Heavy Flavor & Spectroscopy at ATLAS

Patrick Jussel

University of Innsbruck Institute for Astro- and Particle Physics

La Thuile 2014 Les Rencontres de Physique de la Vallée d'Aoste 23 Feb. – 1 Mar. 2014

Overview

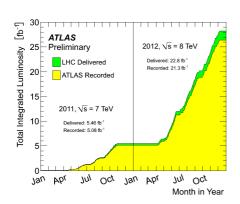
- 1 Introduction
- 2 Heavy Flavor Production and Spectroscopy
 - Charmonium
 - B⁺ production
- 3 Heavy Flavor Decays

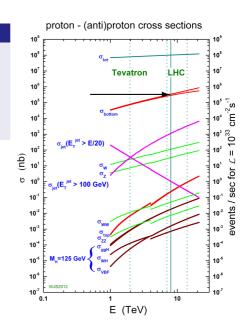
$$\blacksquare$$
 $B_d \to K^{0*} \mu^+ \mu^-$

$$\Lambda_b^0 \to J/\psi \Lambda^0$$

$$B_s^0 \to J/\psi \phi$$

4 Summary


Photo: Victor Franz Hess Cosmic Ray Laboratory, Mt. Hafelekar, Innsbruck, Austria

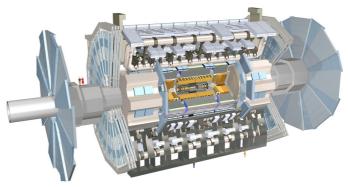

B Physics at the LHC

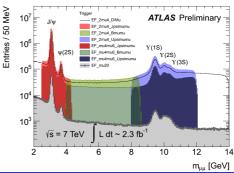
Motivation

- Heavy Quarkonia: understanding production mechanisms.
- B decays: measurement of new physics models.

B Physics at ATLAS

Inner Detector:


- Pixel, Semiconductor Tracker and Transition Radiation Tracker.
- Coverage $|\eta|$ < 2.5.
- ID used for all tracking.


Muon System:

- Muon Tracking Chambers.
- Coverage $|\eta| < 2.7$.
- MS used for triggering.

Trigger:

 B-Physics mainly depends on single-muon and di-muon triggers.

- 1 Introduction
- 2 Heavy Flavor Production and Spectroscopy
 - Charmonium
 - B⁺ production
- 3 Heavy Flavor Decays

$$B_d \to K^{0*} \mu^+ \mu^-$$

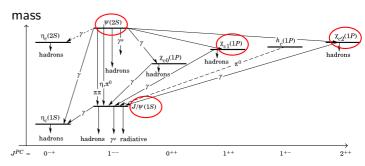
$$\Lambda_b^0 \to J/\psi \Lambda^0$$

$$\blacksquare B_s^0 \to J/\psi \phi$$

4 Summary

Latest Charmonium results in ATLAS

Measurement of $J/\psi + W$ production:


arXiv:1401:2831[hep-ex]

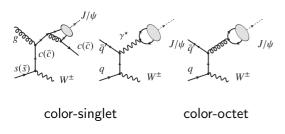
$$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$$
:

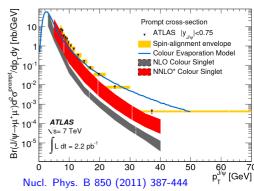
ATLAS-CONF-2013-094

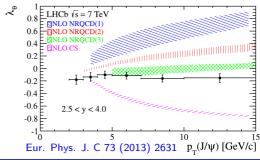
 χ_{c1} and χ_{c2} production:

ATLAS-CONF-2013-095

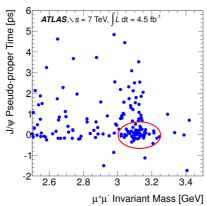
Charmonium Spectrum below $D\bar{D}$ threshold.


Common to all: Reconstruction of $J/\psi \to \mu^+\mu^-$


Muon tracks, opposite charge, common J/ψ candidate vertex, kinematics from ID only (but matched to MS track), typically $p_T>4$ GeV and $|\eta|<2.3$, min. 1 pixel and 6 SCT hits.

