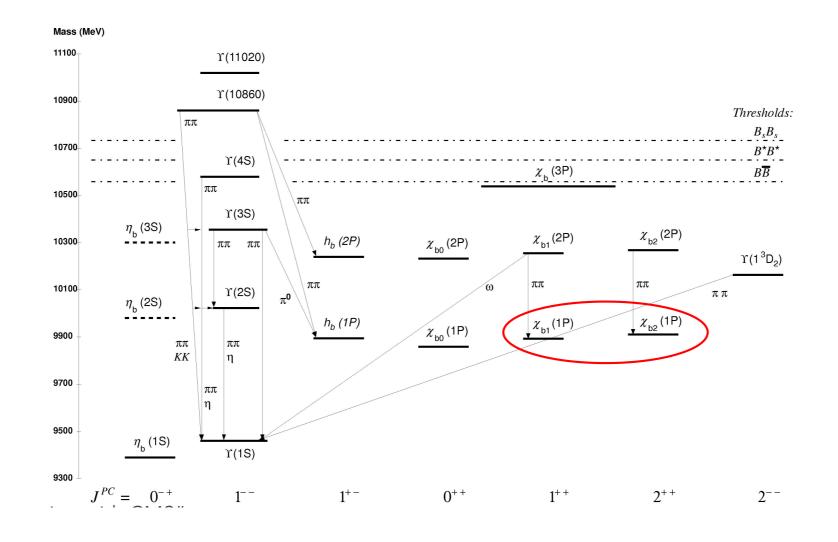


Heavy Flavor and Spectroscopy in CMS

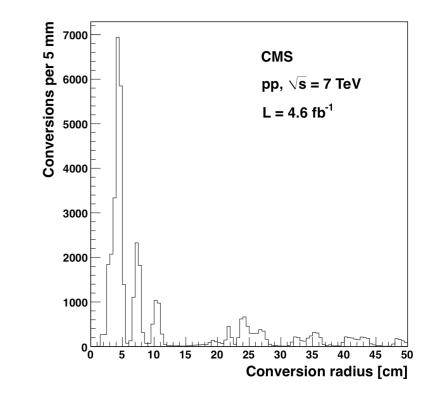
LES RENCONTRES DE PHYSIQUE DE LA VALLÉE D'AOSTE

