Search for Physics Beyond the Standard Model (non-SUSY) at ATLAS

Antonio Boveia University of Chicago / Enrico Fermi Institute 28 February 2014

Motivation

Why does this talk have that funny title?

SUSY is the Answer => very **model-driven**

"non-SUSY": no compelling argument for any given model =>"signature-based" / **model agnostic** + key ideas not covered by SUSY searches (e.g. alternate explanations of electroweak symmetry breaking,

KK resonances, production of new particles with macroscopic lifetimes)

By "signature-based searches," we mean a focus on what objects end in the the detector and how they are related:

look for extensions that combine familiar ingredients

leptons, jets, MET, photons...

in familiar ways

two-body resonances, X+MET...

convey sensitivity with specific interpretation in terms of benchmark models but design inclusively for broad sensitivity, expecting surprises

This talk: recent ATLAS searches with up to 20/fb of 2012 data

two-body resonances third generation searches example of a general purpose search X+MET searches

Dilepton resonances

Consummate signature-based search: well understood final states (two electrons or muons), clean SM prediction, many BSM models: GUTs (->U(1)), KK partners, Little Higgs, ...

Dielectron/dimuon example limits: $m_{Z'SSM} > 2.86 \text{ TeV}$

 $m_{Z'}$ > 2.38–2.54 TeV for various E6-motivated Z's m_G > 2.47 TeV for a RS1, k/MPl = 0.1.

Ditau resonances

Analysis complements dielectric and dimuon searches in models where these are suppressed (e.g. for KK resonances in RS models)

Reconstruct fully hadronic taus (1- and 3-prong decays) and apply multivariate tau ID to reject hadronic backgrounds

Main backgrounds at high mass: Drell-Yan and multijets

 $\sigma(pp \rightarrow Z') \times BR(Z' \rightarrow \tau \tau) [pb]$

Dijet resonances

BumpHunt on smooth parameterization of dijet mass distribution

Two-body decays to jets are a signature of many models: Z'/W', excited quarks (qg), diquarks, chiral color, axigluons, black holes, KK gravitons, ...

Example limits: $m_{q^*} > 3.84$ TeV, (sigma*A)_{Gaussian} <~ 1 fb @ 4 TeV

Photon-jet resonances

Long list of models: quantum black holes, string resonances, quirks, technipions, ...

Counterpart to searches for quark + gluon radiation: quark + photon radiation

Lower trigger thresholds (mgj~300 GeV vs mjj~1 TeV for unprescaled triggers)

Top pair resonances

KK gluons, leptophobic topcolor Z', color octets (2–3 TeV for assumed couplings)

Top pair resonances

KK gluons, leptophobic topcolor Z', color octets (2–3 TeV for assumed couplings)

Additional top-like or bottom-like heavy (vector-like) quarks

Additional top-like or bottom-like heavy (vector-like) quarks

TT -> tHtH, tZtH, bWtH

Additional top-like or bottom-like heavy (vector-like) quarks

ATLAS-CONF-2013-060 ATLAS-CONF-2013-018 ATLAS-CONF-2013-056

Constraints on Vectorlike Quarks

ATLAS-CONF-2013-060 ATLAS-CONF-2013-018 ATLAS-CONF-2013-056

Constraints on Vectorlike Quarks

ATLAS-CONF-2013-060 ATLAS-CONF-2013-018 ATLAS-CONF-2013-056

ATLAS-CONF-2012-147

Mono-X Searches

Indirect detection Direct detection

on Collider searches

Effective theory with only two parameters (WIMP mass, coupling) and choice of Lorentz structure

TABLE I. Operators coupling WIMPs to SM particles. The operator names beginning with D, C, R apply to WIMPS that are Dirac fermions, complex scalars or real scalars, respectively.