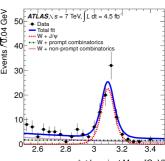

Prompt $J/\psi + W$ Production

- Heavy quarkonium production models cannot fully predict p_T spectrum and/or polarization (figures right).
- Prompt $J/\psi + W$ production novel approach, possible as single parton (CS or CO) or double parton scattering (DPS).
- Looking for prompt J/ψ , distinct from $b \to J/\psi$ BG.
- Interesting channel to study Higgs Charm coupling.

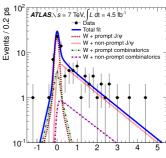


Prompt $J/\psi + W$ Production

- Search for $J/\psi \to \mu^+\mu^- + \text{isolated } W^\pm \to \mu^\pm \nu$.
- Discriminate prompt production from W + non-prompt $b \rightarrow J/\psi$ background.
- Possible background: pileup, Z+jet, $t\bar{t}$, W + b, $B_c \to J/\psi + \mu\nu + X$, heavy flavor jets.



Prompt $J/\psi + W$ Production

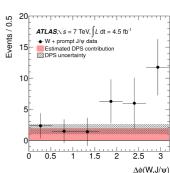


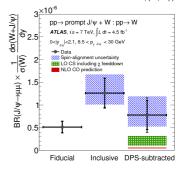
- Search for $J/\psi \to \mu^+\mu^- + \text{isolated } W^\pm \to \mu^\pm \nu$.
- Discriminate prompt production from W+ non-prompt $b \to J/\psi$ background.
- Possible background: pileup, Z+jet, $t\bar{t}$, W + b, $B_c \to J/\psi + \mu\nu + X$, heavy flavor jets.
- Unbinned maximum likelihood fit in invariant dimuon mass and pseudo-proper time: $N_{sig} = 27.4^{+7.5}_{-6.5}$.
- Observation at 5.1σ in 4.5 fb⁻¹.

$$egin{align*} M_{J/\psi}(m_{\mu^+\mu^-}) &= G(m_{\mu^+\mu^-}; m_{J/\psi}^{ ext{PDG}}, \sigma_m) \ T_{ ext{prompt } J/\psi}(au) &= G(au; 0, \sigma_ au) \otimes \left((1-a) \delta(au) + a C_0 \mathrm{e}^{-| au|/ au_0}
ight) \ T_{ ext{non-prompt } J/\psi}(au) &= G(au; 0, \sigma_ au) \otimes \left(C_1 heta(au) \mathrm{e}^{- au/ au_1}
ight) \ M_{ ext{prompt } ext{bkg}}(m_{\mu^+\mu^-}) &= C_2 \mathrm{e}^{-m_{\mu^+\mu^-}/k_0} \ M_{ ext{non-prompt } ext{bkg}}(m_{\mu^+\mu^-}) &= C_3 \mathrm{e}^{-m_{\mu^+\mu^-}/k_1} \ T_{ ext{prompt } ext{bkg}}(au) &= G(au; 0, \sigma_ au) \otimes \left((1-b) \delta(au) + b C_4 \mathrm{e}^{-| au|/ au_0}
ight) \ T_{ ext{non-prompt } ext{bkg}}(au) &= G(au; 0, \sigma_ au) \otimes \left(C_5 heta(au) \mathrm{e}^{- au/ au_0}
ight). \end{split}$$

μ⁺μ⁻ Invariant Mass [GeV]

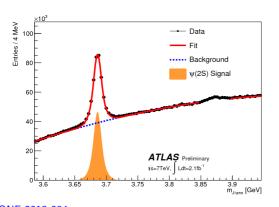
J/ψ Pseudo-proper Time [ps]

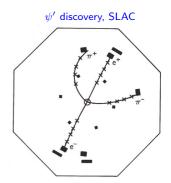

Prompt $J/\psi + W$ Results



- $\Delta \phi$ between W^{\pm} and J/ψ : estimations from J/ψ cross section measurements confirmed estimated DPS contributions flat in $\Delta \phi$.
- Lower plot: ratio of $W+J/\psi$ associated production to the W^\pm cross section in fiducial region, inclusive and DPS subtracted.