Sara Fiorendi on behalf of the CMS Collaboration Feb 25th, 2014

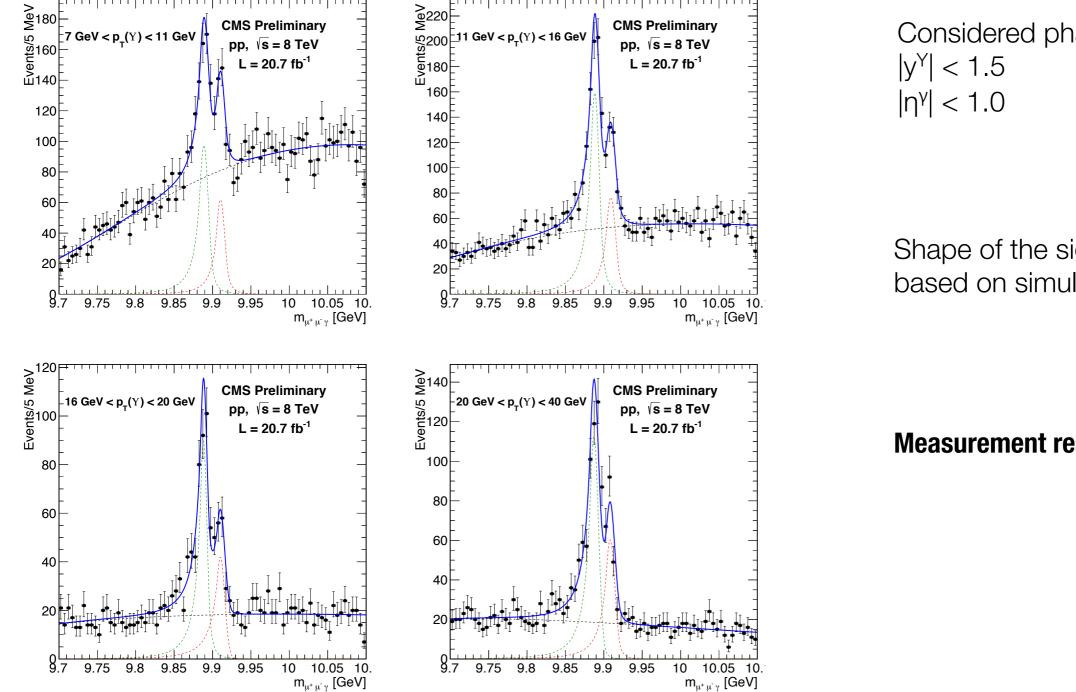

Introduction

- Measurement of heavy flavor production is essential to test QCD models
 - b-hadron properties provide important tests of the SM → any deviation would be indirect indication of New Physics
 - plenty of heavy hadrons produced at hadron colliders → chance to study still not well-known particles
 - knowledge of b-flavored background needed by New Physics studies
- Discovery of new exotic states can help understanding hadron formation
- **Outline** of the talk
 - measurement of the χ_{b2} over χ_{b1} cross-section ratio
 - measurement of $B_c \rightarrow J/\psi \pi^{\pm} \pi^{\mp} \pi^{\mp}$ and $B_c \rightarrow J/\psi \pi^{\pm}$ branching fractions
 - observation of peaking structures in the J/ $\psi \phi$ mass spectrum in B decays
 - search for a new bottomonium state decaying to Y(1S) $\pi^+\pi^-$

Measurement of the χ_{b2} over χ_{b1} cross-section ratio


https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH13005

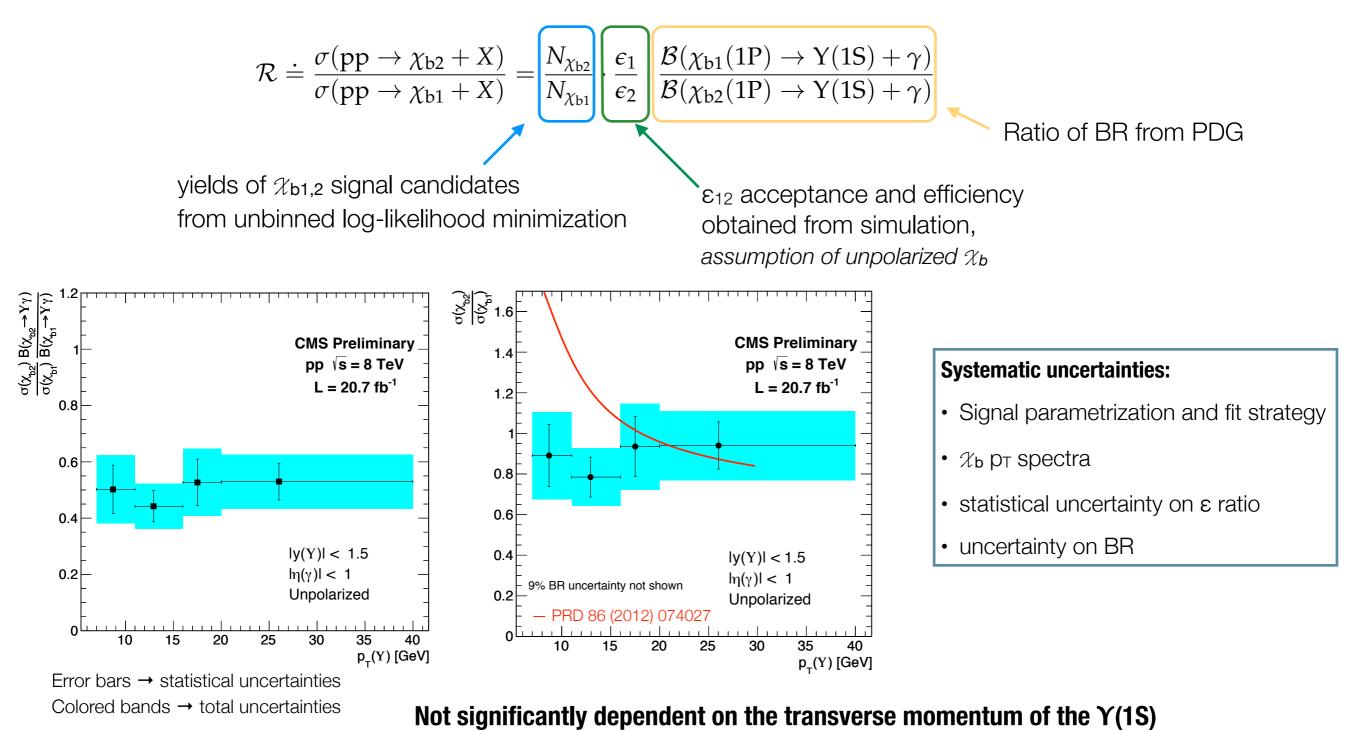
- Measurements of cross sections and feed-down fractions of P-wave quarkonia are crucial to understand quarkonium production
- Relative production cross-section ratios of P-waves are by themselves interesting tests of (NR)QCD


