m^2_{21}$  constrained by solar experiments  $\theta_{23}$  and  $\Delta m^2_{32}$  constrained by previous T2K measurement

## $v_e$ appearance uses (p, $\theta$ ) distribution for fit

Using CCQE interactions for signal (like  $v_{\mu}$  disappearance)

- Selected events are single electron tracks at SuperK
- Reliable particle reconstruction
- (p,θ) used to help separate signal and background



La Thuile 2014

#### **Event Selection**

From data, choose single electron events in far detector



Each stage of selection agrees well with MC

- FCFV: Fully contained in fiducial volume
- 1-ring: Single ring found
- e-like: track electron like
- Evis: light seen equal to 100 MeV electron
- **Decay-e:** no decay electrons seen
- E<sup>rec</sup><sub>v</sub>: energy below 1250 MeV
- **fiTQun:** Events pass  $\pi^0$  rejection algorithm



### Uncertainty in $(p,\theta)$ Bins

| Systematic<br>Uncertainties                               | % Variation<br>of # of Events<br>due to<br>systematic<br>error |  |
|-----------------------------------------------------------|----------------------------------------------------------------|--|
| Flux/xsec contrained by<br>ND280                          | 2.9                                                            |  |
| SuperK-only xsecs                                         | 13.8                                                           |  |
| SuperK Efficiencies/<br>Hadronic interactions in<br>water | 9.9                                                            |  |
| Total                                                     | 18.3                                                           |  |

#### La Thuile 2014

## Fit to 28 Single Electron Events



La Thuile 2014

## Comparison to reactor measurements of sin<sup>2</sup>20<sub>13</sub>

Overlay of reactor measurement (via  $\bar{\nu}_e$  disappearance) and T2K allowed regions for sin<sup>2</sup>(2 $\theta_{13}$ ) as a function of  $\delta_{CP}$ 



T2K regions shown with different values of assumed  $sin^2\theta_{23}$ 

Note: These are 1D allowed regions as a function of  $\delta_{CP}$ 

La Thuile 2014

12N anowed region and current constraints on  $Sin^{-}(2013)$  norm

# ve Appearance

## Comparison to reactor measurements of $sin^22\theta_{13}$



T2K regions shown with different values of assumed  $sin^2\theta_{23}$ 

Note: These are 1D allowed regions as a function of  $\delta_{CP}$ 

La Thuile 2014

#### Use reactor experiments to constrain $sin^22\theta_{13}$

#### And use T2K to fit $\delta_{CP}$



90% CL Excluded Region [NH]: 0.19π - 0.80π [IH]: -0.04π - 1.03π

includes marginalization of  $sin^2(2\theta_{13})$  ,  $sin^2(\theta_{23})$  and  $\Delta m^2{}_{32}$ 

Intriguing first step towards investigating CP violation in the lepton sector!



Update  $v_e$  appearance with latest  $v_\mu$  disappearance constraints on sin<sup>2</sup>( $\theta_{23}$ ) and  $\Delta m^2_{32}$ 

Will do this through a combined  $v_e$  appearance and  $v_\mu$  disappearance analysis coming soon (as opposed to applying as external constraint)

Also, expect first anti-neutrino data run in 2014

# Conclusions

Just released the current best constraints on  $sin^2(\theta_{23})$ 

 $v_e$  appearance measured at discovery level significance (i.e. zero  $\theta_{13}$  at 7.3 $\sigma$ )

Combined with reactor measurements of  $\theta_{13}$ , T2K is able to exclude some values of  $\delta_{CP}$  to 90% CL





## On behalf of T2K, thank you for your attention

| Canada                          | Italy                 | Poland               | Spain              |                 |
|---------------------------------|-----------------------|----------------------|--------------------|-----------------|
| TRIUMF                          | INFN, U. Bari         | IFJ PAN, Cracow      | IFAE, Barcelona    | U. Sheffield    |
| U. Alberta                      | INFN, U. Napoli       | NCBJ, Warsaw         | IFIC, Valencia     | U. Warwick      |
| U. B. Columbia                  | INFN, U. Padova       | U. Silesia, Katowice |                    |                 |
| U. Regina                       | INFN, U. Roma         | U. Warsaw            | Switzerland        | USA             |
| U. Toronto                      |                       | Warsaw U. T.         | ETH Zurich         | Boston U.       |
| U. Victoria                     | Japan                 | Wroklaw U.           | U. Bern            | Colorado S. U.  |
| U. Winnipeg                     | ICRR Kamioka          |                      | U. Geneva          | Duke U.         |
| York U. ICRR RCCN<br>Kavli IPMU | ICRR RCCN             |                      |                    | Louisiana S. U. |
|                                 | Kavli IPMU            | Russia               | United Kingdom     | Stony Brook U.  |
| France                          | КЕК                   | INR                  | Imperial C. London | U. C. Irvine    |
| CEA Saclay                      | Kobe U.               |                      | Lancaster U.       | U. Colorado     |
| IPN Lyon                        | Kyoto U.              |                      | Oxford U.          | U. Pittsburgh   |
| LLR E. Poly.                    | Miyagi U. Edu.        |                      | Queen Mary U. L.   | U. Rochester    |
| LPNHE Paris                     | Osaka City U.         |                      | STFC/Daresbury     | U. Washington   |
|                                 | Okayama U.            |                      | STFC/RAL           |                 |
| Germany                         | Tokyo Metropolitan U. | ~500 members.        | U. Liverpool       |                 |
| Aachen U.                       | U. Tokyo              | 59 Institutes,       |                    |                 |
|                                 |                       | 11 countries         |                    |                 |