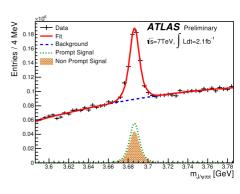
$$R_{J/\psi}^{fid} = (51 \pm 13 \pm 4) \times 10^{-8}$$
 $R_{J/\psi}^{incl} = (126 \pm 39 \pm 9^{+41}_{-25}) \times 10^{-8}$ $R_{J/\psi}^{DPSsub} = (78 \pm 32 \pm 22^{+41}_{-25}) \times 10^{-8}$

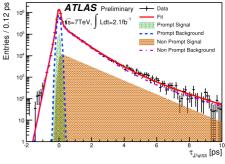

- 1st err. statistical, 2nd err. syst., 3rd err. J/ψ spin alignment.
- Comparing predictions of DPS subtracted ratio, color singled mechanism expected to be dominant contribution.



- Prompt production via QCD mechanisms.
- Non-prompt production via weak *b* hadron decays.
- Measurement via mode $\psi(2S) \rightarrow J/\psi(\mu^+\mu^-)\pi^+\pi^-$.
- Plot below: uncorrected $\mu^+\mu^-\pi^+\pi^-$ mass spectrum (signal as double Gaussian, BG as 2nd order Chebyshev polynomial).

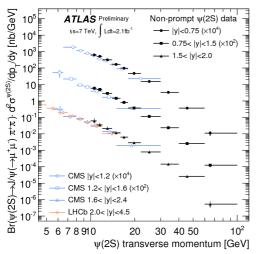
- Clear signal near 3.69 GeV.
- Additional structure identified as X(3872).
- Within $|y(\psi(2S))| < 2.0$ around 200k signal events.

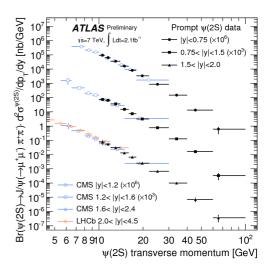



• Weighted two-dimensional unbinned maximum likelihood fit performed in $J/\psi\pi^+\pi^-$ invariant mass and pseudo-proper lifetime:

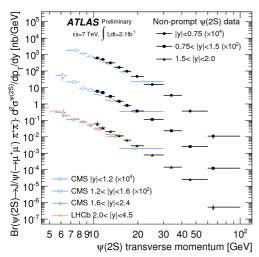
$$PDF(m,\tau) = \sum_{i=1}^{5} \oplus f_i(m) \cdot h_i(\tau) \otimes G_i(\tau)$$

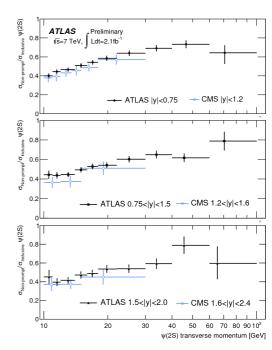
i	Type	Source	$f_i(m)$	$h_i(au)$
1	Signal	Prompt	$G_1(m) \oplus G_2(m)$	$\delta(au)$
2	Signal	Non-prompt	$G_1(m) \oplus G_2(m)$	$E_1(\tau)$
3	Background	Prompt	$C_1(m)$	$\delta(\tau)$
4	Background	Non-prompt	$C_2(m)$	$E_2(\tau) \oplus E_3(\tau)$
5	Background	Non-prompt	$C_3(m)$	$E_4(au)$


 G_i Gaussian, E_i exponential, C_i 2nd order Chebyshev polynomials, \oplus normalized sum and \otimes convolution.



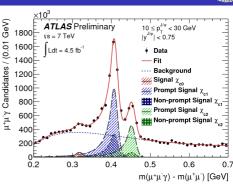
- $\psi(2S)$ production, non-prompt (left), prompt (right).
- Comparison with CMS and LHCb results.
- **ATLAS** measurement increases measurement to large values of $p_T(\psi(2S))$.

