

Search for Supersymmetry at ATLAS

Elisa Musto on behalf of the ATLAS Collaboration

Les Rencontres de Physique de la Vallée d'Aoste 23 February-1 March 2014

Outline

- Supersymmetry searches at LHC
- ATLAS strategy
- Strong production results
 - 1-lepton+[3-6] jets + E_T^{miss} searches
- Third generation production results
 - E_T^{miss} + jets stop search
- Electroweak production results
 - New: 3-lepton+ E_T^{miss} searches
 - New: di-photon+ E_T ^{miss} searches
- Long Lived particles results
 - Stopped *gluino* search
- Mass limits summary

SUSY: a reminder

Supersymmetry (SUSY) is a fermion - bosons symmetry

For each Standard Model (SM) particle, a superpartner exists having the same quantum numbers but the spin.

The MSSM is the Minimal SUSY extensions of the SM (~105 parameters!)

Les Rencontres de Physique de la Vallée d'Aoste 2014

SUSY: a reminder

Supersymmetry (SUSY) is a fermion - bosons symmetry

For each Standard Model (SM) particle, a superpartner exists having the same quantum numbers but the spin.

The MSSM is the Minimal SUSY extensions of the SM (~105 parameters!)

A soft-supersymmetry breaking explains why we did not yet observe the SM superpartners: different breaking mechanisms provide different phenomenology

Les Rencontres de Physique de la Vallée d'Aoste 2014

SUSY: a reminder

Supersymmetry (SUSY) is a fermion - bosons symmetry

For each Standard Model (SM) particle, a superpartner exists having the same quantum numbers but the spin.

The MSSM is the Minimal SUSY extensions of the SM (~105 parameters!)

A soft-supersymmetry breaking explains why we did not yet observe the SM superpartners: different breaking mechanisms provide different phenomenology

Some SUSY features:

- * Includes the SM as an effective theory
- * Can predict coupling constants unification at GUT scale O(10¹⁶)
- st Can solve the hierarchy problem of the Higgs mass
- * In some scenarios:

*R-parity = (-1)^{3(B-L)+2S} is conserved and the Lightest Supersymmetric Particle (LSP) is stable

 $* \widetilde{\chi}^{_01}$ is a Dark Matter candidate

Les Rencontres de Physique de la Vallée d'Aoste 2014

 $\tilde{\chi}^{0}_{4}$

 χ^0_2

 χ^0_3

General approach: reduce number of parameters, simplify models

General approach: reduce number of parameters, simplify models

- Highest cross sections dominated by strong production of \tilde{g} and first/second \tilde{q} generation \longrightarrow early searches focus

* main SUSY signatures: high- p_T jets + Missing Transverse Energy (E_T^{miss}) + (0,1,2+) leptons

* main SM background: top, Z+jets, W+jets events

General approach: reduce number of parameters, simplify models

- -Third \tilde{q} generation \longrightarrow major LHC focus
 - * need to be light for naturalness argument
 - * main SUSY signatures: b-jets + E_T^{miss} +leptons
 - * main SM background: top events

- Highest cross sections dominated by strong production of \tilde{g} and first/second \tilde{q} generation \longrightarrow early searches focus

* main SUSY signatures: high- p_T jets + Missing Transverse Energy (E_T^{miss}) + (0,1,2+) leptons

* main SM background: top, Z+jets, W+jets events

General approach: reduce number of parameters, simplify models

- -Third \tilde{q} generation \longrightarrow major LHC focus
 - * need to be light for naturalness argument
 - * main SUSY signatures: b-jets + E_T^{miss} +leptons
 - * main SM background: top events
- ElectroWeak (EW) production \longrightarrow high luminosity focus
 - * low cross sections but can be the dominant production mechanism if colored sparticles are too heavy
 - \ast different signatures depending on gauginos composition and sleptons masses
 - * multi-lepton + E_T^{miss} signatures : very low SM background
- E.Musto Search for SUSY at ATLAS

- Highest cross sections dominated by strong production of \tilde{g} and first/second \tilde{q} generation \longrightarrow early searches focus
 - * main SUSY signatures: high- $p_T jets$ + Missing Transverse Energy (E_T^{miss}) + (0,1,2+) leptons
 - * main SM background: top, Z+jets, W+jets events

ATLAS SUSY searches

- Search strategy designed to cover broad spectra of different SUSY models
- For every search: signal regions are optimized individually based on the variety of the models/decay chains
- Assume 100% BR for the simplified model grids

