On Measuring the Leptonic Forward-Backward Asymmetry at the Tevatron and Recent Results from CDF

Ziqing Hong
On Behalf of the CDF Collaboration

Les Rencontres de Physique de la Vallée d'Aoste 2014
February 26, 2014

- $p \bar{p}$ collision at Tevatron (unique relative to pp collision at LHC)
- Charge asymmetry in $t \bar{t}$ production manifests as forward-backward asymmetry (A_{FB})
- A unique way to look for new physics
- Measure rapidity difference between top and anti-top, Δy
- Define A_{FB} of $t \bar{t}$ production:

$$
A_{\mathrm{FB}}^{t \bar{t}}=\frac{N(\Delta y>0)-N(\Delta y<0)}{N(\Delta y>0)+N(\Delta y<0)}
$$

- Has been an exciting topic for years since early studies at CDF/D0
- Why do we care?
- Prediction at NLO SM:

$$
A_{\mathrm{FB}}^{t_{t}}=0.088 \pm 0.006(\mathrm{PRD} 86,034026(2012))
$$

- Measured results from CDF and D0 in tension with SM prediction:

CDF: $A_{\text {FB }}^{t \bar{t}}=0.164 \pm 0.047$ (PRD 87, 092002 (2013))
D0: $A_{\text {FB }}^{t \bar{t}}=0.196 \pm 0.065$ (PRD 84, 112005 (2011))

- $A_{\mathrm{FB}}^{t \bar{t}}$ vs. $m_{t \bar{t}}$ deviates from SM prediction

- How do we look for more evidence for or against new physics?
- Two more equally important observables with leptons
- Leptonic $A_{\text {FB }}$
- $A_{\mathrm{FB}}^{\prime}=\frac{N\left(q_{l} \eta_{l}>0\right)-N\left(q_{1} \eta_{l}<0\right)}{N\left(q_{1} \eta_{l}>0\right)+N\left(q_{l} \eta_{l}<0\right)}$
- Also lepton pair $A_{\text {FB }}$ defined with lepton η difference, only in dilepton channel

- Why leptons?
- Lepton angles precisely measured
- NLO SM prediction:

$$
A_{F B}^{\prime}=0.038 \pm 0.003
$$

- Prediction with new physics?
- Based on CDF $A_{F B}^{t \bar{t}}$ result (0.16 ± 0.05): $0.070<A_{\text {FB }}^{\prime}<0.076$
- New physics models in certain parameter space allow for large $A_{\text {FB }}^{t \bar{t}}$ (like observed value), but very large range (positive or negative) of A_{FB}^{\prime}
- Example: axigluon model ($\mathrm{m}=200 \mathrm{GeV} / \mathrm{c}^{2}$ and $\Gamma=50 \mathrm{GeV}$) $\rightarrow A_{\text {FB }}^{t \bar{t}}=0.12 ;-0.06<A_{\mathrm{FB}}^{\prime}<0.15$
 depending on handness of couplings (PRD 87,034039 (2013))
- Independent measurements of $A_{F B}^{t \bar{\tau}}$ and $A_{\text {FB }}^{\prime}$ are crucial

New study of $A_{\text {FB }}^{\prime}$ Measurement Methodology

- $A_{\text {FB }}^{\prime}=0.094_{-0.029}^{+0.032}$
- 1.9σ larger than SM
- Measurement used

$$
A_{\mathrm{FB}}^{\prime}\left(q_{l} \eta_{l}\right)=a \cdot \tanh \left(\frac{1}{2} q_{l} \eta_{l}\right)
$$

- Empirically determined function.
Need to know why it works

PRD 88072003 (2013)

New study of $A_{\text {FB }}^{\prime}$ Measurement Methodology

New Results with MC study:

- $q_{l} \eta_{\prime}$ distribution well described by double-Gaussian

- $A_{\text {FB }}^{\prime}$ comes from shift in mean $\rightarrow A_{\text {FB }}^{\prime}$ linearly related with mean

- Double-Gaussian does better job in modeling differential asymmetry in large $q_{I} \eta_{I}$ region