\mathcal{X}_{b} reconstruction in CMS

- CMS already performed the measurement of \mathcal{X}_{c} cross section ratio Eur. Phys. J. C72 (2012) 2251
- Same measurement in the \mathcal{X}_{b} sector with 2012 data (~20 fb⁻¹)
 - most theoretical and experimental uncertainties cancel out in the ratio
- P-wave quarkonia can be detected via the radiative decay
 - $\mathcal{X}_{c1,2} \rightarrow J/\psi \gamma$
 - $\mathcal{X}_{b1,2}(nP) \rightarrow Y(nS) \gamma$
- Very challenging because of the small difference between χ_{b1} and χ_{b2} masses (19.4 MeV) and of their small production cross section
 - Photon calorimetric measurement \rightarrow not sufficient invariant mass resolution to separate the two states
 - Good photon energy and mass resolution obtained from the reconstruction of photon conversions in the silicon tracker

The $\chi_{b1,2}$ signals

 $\chi_{b1,2}$ signals are measured in four bins of Y(1S) transverse momentum in the range 7-40 GeV



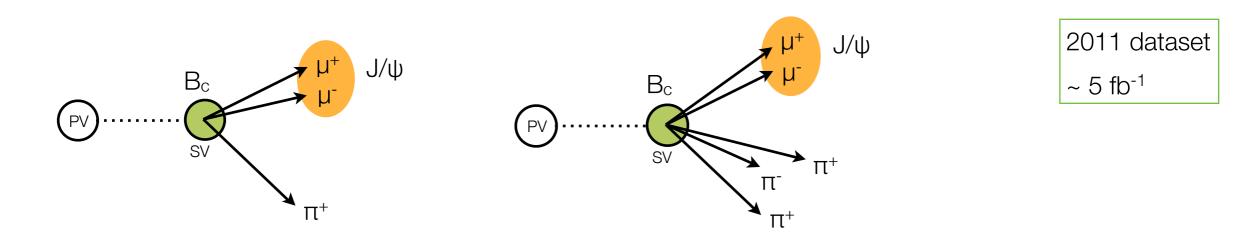
Considered phase space:

Shape of the signal peaks based on simulation studies

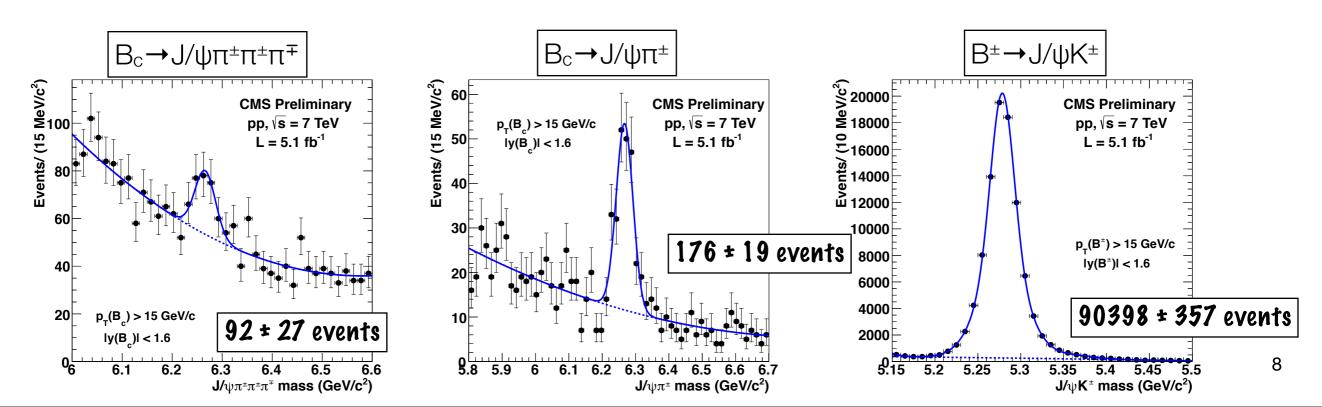
Measurement resolution ~5 MeV

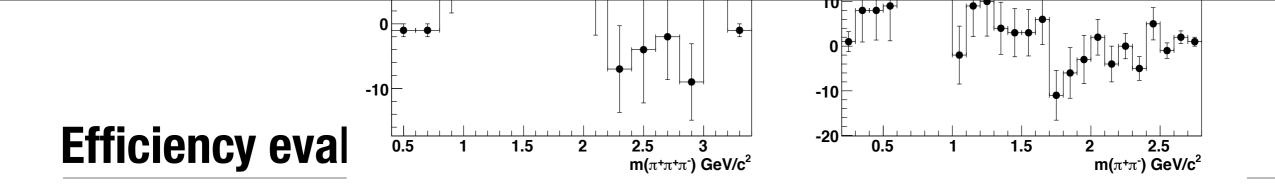
χ_{b2}/χ_{b1} cross section ratio

The most recent theoretical work <u>PRD 86 (2012) 074027</u>, using also the CMS χ_c result, predicts an increase of the ratio at low p_T


