DIBOSON AND EWK PHYSICS AT CMS

Alicia Calderón
Instituto de Física de Cantabria (CSIC-UC)
On behalf of the CMS collaboration

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile February 26, 2014

Outline

- The talk will be focus on latest results from CMS
- Diboson production:
 - yy production at 7 TeV, SMP-13-001
 - **ZZ**→**4I** at 8 TeV, SMP-13-005
 - ZZ→2I2v at 7 and 8 TeV, SMP-12-016
 - WZ→3Iv at 7 and 8 TeV, SMP-12-006
 - VZ→2l2b at 8 TeV, SMP-13-011
 - VWy→Ivjjy at 8 TeV, SMP-13-009
- Search for anomalous couplings
- Selected electroweak results
 - VBF Z production at 8TeV, FSQ-12-035
 - Muon charge asymmetry at 7 TeV, arXiv:1312.6283
 - V+jets cross section at 7 TeV
 - PDF constraints

Diboson production

Feynman diagram: V₁, V₂, V = Z, W, γ → γγ, WZ, ZZ

- Cross section available at NLO QCD for WZ and ZZ, and NNLO for γγ
 - Gluon-gluon enters at NLO (~5% correction)
- Fundamental test of Standard Model
 - Test of gauge structure of the Standard Model
- Irreducible background for Higgs boson measurements and BSM searches
 - Precise knowledge of cross sections and kinematical distributions are important
- Probe for new physics
 - Search for Anomalous Triple Gauge Couplings (TGC) and Quartic Gauge Coupling (QGC): indirect search for tree or loop effect of massive new particles

Diphoton cross-section

- SMP-13-001, 5.0fb-1 at 7 TeV
- **Differential cross-section** measured as a function of $M_{\gamma\gamma}$, $P_{T,\gamma\gamma}$, $\Delta\Phi_{(\gamma 1,\gamma 2)}$, $\cos(\theta^*)$
- Kinematical range: $|\eta_{\gamma}| < 2.5$, $E_{T,\gamma 1} > 40$, $E_{T,\gamma 2} > 25$ GeV, $\Delta R_{(\gamma 1,\gamma 2)} > 0.45$
- Main background is from jets mis-id as a γ (fake)
 - Data-driven approach to extract the prompt diphoton yield based on particle-flow photon isolation template: ~10% systematic uncertainties

Diphoton cross-section

SMP-13-001

NNLO predictions improve a lot the data/MC agreement

Still an excess in data at low ΔΦ (sensitive to missing higher order QCD effects)

ZZ-4l cross section

- SMP-13-005, 19.6fb-1 at 8 TeV
- Inclusive and differential cross section measurement in the channel to 4I (including one Z to taus)
- Main backgrounds (significant only in IIττ): Z
 +jets (jet faking a lepton), WZ, top

8 TeV

Data σ = 7.7 $^{+0.5}_{-0.5}$ (stat.) $^{+0.5}_{-0.4}$ (sys.) \pm 0.4 (theo.) \pm 0.3 (lumi.) pb

MCFM@NLO 7.7 ± 0.6 pb

Main systematic from data-driven background

ZZ→2| 2v

- SMP-12-016, 4.9fb-1 at 7 TeV and 19.6fb-1 at 8 TeV
- Inclusive cross section measurement in the channel to 2l 2v
- Main backgrounds estimated from control samples in data: DY, top, WW
- Cross-section measured using a reduced MET variable

7 TeV

Data σ =5.0 _{-1.4}^{+1.5} (stat)_{-1.0}^{+1.3} (syst) ± 0.2 (lumi) pb

MCFM NLO σ =6.5 ± 0.3 pb

8 TeV

Data σ =6.8 _{-0.8}^{+0.8} (stat) _{-1.4}^{+1.8} (syst) ± 0.3 (lumi) pb

MCFM NLO σ =7.7 ± 0.6 pb

Main systematic from data-driven templates

WZ→3lv cross section

- SMP-12-006, 4.9fb-1 at 7 TeV and 19.6fb-1 at 8 TeV
- Inclusive cross section in 3 leptons + MET, measured with 4 final states: eee, eeμ, eμμ, μμμ
- Main backgrounds Z+jet /top estimated from data (inverting lepton isolation), ZZ (from MC)

WZ→3lv cross section

- Systematic limited: ~6% (mainly from Z+jet/top background estimate and MET)
- Cross-sections consistently compatible within ~1σ with the SM (MCFM@NLO) predictions
- W⁺Z/W⁻Z ratios are compatible with NLO predictions. Help to constrains u/d PDF ratio