Name	Operator	Coefficient
D1	$\bar{\chi}\chi\bar{q}q$	m_{q}/M_{*}^{3}
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_a/M_*^3
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_a/M_*^3
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_{q}^{1}/M_{*}^{3}
D5	$ar{\chi}\gamma^{\mu}\chiar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$ar{\chi} \gamma^{\mu} \chi ar{q} \gamma_{\mu} \gamma^5 q$	$1/M_{*}^{2}$
D8	$ar{\chi}\gamma^{\mu}\gamma^{5}\chiar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D9	$ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$
D10	$ar{\chi}\sigma_{\mu u}\gamma^5\chiar{q}\sigma_{lphaeta}q$	i/M_{*}^{2}
D11	$ar{\chi} \chi G_{\mu u} G^{\mu u}$	$\alpha_s/4M_*^3$
D12	$ar{\chi} \gamma^5 \chi G_{\mu u} G^{\mu u}$	$i\alpha_s/4M_*^3$
D13	$ar{\chi} \chi G_{\mu u} ilde{G}^{\mu u}$	$i\alpha_s/4M_*^3$
D14	$ar{\chi} \gamma^5 \chi G_{\mu u} ilde{G}^{\mu u}$	$\alpha_s/4M_*^3$
C 1	$\chi^{\dagger}\chi \bar{q}q$	m_{q}/M_{*}^{2}
C2	$\chi^{\dagger}\chi \bar{q}\gamma^{5}q$	im_q/M_*^2
C3	$\chi^{\dagger}\partial_{\mu}\chiar{q}\gamma^{\mu}q$	$1/M_{*}^{2}$
C4	$\chi^{\dagger}\partial_{\mu}\chi\bar{q}\gamma^{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
C5	$\chi^{\dagger}\chi G_{\mu u}G^{\mu u}$	$\alpha_s/4M_*^2$
C6	$\chi^{\dagger}\chi G_{\mu u} ilde{G}^{\mu u}$	$ilpha_s/4M_*^2$
R 1	$\chi^2 \bar{q} q$	$m_q/2M_*^2$
R2	$\chi^2 \bar{q} \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu u} G^{\mu u}$	$\alpha_s/8M_*^2$
R4	$\chi^2 G_{\mu u} ilde{G}^{\mu u}$	$i\alpha_s/8M_*^2$

Mono-W/Z (hadronic)

PRL 112, 041802 (2014)

Interference can boost W and enhance WIMP production rate

Tag with single 'fat' jet containing boosted W/ Z decay subjets

C/A-jet: R=1.2, pT > 250 GeV, $|\pmb{\eta}|$ < 1.2

Subjet kinematics consistent with W/Z decay Total jet mass 50 < Mjet < 120 GeVSub-jet pT balance ($\sqrt{y} > 0.4$)

MET > 350, 500 GeV

Process	$E_{\rm T}^{\rm miss} > 350 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 500 { m ~GeV}$
$Z \to \nu \bar{\nu}$	400^{+39}_{-34}	$54^{+7.5}_{-9.6}$
$W \to \ell^{\pm} \nu, Z \to \ell^{\pm} \ell^{\mp}$	210^{+20}_{-18}	$22^{+3.6}_{-4.6}$
WW, WZ, ZZ	$57^{+11}_{-8.0}$	$9.1^{+1.3}_{-1.1}$
$t\bar{t}$, single t	$39^{+9.9}_{-4.3}$	$3.7^{+1.7}_{-1.3}$
Total	710^{+48}_{-38}	$89^{+8.6}_{-12}$
Data	705	89

Mono-Z (leptonic)

Tag with two opposite-charge leptons 76<mll<106 GeV $\Delta \phi$ (MET,ll)>2.5 |pTll - MET|/pTll < 0.5 | η ll| < 2.5

Main backgrounds data-driven

Z+jets from ABCD in $\Delta \phi$ (MET,ll) and η ll MET>150, 250, 350, 450 GeV

EFT M_{*} [GeV] ATLAS Preliminary D5 10⁴ ______ L=20.3 fb⁻¹ √s=8 TeV max. γ yy no γ 10³ 10² 200 800 1000 400 600 0 m_x [GeV] Z/γ^*

Outlook

ATLAS has many searches for (non-SUSY) BSM physics

systematic, model-agnostic strategy

wide range of final states, wide range of models

No excesses yet observed in Run I analyses

analyses of 8 TeV data continuing

Prospects for Run II are excellent

large increase in sqrt(s) => large
increase in effective luminosity to
produce heavy objects

large increase in luminosity =>
continue to constrain low rate
processes at lower masses

Dijet resonances

BumpHunt on smooth parameterization of dijet mass distribution

Outlook

ATLAS has many searches for (non-SUSY) BSM physics

systematic, model-agnostic strategy

wide range of final states, wide range of models

No excesses yet observed in Run I analyses

analyses of 8 TeV data continuing

Prospects for Run II are excellent

large increase in sqrt(s) => large
increase in effective luminosity to
produce heavy objects

large increase in luminosity => continue to constrain low rate processes at lower masses

http://www.hep.phy.cam.ac.uk/~wjs/plots/plots.html

Additional Slides

Events / 100 GeV