Measurement of B_c Branching Fractions

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH13005


- The B_c meson (bc) is a unique probe for heavy-quark dynamics since it carries two different heavy flavors
 - Both quarks compete in the decay
 - b \rightarrow c transition offers an easy experimental signature (high probability to have a J/ ψ meson in the final state)
- Experimental knowledge rather poor (only produced at hadron colliders, need to produce two Bc mesons)
 - · Only few decay channels have been observed so far
 - No cross section measurement is available
- · Here shown the CMS measurements of


$$\cdot \underbrace{\frac{BR(B_{c}^{\pm} \to J/\psi\pi^{\pm}\pi^{\pm}\pi^{\mp})}{BR(B_{c}^{\pm} \to J/\psi\pi^{\pm})}}_{\sigma(B^{\pm}) \times Br(B_{c}^{\pm} \to J/\psi\pi^{\pm})} = \frac{N(B_{c}^{\pm} \to J/\psi\pi^{\pm}) \times \epsilon_{B^{\pm}}}{N(B^{\pm} \to J/\psiK^{\pm}) \times \epsilon_{B^{\pm}_{c}}} = \underbrace{\frac{Y_{B_{c}}}{Y_{B}}}_{Y_{B}}$$
 • evaluated on MC
• weight data event by event and extract Y_{x} from an unbinned ML fit to efficiency corrected mass distribution T_{x}

Event selection

- Selection criteria optimized to maximize S/sqrt(S+B)
- Consider the kinematic phase space $p_T(B_c) > 15$ GeV and $|y(B_c)| < 1.6$
 - $p_T(B^+) > 15$ GeV and $|y(B^+)| < 1.6$ for the B⁺→J/ψK⁺ normalization channel

Different strategy depending on the considered meson and decay channel:

- $B_c \rightarrow J/\psi \pi^{\pm}$ and $B^{\pm} \rightarrow J/\psi K^{\pm}$ signals
 - efficiency parametrized as a function of the B_c (B^+) transverse momentum
- $B_c \rightarrow J/\psi \pi^{\pm} \pi^{\mp}$ channel
 - The decay can go through resonances, and different dynamics could favor (disfavor) different phase space regions
 - Efficiency is studied as a function of a *complete set of variables for the 5 body final state across the entire PS*
 - Description independent of the decay mode
 - Efficiency parametrized as $\epsilon = |p_0 + p_1 \cdot x + p_2 \cdot y + p_3 \cdot z + p_4 \cdot w + p_5 \cdot r + p_6 \cdot t + p_7 \cdot s|$
 - free parameters determined with a ML fit on generated events in the 7D space through a binomial probability
 - performed on the $B_c \rightarrow J/\psi 3\pi$ non resonant MC, where all PS configurations are covered

- 7 independent masscombinations
- $m^2(\mu^+\pi^+)_{low}$
- m²(π⁺π⁻)_{high}
- m²(μ⁺π⁻)
- m²(π⁺π⁺)
- m²(μ⁻π⁺)_{low}
- m²(μ⁻π+)_{high}
- m²(μ⁻π⁻)