7 TeV: Data σ = 20.76 ± 1.32 (stat.) ± 1.13 (syst.) ± 0.46 (lumi.) pb

8 TeV: Data σ = 24.61 ± 0.76 (stat.) ± 1.13 (syst.) ± 1.08 (lumi.) pb

VZ(2b) cross section

- SMP-13-011, 18.9fb-1 at 8 TeV
- Inclusive cross section measurement of VZ(bb) (V=W,Z) in final state: 2l2b, lvbb, vvbb (l=e,µ)
- Main backgrounds: Zbb, Wbb, ttbar
- Multivariate analysis:
 - Use lepton and jet kinematics, b-tagging and MET information, m(jj)
 - Use 3 "staggered" BDT, trained against ttbar, W/Z+jets, and all background

Observed significance of 6.3σ (exp. 5.9σ)

$$pp$$
→WZ
 $σ = 30.7 \pm 9.3(stat.) \pm 7.1(syst.) \pm 4.1(theo.) \pm 1.0$
(lumi.) pb (MCFM 22.3 ± 1.1 pb)

pp
$$\rightarrow$$
ZZ
 σ = 6.5 ± 1.7(stat.) ± 1.0(syst.) ± 0.9(theo.) ± 0.2
(lumi.) pb (MCFM 7.7 ± 0.6 pb)

Main systematic from background estimation and theory

Anomalous Triple Gauge Couplings (aTGC)

- No neutral TGCs at tree level in SM
- New Physics shows up through <u>virtual</u> effects: modification to TGCs wrt to SM
 - Increase of cross section at high invariant mass and high transverse momentum!
- Results based on effective lagrangian approach
 - The expected number of signal events can be written as a function of the SM cross section plus some aTGC parameters
 - Additional constraints can be imposed to reduce the number of parameters, i.e. charged couplings use "LEP parametrization"

> No form factors used				
coupling	parameters	channel		
$WW\gamma$	λ_{γ} , $\Delta \kappa_{\gamma}$	WW, W γ	Charged	
WWZ	λ_Z , $\Delta \kappa_Z$, Δg_1^Z	WW, WZ	couplins	
$ZZ\gamma$	h_3^Z, h_4^Z	$Z\gamma$		
$Z\gamma\gamma$	$h_{f 3}^{\gamma}, h_{f 4}^{\gamma}$	$Z\gamma$	Neutral	
$Z\gamma Z$	f_{40}^{Z}, f_{50}^{Z}	ZZ	couplins	
ZZZ	$f_{40}^{\gamma}, f_{50}^{\gamma}$	ZZ	-	

ZZ → 4l aTGC searches

- SMP-13-005, 19.6fb-1 at 8 TeV
- Search for anomalous vertices ZZγ and ZZZ
- Search performed for looking excess in data at high ZZ invariant mass
- Results improved 7 TeV results by a factor ~2.5

ZZ-212v aTGC searches

- SMP-12-016, 4.9fb-1 at 7 TeV and 19.6fb-1 at 8 TeV
- Search for anomalous vertices ZZγ and ZZZ
- Search performed for looking excess in data using Z p_T
- Results with ZZ(2l2v) are ~25% better than ZZ(4l) results

Triboson and quartic gauge coupling

- No neutral QGCs in the SM
- Quartic couplings are accessible via triboson and vector boson scattering
 - aQGC parametrized with effective field theory approach: associated to dimension 6 a₀^W,a_C^W,k₀^W,k_C^W,f_{T,0} or dimension 8 f_{M,i} effective operators
- First measurement of aQGC at LHC done with CMS: $pp \rightarrow p^{(*)}\gamma\gamma \ p^{(*)}\rightarrow p^{(*)}WW \ p^{(*)}$ analysis

JHEP 1307 (2013) 116

Sensitivity exceeds LEP experiments!

WVy with semi-leptonic decay

- SMP-13-009, 19.3fb-1 at 8 TeV
- Search triboson WW
 γ and WZ
 γ production in the final state: Iv+jj+γ
- Main backgrounds from W_γ+jets (normalized in data M_{jj} sideband), fake photons (invert photon isolation)
- Measured inclusive cross section at 8 TeV is < 3.4 x
 SM@NLO at 95% CL: will have the sensitivity at 14 TeV.