ATLAS SUSY searches

- Search strategy designed to cover broad spectra of different SUSY models
- For every search: signal regions are optimized individually based on the variety of the models/decay chains
- Assume 100% BR for the simplified model grids

ATLAS SUSY searches

- Search strategy designed to cover broad spectra of different SUSY models
- For every search: signal regions are optimized individually based on the variety of the models/decay chains
- Assume 100% BR for the simplified model grids

Notes:

I will not be able to cover all the ATLAS SUSY analysis, so I will focus on latest (2013/2014) results: please visit our <u>ATLAS SUSY Public Results</u> page for further info
 All limits quoted are at 95%CL

Inclusive strong production

E.Musto - Search for SUSY at ATLAS

Les Rencontres de Physique de la Vallée d'Aoste 2014

6

$1 lepton + [3-6] jets + E_T^{miss}$ ATLAS-CONF-2013-062

000 (Ge کو 1000 (Ce 200 (Ce

800

700

600

500

400

300

200

100

Mostly targeting pair production of gluinos or squarks (1st and 2nd generation, mass degenerate) Leptonic decays of $\tilde{\chi}^{0}_{2}$, $\tilde{\chi}^{\pm}_{1}$, sleptons, sneutrinos directly or through intermediate steps

1-Lepton selection:

- 'Soft': p_T in range [6-25] GeV, to recover sensitivity for compressed scenarios.

- 'Hard': $p_T > 25$ GeV, targeting *gluinos* and *squark* production.

Background:

- *MAIN*: *t* \overline{t} and *W/Z+jets* events (estimated from data in Control Regions (CR))

- misidentified-lepton background estimated from data (matrix method)

No excess is observed

- Soft single-lepton analysis: extremely powerful along the diagonal (gluino /squark and the lightest neutralino nearly mass degenerate), gluino mass excluded up to 700 Gev.

- Hard-lepton analysis: gluino mass up to 1.18 Tev excluded

E.Musto - Search for SUSY at ATLAS

Third generation: *stop*

Third generation : *stop*

Results mainly interpreted in the natural SUSY framework, where:

-1st and 2nd generation squarks are allowed to be very heavy

- \tilde{t}/\tilde{b} produced via light \tilde{g} or directly

E.Musto - Search for SUSY at ATLAS

Limits

Les Rencontres de Physique de la Vallée d'Aoste 2014

E_T^{miss} + jets stop search (1/2) ATLAS-CONF-2013-024

Search for top squark in $t\bar{t} + E_T^{miss}$ events, where $\tilde{t} \rightarrow t + \tilde{\chi}^0$ (LSP) with BR=100%

$E_T^{miss} + jets stop search (2/2)$

Events / 50 GeV

 10^{3}

102

10

ATLAS Preliminary

L dt = 20.5 fb⁻¹, (s = 8 TeV

0-leptons, SR E_{T}^{miss} >200 GeV

Data 2012
 SM Total

SingleTop

Diboson

 $(\tilde{\chi}^{0}) = (400, 1) \text{ GeV}$

)=(600,1) GeV

w

Control regions defined for important backgrounds:

- Semileptonic $t\bar{t}$ + jets hadronic τ or low p_T e/ μ
- $-Z \rightarrow vv + jets$
- Multijets ET^{miss} coming from mis-measured jets

Single top, $t\bar{t}+V$ and diboson estimated from MC

Simultaneous fit to each of the Signal and tr Control Regions is performed to extract the final limit.

Third generation: *sbottom*

Third generation: *sbottom*

E.Musto - Search for SUSY at ATLAS

Les Rencontres de Physique de la Vallée d'Aoste 2014

12

EW production

$3 \operatorname{leptons}_{\text{susy-2013-12}} + E_T^{miss}(1/3)$

Search for direct production of $\tilde{\chi}^{\pm_1}$ and $\tilde{\chi}^{0_2}$ in 3 final state leptons 4 Simplified Models considered

5 Signal Regions (4 disjoint) depending on the final states and the decays mediators

SR	SRTA	srtb	SR11	SR2TA	SR2Tb
flavor/sign	l+l-l±, l+l-l'±	l± l± l′∓	τ l [∓] l [±] , τ l [∓] l′ [±]	τι	τ [±] l [∓] l
target model	Ĩ,WZ-medíated	W h-medíated	W h-medíated	$\widetilde{ extbf{ au}}_{L}$ -mediated	W h-mediated
domínant background	wz, tt	tt,	wz, tt	wz, tt	Wz,tt

3 leptons $+ E_T^{miss}$ (2/3)