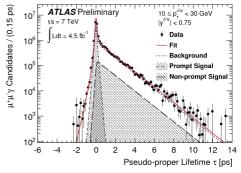




ATLAS-CONF-2013-094

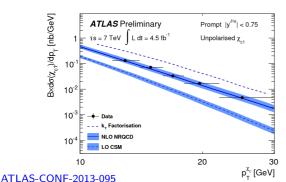
- Ratio non-prompt/inclusive (right).
- Comparison with CMS results.

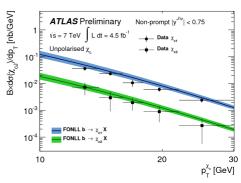


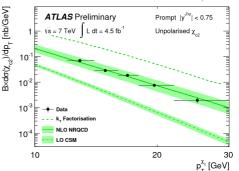

ATLAS-CONF-2013-094

χ_{c1} and χ_{c2} Production

- Similar to $\psi(2S)$, measurement of prompt and non-prompt χ_{ci} production.
- Measurement via radiative decay $\chi_{ci} \rightarrow J/\psi \gamma$.
- $\mathcal{B}(\chi_{c0} \to J/\psi \gamma)$ not measured here.
- Photon via photon conversion $\gamma \rightarrow e^+e^-$.
- Weighted two-dimensional unbinned maximum likelihood fit to mass difference $\Delta m = m(\mu^+\mu^-\gamma) m(\mu^+\mu^-) \text{ and }$ pseudo-proper lifetime τ .
- Comparison with FONLL, NLO NRQCD, k_T factorization and LO CSM.

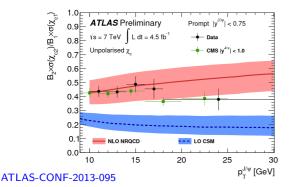


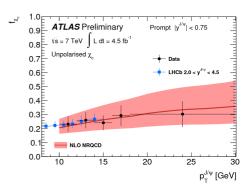

χ_{c1} and χ_{c2} Production



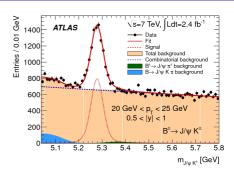
Differential cross section as function of $p_T(\chi_c)$:

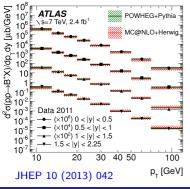
- Non-prompt, χ_{c1} and χ_{c2} , top, compatible with FONLL predictions.
- Prompt χ_{c1} bottom left, χ_{c2} bottom right, compatible with NLO NRQCD predictions, not with k_T factorization and LO CSM.

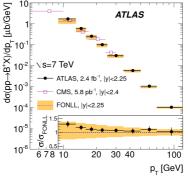


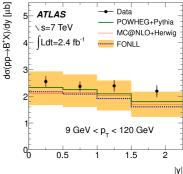

χ_{c1} and χ_{c2} Production

BR ratios as function of $p_T(J/\psi)$:


- Ratio of prompt χ_{c2}/χ_{c1} production, compared with CMS results.
- Cross section ratio $\sigma(\chi_c \to J/\psi \gamma)/\sigma(J/\psi)$, compared with LHCb.
- Results compatible to NLO NRQCD, but discrepancy to LO CSM.





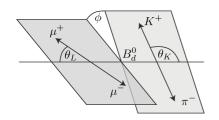

B^+ meson production

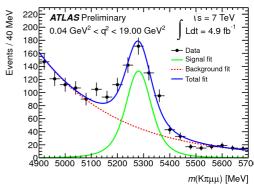
- Measurement of $B^\pm \to J/\psi K^\pm$, see example right top figure.
- Differential cross section as function of p_T in bins of rapidity (left), as function of p_T (middle) and of rapidity (right).
- Compared to:
 - POWHEG + Pythia, agreement.
 - MC@NLO + Herwig, small discrepancies.
 - FONLL in good agreement.