B_c Branching Fraction results

The two ratios are measured to be

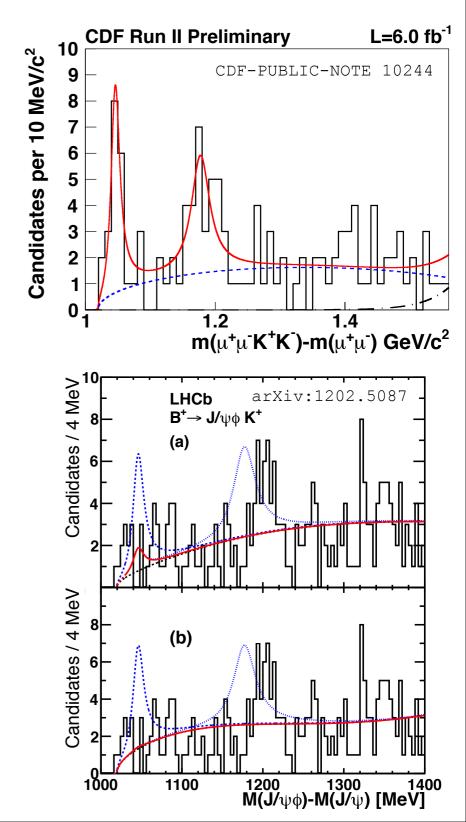
$$\frac{\text{Br}(B_c^{\pm} \to J/\psi \pi^{\pm} \pi^{\pm} \pi^{\mp})}{\text{Br}(B_c^{\pm} \to J/\psi \pi^{\pm})} = 2.43 \pm 0.76 \,(stat)^{+0.46}_{-0.44} \,(syst)$$

Systematic uncertainties:

- Signal and bkg parametrization
- Statistical uncertainty on $\boldsymbol{\epsilon}$
- Experimental uncertainty on B_c lifetime
- Tracking efficiency

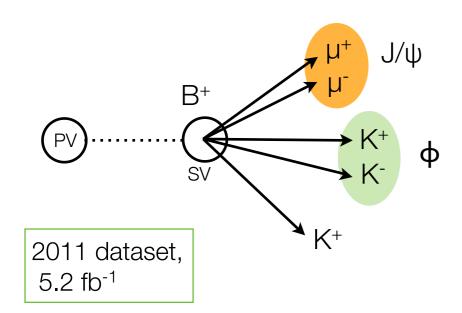
in good agreement with LHCb measurement $\frac{BR(B_c^{\pm} \rightarrow J/\psi \pi^{\pm} \pi^{\pm} \pi^{\mp})}{BR(B_c^{\pm} \rightarrow J/\psi \pi^{\pm})} = 2.41 \pm 0.30 \pm 0.33$ Phys. Rev. Lett. 108 (2012) 251802

$$\frac{\sigma(B_{c}^{\pm}) \times Br(B_{c}^{\pm} \to J/\psi\pi^{\pm})}{\sigma(B^{\pm}) \times Br(B^{\pm} \to J/\psiK^{\pm})} = (0.48 \pm 0.05 \,(stat) \pm 0.04 \,(syst) \,{}^{+0.05}_{-0.03} \,(\tau_{B_{c}})) \times 10^{-2}$$

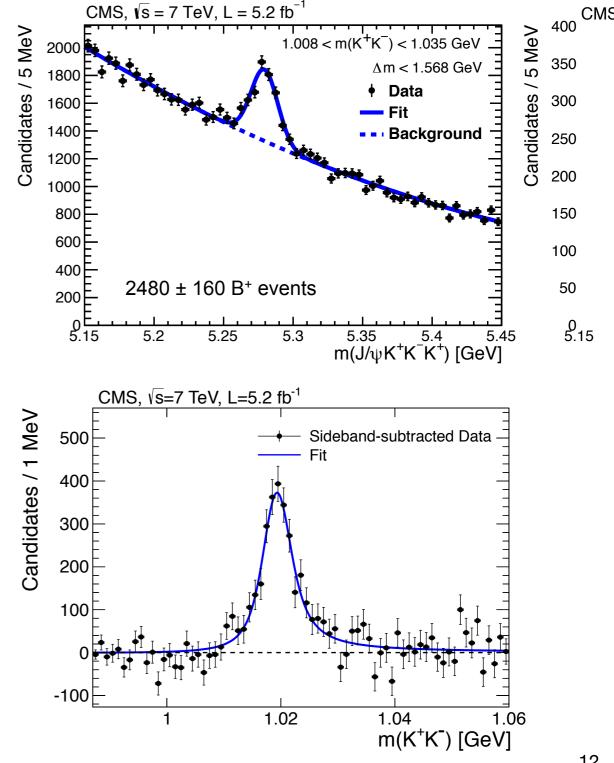

complementary to the LHCb result, which covers $p_T(B_c(B^+)) > 4$ GeV and 2.5 < η < 4.5

 $R_{c/u} = (0.68 \pm 0.10 (\text{stat}) \pm 0.03 (\text{syst}) \pm 0.05 (\text{lifetime}))\%$