# Support Slides



# **Neutrino Oscillations Review**

Neutrinos can change from one flavor to another



Observed by many experiments measuring neutrinos of all different sources and flavors



SuperK MINOS ICeCUBE ANTARES BDUNT KamLAND Daya Bay RENO Double Chooz LSND

SuperK KamLAND SNO SAGE Borexino Homestake GALLEX

MINOS NOvA OPERA K2K T2K MiniBooNE

#### La Thuile 2014
## **Neutrino Oscillations Review**

Neutrino oscillations occur because

- neutrinos have mass
- flavor states are mixture of mass states

|                      | Flavor States                                                                   | <b>Mixing Matrix</b>                                                                   | Mass States                                                                     |                                              |
|----------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------|
| Example 2 v<br>model | $\left(\begin{array}{c}\nu_a\\\nu_b\end{array}\right) = \left(\begin{array}{c}$ | $ \begin{array}{ccc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array} $ | $\left(\begin{array}{c}\nu_1\\\nu_2\end{array}\right) & \mathbf{W}\\\mathbf{W}$ | $/\text{mass} \ m_1$<br>$/\text{mass} \ m_2$ |

For a neutrino, v<sub>a</sub>, with energy, *E*, traveling a distance, *L*,

Get oscillating probability as function of L/E



La Thuile 2014

# **State of Oscillation Measurements**

#### 3 Neutrino mixing matrix using the standard parameterization and List of current parameter values



La Thuile 2014

# **State of Oscillation Measurements**

## 3 Neutrino mixing matrix using the standard parameterization and List of current parameter values



Hierarchy ambiguity because oscillations depend only on  $\Delta m^2$ 

La Thuile 2014

T. Wongjirad (Duke U.)

## **Comparison to last T2K result**



# **Comparison to Sensitivity**



# Maximal Mixing/Disappearance

Because θ<sub>13</sub> is non-zero: Maximal Mixing and Maximal Disappearance is not the same!

Maximal Mixing when  $sin^2\theta_{23}=0.5$ 

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right) + \dots$$

Expression gives maximum amount of disappearance when  $\sin^2\theta_{23} = 1/(2\cos^2\theta_{13})$ 

 $sin^2\theta_{23}=0.5$ when  $sin^2\theta_{13}=0$   $sin^2\theta_{23}=0.513$ when  $sin^2\theta_{13}=0.098$ (PDG2012 Value)

Actual maximal disappearance value is 0.514 [NH], 0.511 [IH] (the terms past next-leading order causes small shift)

# MC Model

Hadronic interactions due to proton

Tracking of resulting particles through

external measurements (NA61/SHINE)

slamming into carbon target

Tuning of hadron production to

target and magnetic field

**Beam Simulation** 





Detector Geometry

Predictions for distributions of observables



Same as data

Source of efficiencies

MC data

Neutrino

Flux



**Detector Simulation** 



Particle Propagation



Better because events at dip slightly less than predicted by maximal disappearance



Plot assumes  $sin^2\theta_{13}=0.1$ 

Measured sin<sup>2</sup>θ<sub>13</sub>=0.14 so more events that expected



[NH] Normal hierarchy, [IH] Inverted hierarchy

#### T2K + NOvA Sensitivity for Resolving sin $\delta_{CP} \neq 0$

Both T2K/NOvA -> full POT (50% POT v + 50% POT anti-v) Shown in [NH] case.