- 1 Introduction
- 2 Heavy Flavor Production and Spectroscopy
 - Charmonium
 - \blacksquare B^+ production
- 3 Heavy Flavor Decays

$$\blacksquare B_d \to K^{0*} \mu^+ \mu^-$$

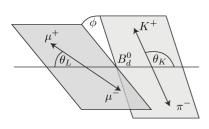
$$\Lambda_b^0 \to J/\psi \Lambda^0$$

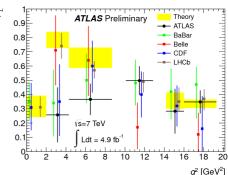

$$\blacksquare B_s^0 \to J/\psi \phi$$

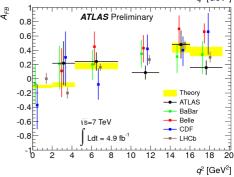

4 Summary

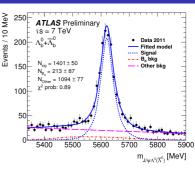
Heavy Flavor Dec

Rare B decays: $B_d \to K^{0*} \mu^+ \mu^-$

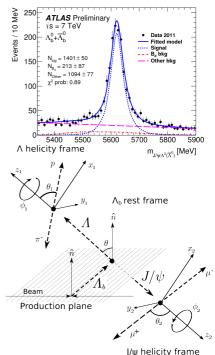



- Transitions $b \rightarrow s\ell\ell$ considered as probes to physics BSM in angular distributions.
- Measurement of kaon polarization and muon forward-backward asymmetry by ATLAS in $B_d \to K^{0*} \mu^+ \mu^-$ using 4.9 fb⁻¹ 2011 data.
- Excluding di-muon invariant mass regions compatible with J/ψ and $\psi(2S)$, 466 ± 34 signal $B_d \to K^{0*} \mu^+ \mu^-$ found.

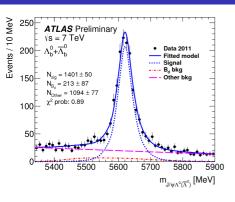

Rare B decays: $B_d o K^{0*} \mu^+ \mu^-$

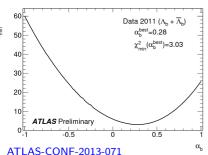

- Unbinned maximum likelihood fit on mass $m(K\pi\mu^+\mu^-)$ and angular distributions $\cos \theta_K$ and $\cos \theta_L$ in bins of di-muon mass q^2 .
- Results of longitudinal K* polarization F_L (top) and muon forward-backward asymmetry A_{FB} (bottom), ATLAS main strength at large q^2 .
- 2012 analysis under way, more $b \to s\ell\ell$ measurements under study.

Parity violation and helicity amplitudes of $\Lambda_b^0 o J/\psi \Lambda^0$


• Unbinned maximum likelihood fit of $\Lambda_b(\bar{\Lambda}_b) \to J/\psi \Lambda(\bar{\Lambda})$ mass spectrum, signal, $B_d \to J/\psi K_s^0(\pi^+\pi^-)$ and comb. BG.

Parity violation and helicity amplitudes of $\Lambda_b^0 o J/\psi \Lambda^0$


- Unbinned maximum likelihood fit of $\Lambda_b(\bar{\Lambda}_b) \to J/\psi \Lambda(\bar{\Lambda})$ mass spectrum, signal, $B_d \to J/\psi K_s^0(\pi^+\pi^-)$ and comb. BG.
- Full angular PDF: $PDF(\Omega, \vec{A}, P) \propto \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P, \alpha_{\Lambda}) F_{i}(\Omega)$
- pp collisions and symmetry in rapidity
 → overall polarization P of zero, reducing PDF from 20 to 6 terms.
- Fixed value of $\Lambda^0 \to p\pi^- \ \alpha_{\Lambda} = 0.642 \pm 0.013$,
- Method of moments, measured per event: decay angles Ω , results in $\langle F_i \rangle$ terms.
- Comb. BG contribution estimated from the two invariant mass sidebands, peaking BG from MC.
- Helicity amplitudes and decay asymmetry parameter for Λ_b extracted by least square fit.