Set limit on aQGC using photon pT

WVy with semi-leptonic decay

- Set limits aQGC modeled with Effective Field Theory
- WWyy and WWZy vertices are tested
 - Limits on a₀^W, a_C^W are 4x better with γγ→WW than with VWγ
 - First ever limits on f_{T,0} and k₀^W,k_c^W

Limits set w/o form-factors

Selected EWK results

- EWK physics plays a significant role in understanding the EWSB
- W and Z decays are special final states:
 - They are used to understand and calibrate the detector response (trigger, identification, resolution, efficiencies)
 - They are dominant signal and/or background in many searches for new particles
 - Provide powerful constraints for nonperturbative part (PDFs, tunes)

EWK Z production

- FSQ-12-035, 19.7 fb-1 at 8 TeV
- Electroweak production cross section of a Z-boson with two foward/backward jets in the di-lepton Z decay channels (µ,e)
- Dominant background from standard DY production
- Small S/B enhanced with BDT selection exploiting all Z+2jet kinematics
- Probe Triple gauge coupling: WWZ

5 sigma signal for electroweak Z+jet production observed, fully consistent with SM

$$\sigma(\mu\mu + ee) = 226 \pm 26 \text{ (stat.)} \pm 35 \text{ (syst.)} \pm 27 \text{ (th.)} \pm 3 \text{ (lum.)fb}$$

$$VBFNLO = 239 fb$$

Main systematic from theory and JER

Muon charge asymmetry

- arXiv:1312.6283, 4.7fb-1 at 7 TeV
- Measurement of W muon charge asymmetry vs |η|:
 - performed by fitting MET templates in bins of muon η
- Backgrounds: estimated from MC after data/MC correction
- Measured to ~1%. Many uncertainties cancel in ratio.
- Sensitive to parton density functions in the proton: constrains u/d PDF ratio
- The experimental uncertainties are smaller than the current PDF uncertainties
- It can be used to significantly improve the determination of PDFs in future fits.

$$\mathcal{A}(\eta) = \frac{\frac{\mathrm{d}\sigma}{\mathrm{d}\eta}(W^+ \to \ell^+\nu) - \frac{\mathrm{d}\sigma}{\mathrm{d}\eta}(W^- \to \ell^-\overline{\nu})}{\frac{\mathrm{d}\sigma}{\mathrm{d}\eta}(W^+ \to \ell^+\nu) + \frac{\mathrm{d}\sigma}{\mathrm{d}\eta}(W^- \to \ell^-\overline{\nu})}$$

V+jets cross sections

- W+bb cross section, arXiv:1312.6608, 5.0 fb-1 at 7 TeV
- Z+b jets cross section, arXiv:1402.1521, 5.0 fb-1 at 7 TeV
- W+c cross section, arXiv:1310.1138, 5.0 fb-1 at 7 TeV
 - Leading order W+c directly probes strange quark PDF
 - Measurement of inclusive and differential cross section in the W→Iv channel
 - c-jet identified by D-Meson/semi- leptonic decays

PDF constraints

- CMS have carried out a NLO QCD analysis to explore PDF constraints
- Use HERA inclusive deep inelastic scattering (DIS), CMS W asymmetry & CMS W+c data
 - The muon charge asymmetry in W-boson production imposes strong constraints on the valence-quark distributions
 - the W+charm process is directly sensitive to the strange-quark distribution

> Valence quark distributions

CMS NLO 13 parameter fit

Notice that $xd_{\nu}(x)$ is <u>reduced</u>.

Summary

- Impressive amount of EWK results from the LHC
 - Precise test of the Standard Model at TeV scale
 - Agreement with theory across orders of magnitude
 - Starting to set serious constraints on PDFs

- The LHC is now the leading laboratory for exploring the gauge boson self-interactions.
- Limits set on anomalous triple/quartic gauge couplings.
 - No evidence for new physics yet
- Still analysis to be updated with the full 8TeV data
 - More results with improved precision expected soon, stay tuned!

Backup material

Gauge Self-Couplings in the EWK sector

 SU(2)xU(1) symmetry leads to several gauge bosons selfinteractions in the electroweak sector of the SM, following fromthe Gauge coupling interaction term in the EWK lagrangian:

$$\mathcal{L}_{GC} = \frac{1}{2} g_2 (\partial_\mu W^i_\nu - \partial_\nu W^i_\mu) \varepsilon_{ijk} W^{j\mu} W^{k\nu} - \frac{1}{4} g_2^2 \varepsilon_{ijk} \varepsilon_{imn} W^j_\mu W^k_\nu W^{m\mu} W^{n\nu}$$

