Top quark production with the ATLAS detector at LHC

Les Rencontres de Physique de la Vallée d'Aoste LaThuile /23rd February-1st March 2014

Francesco Spanò

ROYAL HOLLOWAY UNIVERSITY ATLAS EXPERIMENT http://atlas.ch

LHC & ATLAS

 Single top production

(On behalf of the ATLAS collaboration)

francesco.spano@cern.ch

francesco.spano@cern.ch

Top quark production @ ATLAS

francesco.spano@cern.ch

5

Inclusive $\sigma_{t\bar{t}}$: dilepton - $\sqrt{s} = 8 \text{ TeV}$

- Require opposite sign (OS) eµ
- Bkg: single top (Wt) (from simul.), data-driven fake leptons (extrapol. from same sign lep. sample), Z+jets (extrapol. from Z→μμ sample)

$$N_{1} = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_{b}(1 - C_{b}\epsilon_{b}) + N_{1}^{bkg}$$
$$N_{2} = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_{b}\epsilon_{b}^{2} + N_{2}^{bkg}$$

• **"External" Syst dominated:** *Lumi* ~3.1%, *E_b*~1.7%, *tt modelling* ~1.5% *Elec. ID/isol* ~1.4%

 $\sigma_{t\bar{t}} = 237.7 \pm 1.7 \text{ (stat)} \pm 7.4 \text{ (syst)} \pm 7.4 \text{ (lumi)} \pm 4.0 \text{ (beam energy) pb}$

 $\delta\sigma_{t\bar{t}}/\sigma_{t\bar{t}} \sim 4.8\%$

Top quark production @ ATLAS

Inclusive $\sigma_{t\bar{t}}$ - Summary at $\sqrt{s} = 7 \& 8 \text{ TeV}$

 $\sigma_{t\bar{t}} = 173.3 \pm 2.3 \text{ (stat.)} \pm 7.6 \text{ (syst.)} \pm 6.3 \text{ (lumi.) pb} \qquad \frac{\text{ATLAS-CONF-2012-134}}{\text{CMS-PAS-TOP-12-003}}$

 $\delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} \sim 5.8\%$

Systematics dominated, comparable to theory uncertainty

francesco.spano@cern.ch

Top quark production @ ATLAS

Differential $d\sigma_{t\bar{t}}/dX$: I+jets $\sqrt{s} = 7$ TeV qqℓvbb

ATLAS-CONF-2013-099

- 1 isol. (e, μ), symmetric E_T and m_T^W cuts, \geq 4 central jets, \geq 1 b-tag
- Data-driven W+jets (normalize pre-tag with W+/Wasymmetry, extrapol. b-tag prob from 2-jet-bin) fake lep. (loose/tight matrix method), single top, dibosons (from sim.)
- Reconstruct tt with kinematic likel. fit $(m_t, m_W \text{ constraint}) \rightarrow \text{cut on quality of kine fit}$
- Unfold d(N-N_{bkg})/dX to full phase space (regularized unfolding, linearity tests), scale with L and $\sigma_{t\bar{t}} \rightarrow 1/\sigma_{t\bar{t}} d\sigma_{t\bar{t}}/dX$

- Combine (e,µ)+jets channels with minimal covariance estimator (BLUE) including correlations
 - Propagate syst uncertainties through unfolding: modify migration matrix & acceptances, fix data

Differential $d\sigma_{t\bar{t}}/dX$: I+jets $\sqrt{s} = 7$ TeV

$\int Ldt = 4.7 \, \text{fb}^{-1} \, (2011)$

• Syst dominated: <7% for $y_{t\bar{t}}$, 10-20% $p_{\tau,t\bar{t}}$, 2% to 11% for $p_{\tau,top}$, 3% to 6% $m_{t\bar{t}}$,

Inclusive σ_t , $\sigma_t \& \sigma_{\bar{t}}$: t-chan $\sqrt{s} = 7$ TeV

- 1 isol. lep (e or μ), 2 or 3 jets with |η|<4.5, E^{miss} cut, large m_T(W)*→ fake lep. veto, 1 b-tag
- Bkg: simulated tt/Wt/s-chan, W/Z+jets, data-driven fake lep (el-like jet template normalized with E^{miss} fit)