Phys. Rev. Lett. 109 (2012) 232001


Observation of peaks in the J/ $\psi \phi$ mass spectrum in B decays

- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH11026
- Discovery of new quarkonium-like states over the last decade poses a challenge to conventional quark model
 - nature of these entities is still a puzzle (charmed hybrids? tetraquarks? molecular states?)
- CDF reported evidence for a structure Y(4140) with mass $4143.4^{+2.9}$ - $_{3.0}\pm1.2$ (syst) MeV and width $15.3^{+10.4}$ - $_{6.1}\pm2.5$ (syst) MeV
 - · if confirmed, candidate for an exotic meson
 - Belle could not confirm it
 - LHCb did not confirm the existence of Y(4140) and put an upper limit on its production
 - useful to have an independent result
 - CMS studies the J/ $\psi \varphi$ mass spectrum from exclusive B⁺ \rightarrow J/ $\psi \varphi$ K⁺ decays


Observation of peaks in the J/ $\psi\phi$ mass spectrum in B decays

arXiv:1309.6920

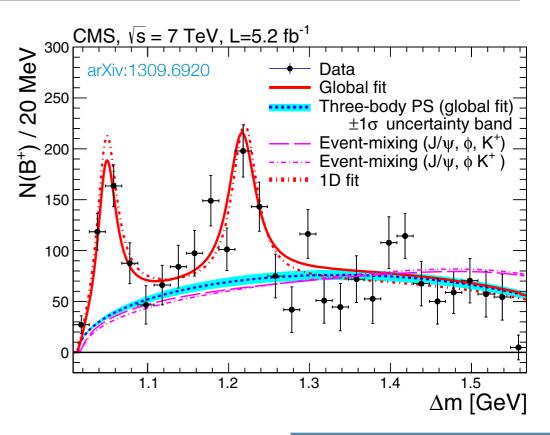
Event selection:

- displaced J/ ψ dimuon trigger with p_T(J/ ψ) > 7 GeV
- run dependent p_T threshold for each muon
- candidate J/ψ associated to 3 additional charged tracks
- vertex constraining J/ψ mass
- K^+K^- pair with lower mass considered as ϕ
- must lie in ϕ mass window [1.008, 1.035] GeV •
- A cleaner sample is also considered as a cross check
- retains 40% of B⁺ candidates, reduce bkg > 10 times

Observation of peaks in the J/ $\psi \phi$ mass spectrum in B decays

Presence of possible structures investigated using the $\Delta m = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-)$ spectrum

• exclude $\Delta m > 1.568$ GeV region to avoid bkg from B_s $\rightarrow \psi(2S)\phi \rightarrow J/\psi\pi^+\pi^-\phi$ decays


 Δm spectrum obtained by:

- dividing the dataset in 20MeV Δm bins
- extracting the number of B signal in each Δm bin by fitting the J/ $\psi \varphi K$ spectrum
- plotting the B⁺ yield corrected by relative efficiency

Yield	Mass (MeV)	arGamma (MeV)
310 ± 70	$4148.0 \pm 2.4_{(stat)} \pm 6.3_{(syst)}$	28 ⁺¹⁵ -11(stat) ± 19(syst)
418 ± 170	$4313.8 \pm 5.3_{(stat)} \pm 7.3_{(syst)}$	38 ⁺³⁰ -15(stat) ± 16(syst)

Angular analysis would help to elucidate the nature of these 2 structures

Systematic uncertainties:

- B⁺ signal and bkg pdf
- Relative efficiency
- Δm binning
- ∆m structure PDF
- Δm mass resolution
- Δm background shape
- Selection requirements

