On Measuring the Leptonic Forward-Backward Asymmetry at the Tevatron and Recent Results from CDF

Ziqing Hong
On Behalf of the CDF Collaboration

Les Rencontres de Physique de la Vallée d'Aoste 2014 February 26, 2014

- pp̄ collision at Tevatron (unique relative to pp collision at LHC)
- Charge asymmetry in $t\bar{t}$ production manifests as forward-backward asymmetry ($A_{\rm FB}$)
 - A unique way to look for new physics
- Measure rapidity difference between top and anti-top, Δy
- Define A_{FB} of $t\bar{t}$ production:

$$A_{\mathsf{FB}}^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

 Has been an exciting topic for years since early studies at CDF/D0

- Why do we care?
 - Prediction at NLO SM:

$$A_{\mathsf{FB}}^{t\bar{t}} = 0.088 \pm 0.006 \; (\mathsf{PRD} \; \mathbf{86}, 034026 \; (2012))$$

 Measured results from CDF and D0 in tension with SM prediction:

CDF:
$$A_{\mathsf{FB}}^{t\bar{t}} = 0.164 \pm 0.047 \; (\mathsf{PRD} \; \mathbf{87}, \, \mathsf{092002} \; (2013))$$

D0:
$$A_{FB}^{t\bar{t}} = 0.196 \pm 0.065 \text{ (PRD 84, } 112005 \text{ (2011))}$$

• $A_{\mathsf{FB}}^{t\bar{t}}$ vs. $m_{t\bar{t}}$ deviates from SM prediction

- How do we look for more evidence for or against new physics?
- Two more equally important observables with leptons
- Leptonic A_{FB}

•
$$A_{FB}^{I} = \frac{N(q_{I}\eta_{I}>0) - N(q_{I}\eta_{I}<0)}{N(q_{I}\eta_{I}>0) + N(q_{I}\eta_{I}<0)}$$

- Also lepton pair $A_{\rm FB}$ defined with lepton η difference, only in dilepton channel
- Why leptons?
 - Lepton angles precisely measured
 - NLO SM prediction:

$$A_{\rm FR}^{I} = 0.038 \pm 0.003$$

- Prediction with new physics?
- Based on CDF $A_{\rm FB}^{t\bar{t}}$ result (0.16 \pm 0.05): 0.070 < $A_{\rm FR}^{l}$ < 0.076
- New physics models in certain parameter space allow for large $A_{\rm FB}^{t\bar{t}}$ (like observed value), but very large range (positive or negative) of $A_{\rm FB}^I$
- Example: axigluon model (m = 200 GeV/c² and Γ = 50 GeV) \rightarrow $A_{FB}^{t\bar{t}}$ = 0.12; -0.06 < A_{FB}^{I} < 0.15 depending on handness of couplings (PRD **87**,034039 (2013))
- Independent measurements of $A_{\rm FB}^{t\bar{t}}$ and $A_{\rm FB}^{\prime}$ are crucial

New study of A'_{ER} Measurement Methodology

PRD 88 072003 (2013)

$$A'_{FB} = 0.094^{+0.032}_{-0.029}$$
 at CDF in lepton+jets

- 1.9σ larger than SM
- Measurement used

$$A_{\mathsf{FB}}^I(q_I\eta_I) = a \cdot \mathsf{tanh}\left(rac{1}{2}q_I\eta_I
ight)$$

Empirically determined function.