ATLAS-CONF-2013-071

Parity violation and helicity amplitudes of $\Lambda_b^0 o J/\psi \Lambda^0$

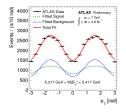
Helicity amplitudes $A(\lambda_{\Lambda}, \lambda_{J/\psi})$:

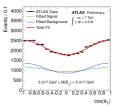
$$\begin{array}{ll} a_{+} \equiv A(1/2,0) & \Rightarrow |a_{+}| = 0.17^{+0.12}_{-0.17} \\ a_{-} \equiv A(-1/2,0) & \Rightarrow |a_{-}| = 0.59^{+0.06}_{-0.07} \\ b_{+} \equiv A(-1/2,-1) & \Rightarrow |b_{+}| = 0.78^{+0.04}_{-0.05} \\ b_{-} \equiv A(1/2,1) & \Rightarrow |b_{-}| = 0.08^{+0.13}_{-0.08} \end{array}$$

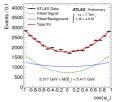
Decay asymmetry parameter:

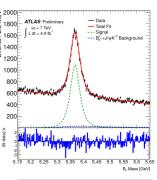
$$|a_{+}|^{2} + |a_{-}|^{2} + |b_{+}|^{2} + |b_{-}|^{2} = 1$$

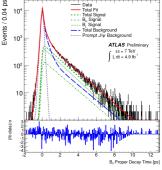
$$\alpha_{b} = |a_{+}|^{2} - |a_{-}|^{2} + |b_{+}|^{2} - |b_{-}|^{2}$$

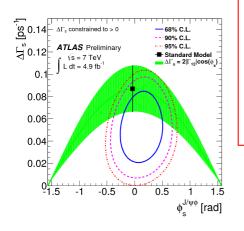

$$\alpha_{b} = 0.28 \pm 0.16 \text{(stat.)} \pm 0.06 \text{(syst.)}$$


- Compatible with LHCb: $\alpha_b = 0.05 \pm 0.17 \pm 0.07$.
- Discrepancy with pQCD (-21% to -10%) and HQET (77.7%).
- Further measurement (2012 data) planned.


Angular analysis of $B_s^0 \to J/\psi \phi$




- Full angular analysis of final state particles $B_s^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$.
- Update from last analysis to include flavor tagging:
 - OST muon charge ($\varepsilon D^2 = 0.15\%$ segmented muons, $\varepsilon D^2 = 0.86\%$ combined muons).
 - OST jet charge, highest p_T b-tag ($\varepsilon D^2 = 0.45\%$).
 - Total: $\varepsilon = 32\%$, D = 21%, $\varepsilon D^2 = 1.45\%$.
- Unbinned maximum likelihood fit using B_s mass and proper decay time, their uncertainties, tag probability and transversity angles, measurement of $\Delta\Gamma_s$, ϕ_s etc.
- Plots: fit projections on B_s mass, B_s proper decay time and angles (bottom).

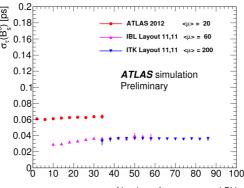


Angular analsyis of $B_s^0 \to J/\psi \phi$

■ Likelihood contours (68%, 90% and 95%) compared to SM predictions, ϕ_s precision improved by 40% with flavour tagging:

$$\phi_s = 0.12 \pm 0.25 (stat.) \pm 0.11 (syst.) {
m rad}$$
 $\Delta \Gamma_s = 0.053 \pm 0.021 (stat.) \pm 0.009 (syst.) {
m ps}^{-1}$
 $\Gamma_s = 0.677 \pm 0.007 (stat.) \pm 0.003 (syst.) {
m ps}^{-1}$
 $|A_0(0)|^2 = 0.529 \pm 0.006 (stat.) \pm 0.011 (syst.)$
 $|A_{||}(0)|^2 = 0.220 \pm 0.008 (stat.) \pm 0.009 (syst.)$
 $\delta_{\perp} = 3.89 \pm 0.46 (stat.) \pm 0.13 (syst.) {
m rad}$

- \blacksquare $\Delta\Gamma_s$ constrained to be positive.
- Measurement of S-wave KK or f_0 contamination compatible with zero.
- Results of width difference $\Delta\Gamma_s$ and CP violating weak phase ϕ_s compatible with SM:

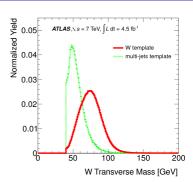

$$\phi_s^{SM} \simeq -2\beta_s = -0.0368 \pm 0.0018$$

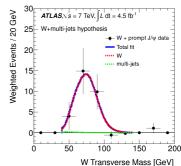
$$\Delta\Gamma_s^{SM} = 0.087 \pm 0.021 \mathrm{ps}^{-1}$$

Summary and Outlook

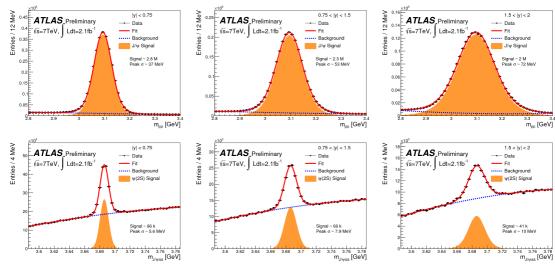
- ATLAS performed a broad spectrum of measurements of charmonium, bottonium, rare decays, *CP* violation, ...
- Further measurements are under preparation, with increasing precision, inclusion of more data, etc.
- For run-2, insertion of upcoming additional B-layer promises bright future (e.g. plot of B_s lifetime in 2012, upcoming run-2 and even later in ITK layout, i.e. silicon only ID).

Number of reconstructed PV


BACKUP

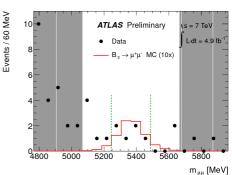

$J/\psi + W$ Production

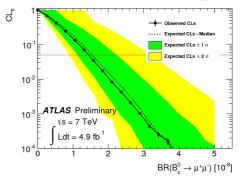
- Using sPlot to create transverse mass templates for signal W and multi-jet background.
- Fitted sPlot weighted distribution to measure multi-jet background contribution.
- Uncertainties of analysis:


Source	Barrel	Endcap
J/ψ muon efficiency	(3-5)%	(3-5)%
W^{\pm} boson kinematics	2%	5%
Fit procedure	$^{+3}_{-2}\%$	$^{+2}_{-1}\%$
Choice of fit nuisance parameters	1%	1%
Choice of fit functional forms	4%	4%
Muon momentum scale	negligible	
J/ψ spin-alignment	$^{+36}_{-25}\%$	+27 _%
Statistical	$^{+47}_{-40}\%$	$^{+30}_{-27}\%$

- Fit of J/ψ signal peaks in the three different bins of rapidity (|y| < 0.75, 0.75 < |y| < 1.5 and 1.5 < |y| < 2) in the upper plots.
- Corresponding $\psi(2S)$ fits in the lower plots.

ATLAS-CONF-2013-094


Rare B decays: $B_s^0 o \mu^+ \mu^-$



■ Measurement of BR w.r.t. $B^+ \to J/\psi K^+$, BR defined as:

$$\begin{split} \mathcal{B} \big(B^{\pm} &\to J/\psi K^{\pm} \to \mu^{+} \mu^{-} K^{\pm} \big) \times \\ \frac{f_{u}}{f_{s}} &\times \frac{N_{\mu^{+} \mu^{-}}}{N_{J/\psi K^{\pm}}} \frac{A_{J/\psi K^{\pm}}}{A_{\mu^{+} \mu^{-}}} \frac{\varepsilon_{J/\psi K^{\pm}}}{\epsilon_{\mu^{+} \mu^{-}}} \end{split}$$

- Signal/Background discrimination via BDT (MC trained only).
- Result: $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 1.5(1.2) \times 10^{-8}$ at 95% (90%) CL with CL_s method.
- Measurements from LHCb (CMS) are $2.9^{+1.1}_{-1.0} \times 10^{-9} \ (3.0^{+1.0}_{-0.9} \times 10^{-9})$ with significance of $4.0\sigma \ (4.3\sigma)$.
- ATLAS currently working on 8 TeV measurement.