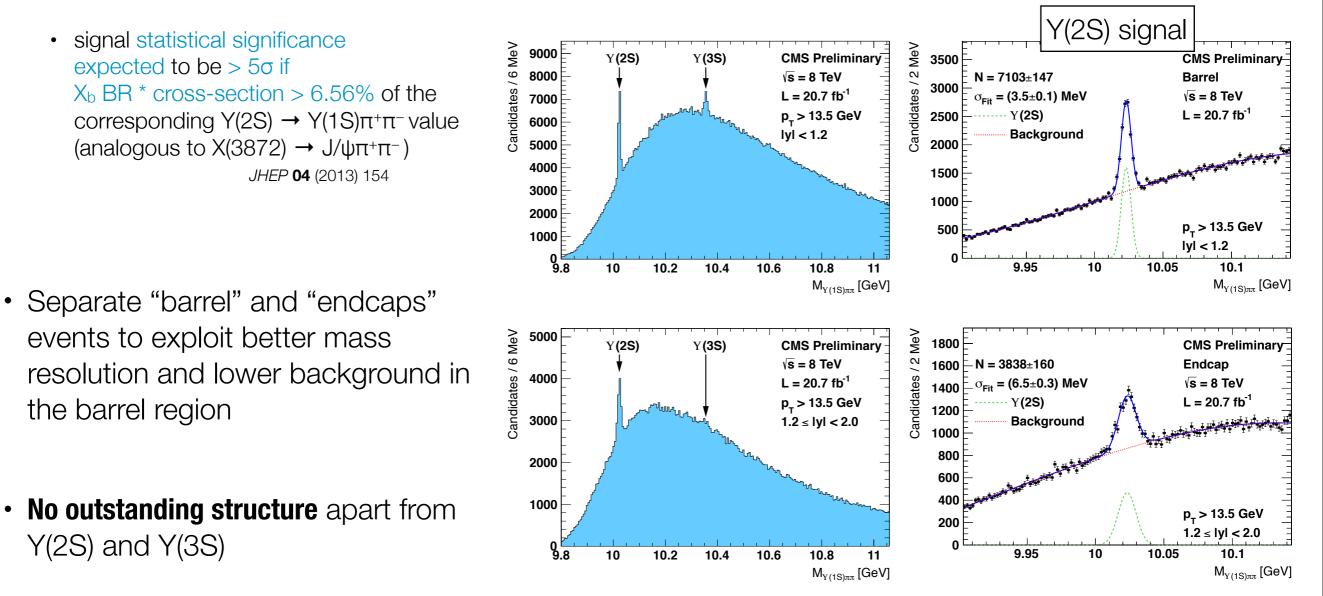
Search for new bottomonium state decaying to Y(1S) $\pi^+\pi^-$

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH11016

- Exotic resonance X(3872) discovered in the final state $J/\psi\pi^+\pi^-$
- The **bottomonium counterpart X**_b is expected to decay into Y(1S) $\pi^+\pi^-$
 - Predicted mass within 10-11 GeV (or close to the BB or BB* threshold, 10.562 and 10.604 GeV)
 - In analogy with X(3872), could be a narrow resonance (X(3872) width = 1.2 MeV) and have a sizable branching ratio into Y(1S)π⁺π⁻
 - Look for a peak in the Y(1S)($\mu^+\mu^-$) $\pi^+\pi^-$ invariant mass spectrum (excluding the Y(2S) and Y(3S) peak regions)

• Measure $R = \frac{\sigma_{X_b} \times BR(X_b \to Y(1S)\pi^+\pi^-)}{\sigma_{Y(2S)} \times BR(Y(2S) \to Y(1S)\pi^+\pi^-)}$ as a function of X_b mass between 10 and 11 GeV

• Investigated kinematic region: $p_T(Y(1S)\pi^+\pi^-) > 13.5 \text{ GeV}$ and $|y(Y(1S)\pi^+\pi^-)| < 2.0$


Assumptions:

- same production mechanism for Y(2S) and X_b
- both produced unpolarized
- X_b narrow resonance with same quantum numbers as Y(2S)
- same dipion mass distribution for X_b and Y(2S)

X_b candidate reconstruction

2012 dataset ~20 fb⁻¹

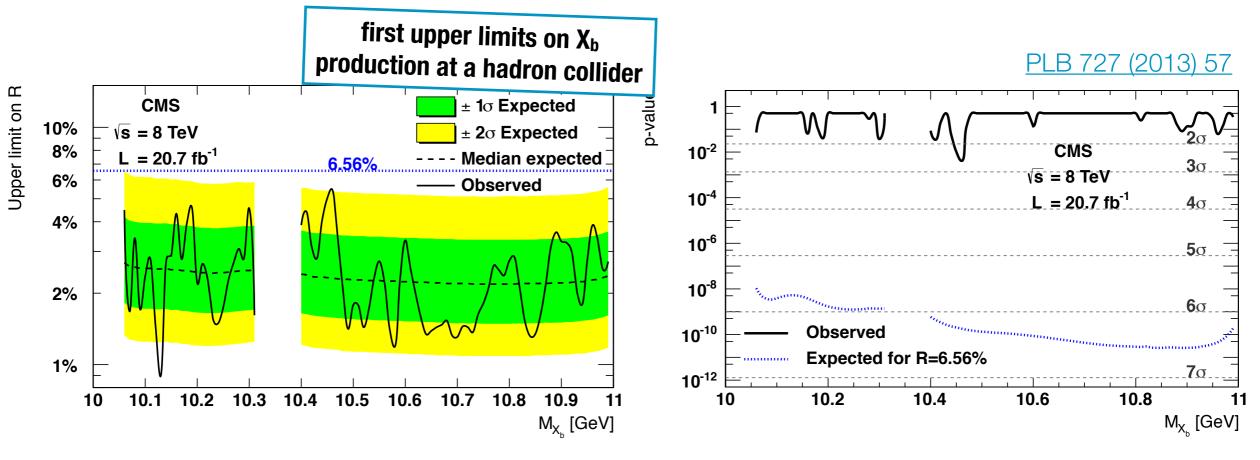
- X_b candidates reconstructed by associating the Y(1S) to 2 tracks (assumed to be pions)
 - selection criteria optimized with a genetic algorithm → maximize expected signal significance near Y(2S) mass