Phys. Lett B 717(2012) 330

 $\int Ldt = 1.04 \, \text{fb}^{-1} (2011)$

ATLAS-CONF-2012-056

11

 Extract σ_{t, total} by binned max. likelihood fit of standard Neural Network distribution to data in 2-& 3-jet bins (12 and 18 kin. vars: jet-lep masses, jet y, E_T)

syst dominated
I/FSR~9%,
JES~7%, *b-tag*

$$|V_{tb}| = 1.13^{+0.14}_{-0.13}$$

$$\delta \sigma_t / \sigma_t \sim 24\%$$

$$|V_{tb}| = 1.13^{+0.14}_{-0.13}$$

$$|V_{tb}| = 1.13^{+0.14}_{-0.13}$$

$$V_{tb} = 1.13^{+0.14}_{-0.13}$$

$$V_{tb} = 1.13^{+0.14}_{-0.13}$$

syst dominated JES~16%, $\sigma_t(t) = 53.2 \pm 1.7 \text{ (stat.)} \pm 10.6 \text{ (syst.) pb}$ b-tag, generator $\sigma_t(\bar{t}) = 29.5 \pm 1.5 \text{ (stat.)} \pm 7.3 \text{ (syst.) pb}$

 $\delta \sigma t / \sigma t$ $\sim 25\%$ ATLAS Preliminary $\int L dt = 4.7 \text{ fb}^{-1} \text{ /s} = 7 \text{ TeV}$ data t - channel (top) s - channel (top) t - channel (top) s - channel (top) t - channel (top) s - channel (top) t - channel (top)t - channel (t

francesco.spano@cern.ch

Top quark production @ ATLAS

LaThuile 2014 26th February 2014

Top guark production @ ATLAS

0.6

0.4

LaThuile 2014

2

data

t-channel

W+light jets

tt.Wt.s-channel W+heavy flavour

Z+jets, diboson QCD multijet

ZZZ QCD + MC stat unc.

0.8

NN output

2.1

22

Inclusive σ_t - Summary at $\sqrt{s} = 7 \& 8 \text{ TeV}$

• First ATLAS + CMS combination at $\sqrt{s} = 8$ TeV !

 $\sigma_{\text{t-ch.}} = 85 \pm 4 \,(\text{stat.}) \pm 11 \,(\text{syst.}) \pm 3 \,(\text{lumi.}) \,\text{pb}$ $\int \mathcal{L} dt = 5.8 \,(5.0) \,\text{fb}^{-1} \,(2012)$

ATLAS-CONF-2013-098 CMS-PAS-TOP-12-002

francesco.spano@cern.ch

Top quark production @ ATLAS

Conclusions & Outlook

- Top quark physics analysis is in full swing thanks to the combined performance of LHC & detectors: a very rich program is well under way.
- By exploiting the LHC top quark factory **ATLAS** is testing top quark strong and electroweak inclusive production at unprecedented precisions
 - δσ_{tī}/σ_{tī} down to 4.8% compared to ~4% prediction uncertainty (NNLO+NNLL)
 - δσt/σt ~19% to 25% for t and Wt channel: still space for improvement and for s-channel observation
- Differential cross sections measurements test SM tt production and complement new physics searches in completely new phase space with 10%-20%% relative uncertainties.
- Stay tuned for more upcoming inclusive and differential results from RUN1!
- Look forward to Run 2 @ \sqrt{s} =13 TeV: uncharted kinematic phase space to be explored with ~factor 3 enhanced cross section
 - higher precision inclusive, exclusive ($t\bar{t}+X$) and differential cross section
 - fiducial measurements

francesco.spano@cern.ch

francesco.spano@cern.ch

Top quark production @ ATLAS

LaThuile 2014

26th February 2014 16

ollisions at LHC

Proton-Proton 2835 bunch/beam Protons/bunch $10^{10} 1 N_2 n_b$ Beam energy \propto 7 TeV (7x10¹² eV) $E_{cm}(Tev nit(sity) = 1, 90\% cme(s^{1/2})$

Selection of 1 in 10,000,000,000,000

 peak instantaneous luminosity:2.1 10³² cm⁻²s⁻¹

 delivered integrated luminosity~50 pb⁻¹ C : a Top producer ty proton bunches colliding at center of mass r √s) = 7 TeV in 27 Km tunnel

design: Ecm=14TeV, lumi 10³⁴cm⁻² s⁻¹ (~30 times Tevatron pp collider) RUN2 (start) 2015 Ecm = 13 IeV at start (14 to be decided later) peak lumi: 1.6 · 10³⁴ cm⁻² s⁻¹ ± 20% (Ldt -40-45 fb⁻¹ /exp per year RUN1

2012 E_{cm} =8 TeV peak lumi: 7.7 · 10³³ cm [Ldt -22 fb⁻¹ /exp

2011 E_{cm} =7 TeV peak lumi 2.10³³ cm⁻² s

[Ldt ~5.6 fb⁻¹/exp

 $N_{events}(\Delta t) = \int Ldt * cross section$

francesco.spano@cern.ch

Top quark production @ ATLAS

francesco.spano@cern.ch

Top quark production @ ATLAS

francesco.spano@cern.ch

Top quark production @ ATLAS

Backgrounds estimates (single lepton+jets)

Backgrounds (di-lepton)