Assuming 5% (10%) normalization uncertainty on signal (background) A. Minamino - KEK Seminar Assuming true:  $\sin^2 2\theta_{13}=0.1$ ,  $\Delta m^2_{32}=2.4\times 10^{-3} \text{ eV}^2$ ,  $\theta_{13}$  constrained by  $\delta(\sin^2 2\theta_{13})=0.005$ 

[NH] Normal hierarchy, [IH] Inverted hierarchy

#### T2K + NOvA Sensitivity to Mass Hierarchy

Both T2K/NOvA -> full POT (50% POT v + 50% POT anti-v) Shown in [NH] case.



There has been considerable interest lately in multi-nucleon interactions for neutrino-nucleus scattering

Involves processes where neutrino interact occurs with 2 or more nucleons

Contrasts to interactions with a single nucleon, which is what our generator encodes

Such interactions gained interest when they were seen to be able to possible explain the disagreement between the CCQE cross section measurement and prediction by MiniBooNE data was low

Offer a new mode of interaction to explain deficit seen

Note that there would not only be a missing mode in model, but that the energy bias would be different

We do have an interaction mode in our model, pionless deltadecay, that seems to cover some of the ams regions of energy bias as multi-nucleon events would (according to Nieves model)



If such interactions exist and are a sizable channel in comparison to CCQE interactions, then for interactions in T2K, this would be a missing channel in our neutrino interaction model

In order to investigate the size of such an effect we performed MC fake experiments:

1. We added to the MC events from multi-nucleon interactions as described in the model by Nieves (note this not a statement on model preference, but was just the easiest model to implement at the time as it was available in the NuWro generator)

2.We then simulated a full analysis — starting with the near detector fit all the way to the far detector fit — with our <u>normal analysis</u>

3. Our goal was to ask: if we left out this interaction channel, what is the average change in our measurement of  $\sin^2\theta_{23}$  and  $\Delta m^2_{32}$ 

For each toy fake experiment

1. We generated a fake data set for both the near and far detector that was made with a random throw in our current model parameters. The variation was within the uncertainty of the parameters

- 2. We performed the full analysis (near and far fits) twice:
  - Once without the multi-nucleon interactions [Nominal Fit]
  - Once with the multi-nucleon interactions added [Multi-N Fit]

3. Note that for both fits above — we use our current analysis which does NOT include the multi-nucleon interaction in its fit of the spectrum to the data

Our goal was to ask: if we left out this interaction channel, what is the average change in our measurement of  $\sin^2\theta_{23}$  and  $\Delta m^2_{32}$ ?

Result of our toy fake experiments:

1. The bias in due to Multi-N's is small (<1%) compared to existing uncertain tie in both the mixing angle and mass splitting squared

2. However, the added variation in the bias due to the Multi-N's is comparable to our current systematics but small relative to current statistical error

 Our conclusion is that at our current statistics, the effect is negligible for now. But the future, we will want to add these interactions into model

4. There is existing effort to do so



In 1998, Super-Kamiokande measured the rate of neutrinos originating from the atmosphere as a function of direction

Observed that the rate of upward-going neutrinos (which traveled through the earth) was less than expected

First discovery of *neutrino oscillations*: neutrinos created as one flavor can later be detected as another flavor!

First evidence that at least one neutrino has mass (albeit a very small one)



For three flavors, expression much more complicated

But it turns out that one mass splitting is larger than the other



(ambiguity because oscillations only measure mass differences)

This allows for useful approximations of the oscillation probability

Note that when T2K does analyses, we use the full 3-flavor formula including matter effects

Useful 3-flavor approximations (neglecting matter effects) (when T2K does the analyses we use the full formula)

$$\frac{V_e \text{ Disappearance}}{P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) \quad \text{[at } L \sim 1 \text{ km]}$$



Measured most recently by several reactor neutrino experiments

Daya Bay, Double Chooz, RENO

- Appearance and Disappearance distinction useful
- Notes:  $\theta_{13}$  and  $\theta_{23}$  occur together often
  - $v_e$  appearance has  $\delta_{CP}$  term

Useful 3-flavor approximations (neglecting matter effects) (when T2K does the analyses we use the full formula)

Measured by accelerator experiments: *T2K, MINOS, NOvA* 

# $\underline{\nu_{\mu} \text{ Disappearance}} P(\nu_{\mu} \to \nu_{\mu}) = 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$

<u>ve</u> Appearance

 $P(\nu_{\mu} \to \nu_{e}) = (\sin^{2}\theta_{23}\sin^{2}\theta_{13} - \sin\delta_{CP}\sin\theta_{13}\cos\theta_{13}\sin2\theta_{23}\sin2\theta_{12}\sin\frac{\Delta m_{12}^{2}L}{4E})\sin^{2}\frac{\Delta m_{13}^{2}L}{4E}$ 

- Appearance and Disappearance distinction useful
- Notes:  $\theta_{13}$  and  $\theta_{23}$  occur together often
  - $v_e$  appearance has  $\delta_{CP}$  term

# What can we learn?

Many open questions related to neutrino oscillations, but briefly discuss two that are most relevant to current T2K results

- Is  $\sin^2(2\theta_{23})=1.0?$
- Do neutrinos exhibit CP-violation?
- Is our oscillation model complete?