X_b search: mass scan

- Explore 10.06-10.31 and 10.40-10.99 GeV mass regions
- Shift X_b expected mass in **10 MeV intervals** and evaluate signal significance
 - X_b signal modeled with a Gaussian function
 - intrinsic width assumed to be small compared to the detector mass resolution
 - for each mass point, fix signal width to value from the simulation (can vary from 3.8 to 16.4 MeV)
 - background parametrized with a 3rd order polynomial
 - for each mass point, evaluate

$$R = \underbrace{\begin{bmatrix} N_{X_b}^{\text{obs}} \\ N_{Y(2S)}^{\text{obs}} \end{bmatrix}}_{\epsilon_{X_b}} \underbrace{\epsilon_{Y(2S)}}_{\epsilon_{X_b}}$$

observed yields of X_b and Y(2S) candidates


overall efficiencies estimated from simulation

Systematic uncertainties:

- Modeling of the signal decay
 - dipion mass distribution
 - Y(2S) mass resolution
- Signal polarization
- Background shape

Results

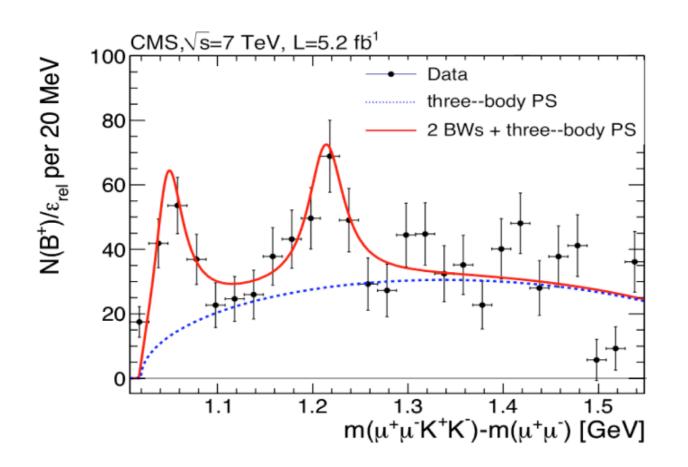
- Local p-values calculated using asymptotic approach and combining results of fits to the barrel and endcap regions
- Systematic uncertainties implemented as nuisance parameters

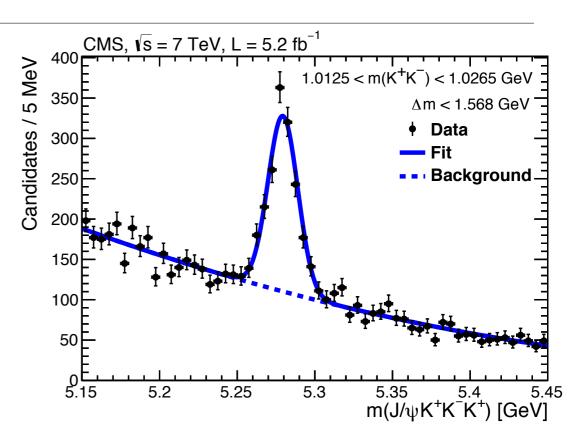
No significant excess is observed

95% CL upper limit on the cross-sections*branching fractions ratio is in the range 0.9 - 5.4 %

Conclusions

- Thanks to the excellent LHC and CMS performances in Run1, important measurements of B-hadrons and quarkonium production and decay rates have been carried out
- We have also exploited the collected data to search for new exotic states
- Shown today:
- measurement of the χ_{b2} over χ_{b1} cross section ratio
- measurement of B_c branching fractions
- observation of peaks in the $J/\psi \phi$ mass spectrum
- search for a new bottomonium state decaying to $Y(1S)\pi^+\pi^-$


All CMS B-Physics results are available at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH


Backup

$B^+ \rightarrow J/\psi \phi K$ tight selection

Additional requirements:

- kaon p_T > 1.5 GeV
- B⁺ vertex CL > 10%
- significance of the $\rm B^+$ vertex transverse displacement from the PV > 7
- m(K+K-) within 7 MeV from the φ meson mass