- Fake leptons : generalized single lepton
 - Get probability for loose "fake" and real leptons to be in signal region ← control samples enriched with real (in Z window) or "fake" (low ET^{miss}) leptons
 - Combine with N(di-lep) for all loose/tight pairs→fake tight (i.e. signal) lep

ATLAS-CONF-2011-100

 Z/γ* bkg (ee, μμ) : scale non-Z/γ*-bkgsubtracted data in Z-mass window control region with ratio of N(Z/γ*) in signal region to control region from simul.

francesco.spano@cern.ch

Inclusive $\sigma_{t\bar{t}}$ - LHC at $\sqrt{s} = 7$ TeV

francesco.spano@cern.ch

Top quark production @ ATLAS

Inclusive $\sigma_{t\bar{t}}$ vs \sqrt{s} : from Tevatron to LHC

Inclusive tt cross section [pb]

Overall good agreement with predictions

francesco.spano@cern.ch

Top quark production @ ATLAS

Inclusive $\sigma_{tt+heavy flavour}$:dilepton - $\sqrt{s} = \text{TeV}^{\int Ldt} \sim 4.7 \text{ fb}^{-1}$ (2011)

Large sensitivity to fraction of tt+b+X Large uncertainty on fraction of tt+b+X

francesco.spano@cern.ch

Top quark production @ ATLAS

francesco.spano@cern.ch

LaThuile 2014

26th February 2014 27

Jet shapes in dilepton and ℓ +jets $\sqrt{s} = 7 \text{ TeV}$ [Lat = 1.8 fb⁻¹ (2011)

ATLAS $\sqrt{s} = 7 \text{ TeV}$

30 GeV < p_ < 40 Ge

0.05

@ NLO/Da

L dt = 1.8 fb

MC@NLO+Herwia

PowHeg+Pythia

MC@NLO+Herwig

PowHeg+Pythia

b-jets (R = 0.4)

light jets (R = 0.4)

A

✓ Data (stat ⊕ sys)

- standard bkg estimates
- **Define** isolated (no other jet within DR=0.8), JVF>0.75 **b-jets** & light jets (non-b-tagged jet pair with m(jj) closest to *m_W*) **samples**
- Correct dX/dr to fiducial phase space in five p_T bins (30 GeV to 150 GeV)

 $<\rho(\mathbf{r})> = 1/\Delta \mathbf{r} < \sum \mathbf{p}_{\mathsf{T}}$ (clusters in Δr)/ $\sum p_T$ (all clusters)>_{jets}

X= $\langle \Psi(\mathbf{r}) \rangle = \langle \sum p_T \rangle$ (clusters **up to r**)/ $\sum p_T$ (all clusters)>_{jets}

• Syst dominated: JES (2 to 8%), cluster en. (2 to 10%), pile-up (2 to 10%)

francesco.spano@cern.ch

Top quark production @ ATLAS

R

Eur. Phys. J. C. (2013) 73:2676

jets larger t

and low p_T

ATLAS $|\sqrt{s} = 7 \text{ Te}$

0.2

Ψ (r)

in₆b- jets at b-jets

[⊥] dt**≠Ψ**(r)>

Data (stat 🕀 sy

MC@NLO+Her

PowHeg+Pythia

Data (stat

system) MC@NLO+Her

PowHeg+Pythia

light jets (R = 0.4)

Differential $dN_{t\bar{t}}/dN_{jets}$: I+jets $\sqrt{s} = 7$ TeV Unfolding and corrections

$$\vec{N}_{\text{part}} = \vec{f}_{\text{part!reco}} \cdot \mathbf{M}_{\text{part}}^{\text{reco}} \cdot \vec{f}_{\text{reco!part}} \cdot \vec{f}_{\text{accpt}} \cdot (\vec{N}_{\text{reco}} - \vec{f}_{\text{bgnd}})$$

ATLAS Week

Results: ATLAS & CMS (7 TeV, l+jets) – p_T(top)

- Powheg+Herwig describes ATLAS & CMS data reasonably well over the full p_{T} range
- p_τ(top) < 200 GeV: disagreement btw ATLAS & CMS</p>
 - CMS: softer spectrum in data, best described by Approx. NNLO
 - ATLAS: disagreement with Approx. NNLO
- CMS: Similar behaviour for dileptons, both at 7 & 8 TeV

TOPLHCWG, 28.11.13

session 28-29th Nov. 2013

16

francesco.spano@cern.ch

Top quark production @ ATLAS

Results: ATLAS & CMS (7 TeV, *l*+jets) – p_T(top) <u> </u>

First attempt at direct data comparison: data/NLO prediction (MCFM)

francesco.spano@cern.ch

Top quark production @ ATLAS

Inclusive σ_t : Wt-channel $-\sqrt{s} = 7$ TeV $\int Ldt = 2.05 \text{ fb}^{-1} (20)$