# Is This Everything?



Besides CP violation, we want to know if this is the whole story.

Another long term goal of the field is precision measurements of the mixing angles and tests of "unitarity"

In other words, can all our measurements of oscillations be explained by the three standard model neutrinos? E.g. might there be additional neutrinos?

# **Oscillation Analysis**

#### Culmination of the work of hundreds of collaborators



Circa 2010. Many members not shown.

 $u_e$ 

# **Oscillation Analysis**

#### **Beam Simulation**

- Hadronic interactions due to proton slamming into carbon target
- Tracking of resulting particles through target and magnetic field
- Tuning of hadron production to external measurements (NA61/SHINE)



Predictions for distributions of observables

#### Reconstruction/ Selection

- Same as data
- Source of efficiencies

data

#### **Detector Simulation**

 $\nu_e$ 



Particle Propagation

# J-PARC Beam



# Beam produced by:

30 GeV proton impacting graphite target. Resulting mesons focused by magnetic fields via "horns". Mesons decay into neutrinos in "decay hall".



# ND280 Complex



~10m

1.5m

~10m

\*\*\*\*\*\*

\*\*\*\*

**Beam center** 



#### ND280 Off-axis

#### 2.5° off-axis.

Collection of fine-grain trackers and calorimeter

Measures v Flux/Spectrum



# ND280 Complex



Эш

#### Stability of v interaction rate normalized by # of protons (INGRID)

Fluctuation of v interaction rate (/10<sup>19</sup>p.o.t) is less than 0.7% whole run period



Stability of beam direction is much better than 1mrad during whole run period

# ND280 Complex

B

'PC

\*\*\*\*\*

7.6m

UA1 magnet yoke

POD



#### ND280 Off-axis

2.5° off-axis.

Collection of detectors for calorimetry and fine-grained particle tracking

Measures v Flux/Spectrum

# ND280 Measurement

Fit of ND280 events constrains flux and xsec models

For oscillation analyses, events split into 3 classes based on final state topology.





## Super-Kamiokande

Super-K detects charged particle tracks traveling through water

Charged particles produce cone of Cherenkov light observed by PMTs. Particles leave ring-shaped hit pattern on wall

Time and charge information from hits allows momentum reconstruction





# Super-Kamiokande Lepton Flavor ID from Hit Pattern

Muons scatter minimally in water

μ Leaves <u>sharp</u> ring pattern

MC Event





Electrons scatter/shower while traveling through water

MC Event



*e* Leaves <u>fuzzy</u> ring pattern

# ve Appearance

#### Effect of $\sin^2\theta_{23}$ and $\Delta m^2_{32}$ on fit Marginalized parameters using previous T2K constraint

Significance of  $v_e$  appearance discovery not changed: Exclude zero sin<sup>2</sup>2 $\theta_{13}$  to 7.3 $\sigma$ 

Best fit changes to 0.140 → 0.133 [NH] 0.170 → 0.166 [IH]





## $v_{\mu}$ Disappearance

#### **Event Selection**

Signal purity is high, even after a significant amount of oscillations

Event breakdown by interaction categories from MC

| Event Type                            | Predicted<br>Events<br>sin <sup>2</sup> (θ <sub>23</sub> )=0.5 | <b>6</b> = <b>0 0 0 0 0 0 0 0</b>                        |
|---------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|
| $+ar{ u}_{\mu}$ CCQE (signal)         | 77.93                                                          | <b>4</b> = <b>1</b> $4 = 1$ $4 = 1$ $4 = 1$ $4 = 1$      |
| $\mu_{\mu}+ar{ u}_{\mu}$ non-CCQE     | 40.78                                                          |                                                          |
| $ u_e + \overline{ u}_e$ interactions | 0.35                                                           | $ \begin{array}{c}                                     $ |
| neutral current interactions          | 6.78                                                           |                                                          |
| Total                                 | 125.85                                                         | 0 2 4 6 8                                                |
|                                       | :                                                              | reconstructed v energy (Ge                               |

# ve Appearance

#### $(p,\theta)$ helps separate background from signal







#### Neutrino energy distribution $sin^2\theta_{13}=0.1, \delta_{CP}=0$

 $v_e\,CC$  from appearance and from beam combined in blue region