Need to know why it works

New study of A_{FB}^{I} Measurement Methodology

New Results with MC study:

 q_Iη_I distribution well described by double-Gaussian

• $A_{\rm FB}^I$ comes from shift in mean $\to A_{\rm FB}^I$ linearly related with mean

• Double-Gaussian does better job in modeling differential asymmetry in large $q_l\eta_l$ region

- Differential asymmetry still most sensitive way to determine total A^I_{FR}
 - Provides better effective measure of mean

- New way of looking at the data:
 Differential contribution to total A^I_{FB}
- What do we learn?
 - Asymmetry mostly from $|\eta| < 2.0$
 - Best detector coverages here
 - Shape of differential contribution very stable
 - Allows robust extrapolation to inclusive asymmetry
 - Turns out $a \cdot \tanh\left(\frac{1}{2}q_l\eta_l\right)$ is excellent for $|q_l\eta_l| < 2.5$

- More than good enough
- Now we know why!
- Moving forward with confidence

(Study to be submitted to PRD, manuscript in preparation, Z. Hong *et al*)

$A_{\rm FB}^{I}$ in dilepton

- New results from CDF with full dataset $(9.1~{\rm fb}^{-1})$
- Leptonic A_{FB} in dilepton events:
 - Two opposite charged leptons
 - At least two jets
 - ∉_T > 25 GeV
- Same methodology as measurement in lepton+jets used.

$$A_{\text{FB}}^{I} = 0.072 \pm 0.052 (\text{stat}) \pm 0.030 (\text{syst}) \\ = 0.072 \pm 0.060$$

Cf.
$$A_{FB}^{I}(SM,NLO) = 0.038 \pm 0.003$$

- Dominant uncertainty is statistical
- Result consistent with prediction of new physics from lepton+jets, but also consistent with SM

A_{FR}^{I} combination at CDF

- Combined A_{EB}^{I} measurements
- Result is 2σ larger than NLO SM prediction:

$$A_{\rm FB}^{I} = 0.090^{+0.028}_{-0.026}$$

 To be submitted to PRL soon.

- The A_{FB} of top quarks at Tevatron continue to be an exciting measurement, and the leptonic decays provide an important complementary handle
- ullet Better understanding of new methodology for measuring A_{FB}^I
- \bullet Combined $A_{\rm FB}^I$ measurement at CDF shows 2σ deviation with NLO SM
- Looking to the future for Tevatron combination of $A_{\rm FB}^{I}$ and $A_{\rm FB}^{II}$, as well as fully reconstructed $A_{\rm FB}^{t\bar{t}}$ in dilepton at CDF

Thank you for your attention and thanks to the organizers for their kind hospitality

Backup Slides

Backup slides

Comparison of A_{FB}^{I} among SM prediction and measurements at CDF and D0.

Source	A_{FB}^I	Description	Reference
Calculation	0.038±0.003	NLO SM	PRD 86 ,034026 (2012)
CDF	$0.094^{+0.032}_{-0.029}$	Lepton+jets	PRD 88 072003 (2013)
	0.072 ± 0.060	Dilepton	To be submitted
	$0.090^{+0.028}_{-0.026}$	Combination	to PRL soon
D0	$0.047^{+0.025}_{-0.027}$	Lepton+jets, $ q_I\eta_I <1.5$	D0 Note 6394-CONF
	0.044 ± 0.039	Dilepton	PRD 88 , 112002 (2013)

Lepton Pair Asymmetry

$$\bullet \quad A_{\mathsf{FB}}^{II} = \frac{N(\Delta \eta > 0) - N(\Delta \eta < 0)}{N(\Delta \eta > 0) + N(\Delta \eta < 0)}$$

- $\bullet \ \Delta \eta = \eta_{I^+} \eta_{I^-}.$
- Defined only in dilepton
- Measured A^{II}_{FB} using the same methodology.

$$A_{\rm FB}^{II} = 0.076 \pm 0.072 ({\rm stat}) \pm 0.037 ({\rm syst})$$

= 0.076 \pm 0.081

Cf.
$$A_{FB}^{II}(SM,NLO) = 0.048 \pm 0.004$$

- The ratio of $A_{\rm FB}^{t\bar{t}}/A_{\rm FB}^I$ observed to be consistent when $t\bar{t}$ produced unpolarized and decay like SM
- Based on CDF $A_{\rm FB}^{t\bar{t}}$ result (0.16 \pm 0.05), this yields prediction of 0.070 < $A_{\rm FB}^{I}$ < 0.076