- Differential asymmetry still most sensitive way to determine total $A_{\text {FB }}^{\prime}$
- Provides better effective measure of mean
- New way of looking at the data: Differential contribution to total $A_{\text {FB }}^{\prime}$
- What do we learn?
- Asymmetry mostly from $|\eta|<2.0$
- Best detector coverages here
- Shape of differential contribution very stable
- Allows robust extrapolation to inclusive asymmetry
- Turns out $a \cdot \tanh \left(\frac{1}{2} q_{l} \eta_{l}\right)$ is excellent for $\left|q_{I} \eta_{I}\right|<2.5$

- More than good enough
- Now we know why!
- Moving forward with confidence
(Study to be submitted to PRD, manuscript in preparation, Z. Hong et al)
- New results from CDF with full dataset $\left(9.1 \mathrm{fb}^{-1}\right)$
- Leptonic $A_{\text {FB }}$ in dilepton events:
- Two opposite charged leptons
- At least two jets
- \# $T_{T}>25 \mathrm{GeV}$
- Same methodology as measurement in lepton+jets used.
$A_{\text {FB }}^{\prime}=0.072 \pm 0.052($ stat $) \pm 0.030$ (syst) $=0.072 \pm 0.060$
Cf. $A_{\mathrm{FB}}^{\prime}(\mathrm{SM}, \mathrm{NLO})=0.038 \pm 0.003$
- Dominant uncertainty is statistical
- Result consistent with prediction of new physics from lepton+jets, but also consistent with SM
- Combined $A_{\text {FB }}^{l}$ measurements
- Result is 2σ larger than NLO SM prediction:

$$
A_{\mathrm{FB}}^{\prime}=0.090_{-0.026}^{+0.028}
$$

- To be submitted to PRL soon.

- The $A_{\text {FB }}$ of top quarks at Tevatron continue to be an exciting measurement, and the leptonic decays provide an important complementary handle
- Better understanding of new methodology for measuring $A_{\text {FB }}^{l}$
- Combined $A_{\text {FB }}^{\prime}$ measurement at CDF shows 2σ deviation with NLO SM
- Looking to the future for Tevatron combination of $A_{\text {FB }}^{\prime}$ and $A_{\mathrm{FB}}^{\prime \prime}$, as well as fully reconstructed $A_{\mathrm{FB}}^{t \bar{t}}$ in dilepton at CDF

Thank you for your attention and thanks to the organizers for their kind hospitality

Backup Slides

Backup slides

Backup Slides

Comparison of A_{FB}^{\prime} among SM prediction and measurements at CDF and D0.

Source	$A_{\text {FB }}^{\prime}$	Description	Reference
Calculation	0.038 ± 0.003	NLO SM	PRD 86,034026 (2012)
CDF	$0.094_{-0.029}^{+0.032}$	Lepton+jets	PRD 88 072003 (2013)
	0.072 ± 0.060	Dilepton	To be submitted
	$0.090_{-0.026}^{+0.028}$	Combination	to PRL soon
D0	$0.047_{-0.027}^{+0.025}$	Lepton + jets, $\left\|q_{l} \eta_{l}\right\|<1.5$	D0 Note 6394-CONF
	0.044 ± 0.039	Dilepton	PRD 88, 112002 (2013)

Lepton Pair Asymmetry

- $A_{\text {FB }}^{\prime \prime}=\frac{N(\Delta \eta>0)-N(\Delta \eta<0)}{N(\Delta \eta>0)+N(\Delta \eta<0)}$
- $\Delta \eta=\eta_{I^{+}}-\eta_{I^{-}}$.
- Defined only in dilepton
- Measured $A_{\text {FB }}^{I I}$ using the same methodology.
$A_{\text {FB }}^{\prime \prime}=0.076 \pm 0.072$ (stat) ± 0.037 (syst)

$$
=0.076 \pm 0.081
$$

Cf. $A_{\mathrm{FB}}^{\|}(\mathrm{SM}, \mathrm{NLO})=0.048 \pm 0.004$

- The ratio of $A_{F B}^{t \bar{t}} / A_{\mathrm{FB}}^{\prime}$ observed to be consistent when $t \bar{t}$ produced unpolarized and decay like SM
- Based on CDF $A_{F B}^{t \bar{t}}$ result (0.16 ± 0.05), this yields prediction of $0.070<A_{\text {FB }}^{\prime}<0.076$