Cross section measurements

- Determined from MC wrt to target measurement phase space (inclusive or reduced)
- Correction factor applied to account for data/MC efficiency differences

aTGC parameterizations

Charged couplings: WWV (V=Z,γ)

$$L/g_{WWV} = ig_1^V (W_{\mu\nu}^* W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu}) + i\kappa^V W_{\mu}^* W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{M_W^2} W_{\rho\mu}^* W_{\nu}^{\mu} V^{\nu\rho}$$

- **O** 5 parameters: $\Delta g_1^Z (=g_1^Z 1), \Delta K_Z (=K_Z 1), \Delta K_Y (=K_Y 1, \lambda_Z, \lambda_Y)$
- O Additional constraints may be imposed: used in CMS measurements

LEP scenario	$\Delta \kappa_Z = \Delta g_1^Z - \Delta \kappa_\gamma \cdot tan^2 \theta_w \text{ and } \lambda_Z = \lambda_\gamma = \lambda$	3 free parameters
HISZ scenario	$\Delta \kappa_z = \Delta g_{1^z} (\cos^2 \theta_w - \sin^2 \theta_w),$ $\Delta \kappa_z = 2\Delta g_{1^z} \cos^2 \theta_w \text{ and } \lambda_z = \lambda_z$	2 free parameters
Equal coupling scenario	$\Delta g_1^Z = \Delta g_1^{\gamma} = 0$ $\Delta \kappa_Z = \Delta \kappa_{\gamma} \text{ and } \lambda_Z = \lambda_{\gamma} = \lambda$	2 free parameters

Neutral couplings: ZZV (V=Z,γ)

$$L = -\frac{e}{M_Z^2} [f_4^V(\partial_\mu V^{\mu\beta}) Z_\alpha (\partial^\alpha Z_\beta) + f_5^V(\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta]$$

O 4 parameters: f_4^Z , f_4^γ , f_5^Z , f_5^γ

aQGC parameterizations

 Effective lagrangians parameterize low energy effects of BSM physics:

$$L = L_{SM} + \sum_{d} \sum_{i} \frac{c_{i}^{(d)}}{\Lambda^{d-4}} O_{i}^{(d)}$$

- Different realizations for quartic interactions:
- Nonlinear realization of SU(2)_LxU(1):
 - lowest order genuine quartic interaction: dimension 6
- Linear realization:
 - lowest order genuine quartic interaction: dimension 8

Other aTGC summary

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

- TGCs consistent with the SM
- 8 TeV data not included yet on these results

Muon charge asymmetry

SMP-12-021

- Correcting residual data/MC difference of tracker misalignment and magnetic field map
- Dimuon mass scale corrected as a function of muon charge, η, Φ

Muon charge asymmetry

SMP-12-021

- Missing transverse energy (MET) corrected using hadronic recoil in Z→µµ events
- Z/Drell-Yan "MET"
 and "MET φ"
 precisely recovered
 after data/MC
 corrections of recoil
 model

W+bb cross section

- arXiv:1312.6608, 5.0 fb-1 at 7 TeV
- Exclusive W + 2 central b-jets cross section measured
- Complementary phase space wrt W+b
- Analysis double tags events to remove W+c and constrains top contribution from high jet multiplicity region
- Major background to H→bb analysis
- Measurement is in agreement with the MCFM prediction within uncertainties

σ(W+bb)

Data (CMS) 0.53 ± 0.05 (stat) ± 0.1 (sys) pb

MCFM (MSTW08NNLO) 0.52 ± 0.03 pb

Z+ b jets cross sections

- arXiv:1402.1521, 5.0 fb-1 at 7 TeV
- Measurement of the production cross sections for a Z boson and one or more b jets
 - b-tagged Jets with p_T>25 GeV, |η|<2.4 in Z events
- Most important kinematical observables compared to ME+PS generator (MadGraph), in both the 4F and 5F schemes

Cross section	μμ	ee
σ_{Z+1b} (pb)	$3.52 \pm 0.03 \pm 0.22$	$3.51 \pm 0.04 \pm 0.23$
σ_{Z+2b} (pb)	$0.38 \pm 0.02 \pm 0.07$	$0.32 \pm 0.02 \pm 0.06$
σ_{Z+b} (pb)	$3.91 \pm 0.04 \pm 0.23$	$3.84 \pm 0.04 \pm 0.24$
$\sigma_{Z+b/Z+j}$ (%)	$5.23 \pm 0.04 \pm 0.24$	$5.08 \pm 0.05 \pm 0.24$

- Z + bb cross section 10% higher than treelevel prediction by Madgraph 5F rescaled by k = 1.23
- Some tensions in the description of the event dynamics