Phy.Lett. B 716 (2012) 142-159

- OS leptons (e or μ), ≥1 central high p_T jet, E_T^{miss}
 > 50 GeV, (ee/μμ) veto Z-lke (mass window), cut on ∑Δφ(lep, E_T^{miss}) ← veto Z→ττ
- Bkg: simulated $t\bar{t}$, diboson, data-driven $Z \rightarrow ee/\mu\mu$ (extrapol. low ($E_{\tau^{miss}}, M(\ell\ell)$) plane), $Z \rightarrow \tau\tau$ (extrapol from bkg region) fake dilept. (matrix method)
- Extract σ_{Wt} by simultaneous binned max. likelihood fit of Boosted Decision Tree outputs in 1-jet, 2-jet, ≥3-jet bin (22 kine. vars) constraining syst as nuisance pars

 $\sigma_{Wt} = 16.8 \pm 2.9 \text{ (stat)} \pm 4.9 \text{ (syst) pb}$

significance: 3.3 **s.d.**

δσwt/σwt ~34%

• **Syst dominated:** JES~16%, parton shower 15%, generator 10%

• Assuming $|V_{tb}| >> |V_{ts}|$, $|V_{td}|$ determine V_{tb} ← ratio of measured to predicted σ_t $|V_{tb}| = 1.03^{+0.16}_{-0.19}$

francesco.spano@cern.ch

Top quark production @ ATLAS

Inclusive σ_t : t-chan $\sqrt{s} = 7$ TeV

Phys. Lett B 717(2012) 330

- 1 isol. lep (e or μ), 2 or 3 jets with |η|<4.5, E^{miss} cut, large m_T(W)*→ fake lep. veto, 1 b-tag
- Bkg: simulated tt/Wt/s-chan, W/Z+jets, data-driven fake lep (electron-like jet template normalized with E^{miss} fit)
- Extract σ_t and bkg norm by binned max. likelihood fit of Neural Network (NN) distribution to data in 2- & 3-jet bins (12 and support 18 kin. vars: jet-lep masses, jet rapidities, E_T)

$$\sigma_t = 83 \pm 4 \,(\text{stat.})^{+20}_{-19} \,(\text{syst.}) \,\text{pb}: \, \delta\sigma_t/\sigma_t \sim 24\%$$

- Dominated by syst.(I/FSR~14%,,b-tag eff~13%JES~7%)
- Assuming |V_{tb}| >> |V_{ts}|, |V_{td}| determine V_{tb} ← ratio of measured to predicted σ_t

$$|V_{tb}| = 1.13^{+0.14}_{-0.13}$$

If $|V_{tb}| < 1$ $|V_{tb}| > 0.75$ at 95%CL

francesco.spano@cern.ch

Top quark production @ ATLAS

band from MC stat+fakes uncert.

*
$$m_{\rm T}(W) = \sqrt{2p_T(\ell)E_{\rm T}^{\rm miss}\left[1 - \cos\Delta\phi\left(\ell, E_{\rm T}^{\rm miss}\right)\right]}$$

33

LaThuile 2014 26th February 2014

Ratio of $\sigma_t / \sigma_{\bar{t}}$: t-chan $\sqrt{s} = 7$ TeV $\int Ldt = 4.7 \, \text{fb}^{-1} (2011)$

- 1 isol. lep (e or μ), 2 or 3 jets with $|\eta| < 4.5$, E_T^{miss} cut, large $m_T(W)^* \rightarrow$ fake lep. veto, 1 b-tag
- Bkg: simulated tt/Wt/s-chan, W/Z+jets, data-driven **fake lep** (electron-like jet template normalized with E_T^{miss} fit)
- **Extract** σ_t and σ_{anti-t} by binned max. likelihood fit of standard NN distribution to data in 2- & 3-jet bin with pos and neg lep (e,µ)

syst dominated JES~16%, b-tag,generator

Events

 $\delta \sigma_t / \sigma_t$ $\sigma_t(t) = 53.2 \pm 1.7 \text{ (stat.)} \pm 10.6 \text{ (syst.) pb}$ ~20% $\sigma_t(\bar{t}) = 29.5 \pm 1.5 \text{ (stat.)} \pm 7.3 \text{ (syst.) pb}$ ~25%

ATLAS-CONF-2012-056

Single top Combination @ 8 TeV ATLAS & CMS

Source	Uncertainty (pb)
Statistics	4.1
Luminosity	3.4
Simulation and modelling	7.7
Jets	4.5
Backgrounds	3.2
Detector modelling	5.5
Total systematics (excl. lumi)	11.0
Total systematics (incl. lumi)	11.5
Total uncertainty	12.2

ATLAS+CMS Preliminary, $\sqrt{s} = 8 \text{ TeV}$

francesco.spano@cern.ch

Top quark production @ ATLAS