Background composition:

- Irreducible:
 - 3 real leptons (WZ, ZZ, WWW, WWZ, tt+V, tZ, Higgs)
 - Estimated from MC, correction factors from data

• Reducible: fake leptons (non-prompt leptons, jets and γ conversion)

- From single and pair top production, V+jets, WW, W+jets
- Modeled by matrix method
 - Leading lepton assumed real (2x2 matrix)
 - Set of linear equations relating the kinematic properties of the other two leptons to the real and fake lepton composition of the data sample
 - Real and fake probabilities found from MC and corrected to data
 - Real and fake probabilities split into process and type (LightFlavor/ HeavyFlavor/Conversion)

Background validation

Background predictions tested in Validation regions (VR)

- Only to assess potential signal contamination (negligible).
- Two main definitions depending on the *b-jets* multiplicity:
 - low- E_T^{miss} ("a" regions) and high- E_T^{miss} + *b*-tagged jet ("b" regions)

$3 \text{ leptons} + E_T^{miss}$ (3/3)

In all SR Results are consistent with SM expectations Exclusion limits are calculated by statistically combining results from a number of disjoint signal regions.

Other Simplified SUSY result:

- slepton decays: exclusion up to 730 GeV

Results also interpreted in the pMSSM scenario (in back-up slides)

Diphoton+ E_T^{miss} (1/2) ATLAS-CONF-2014-001

Two General Gauge Mediated (GGM) scenarios where LSP is \tilde{G} and NLSP is $\tilde{\chi}^{0}_{1}$, bino like

BACKGROUND SOURCES:

- QCD-initiated backgrounds (e.g. $pp \rightarrow \gamma\gamma$, $pp \rightarrow \gamma+jet$, $pp \rightarrow dijets$): jet mis-identified as $\gamma + E_T^{miss}$
- Electroweak-initiated backgrounds (e.g. $pp \rightarrow W \gamma \rightarrow e + \gamma$): e mis-identified as γ , neutrino leads to E_T^{miss}
- Tri-boson production (irreducible) (e.g. $pp \rightarrow Z\gamma\gamma \rightarrow v\overline{\nu}\gamma\gamma$, $pp \rightarrow W^{\pm}\gamma\gamma \rightarrow I^{\pm}\nu\gamma\gamma$): real E_T^{miss} + real $\gamma\gamma$

Les Rencontres de Physique de la Vallée d'Aoste 2014

Diphoton+ E_T^{miss} (2/2)

Selection variables:

- H_T : sum of p_T of γ , jets, μ and electrons
- M_{eff} : sum of E_T^{miss} and H_T (higher in SP searches, **not** for **MIS**)
- $\Delta \phi E_T^{miss}$ jet (y) (only for SP1,WP2):
 - Min $\Delta \phi$ between E_T^{miss} and reconstructed jet (y), $E_T > 75$ GeV
 - Up to two jets, or two **y**
- Use M_{eff} in the SP signal regions, H_T in the WP ones

No excess observed in any SR

E.Musto - Search for SUSY at ATLAS

Long Lived particle search

Possible in both R-parity violating and conserving scenarios :

- LSP can have a long lifetime due to small coupling (λ)
- slow NLSP decay to LSP due to mass degeneracy, weak coupling or virtual heavy mediator particles (AMSB chargino/neutralino, Split Susy *R*-hadrons, GMSB stau)

(1) Slow, large dE/dx	~ 1000 mm
2) Slow, stopped	1000 1111
(3) Disappearing track	~ 100 mm
(4) Kinked track	
5) displaced track	~ 10 mm

Stopped gluino search Phys. Rev. D 88, 11

Long lived gluinos can bind to SM quarks from vacuum, forming the so-called 'R-hadrons' R-hadrons loose energy (dE/dX, nuclear scattering) in the detector and may stop inside the

detector material

Selection based on:

- Empty bunch crossings triggers with calorimeter activity
- High energetic jet in the central pseudorapidity region
- Muon activity veto

Strong model dependence in the signal stopping fraction

Main backgrounds:

- Cosmics (measured in low-lumi runs)
- Beam-halo (measured in unpaired bunches)

No excess is observed

Límits on gluinos masses:

- $m_{\tilde{g}} < 832$ GeV excluded, for 1 μ s $< \tau_{\tilde{g}} < 1000$ s

- m_g > 600Gev excluded, for lifetimes of up to 2 years!

E.Musto - Search for SUSY at ATLAS

Les Rencontres de Physique de la Vallée d'Aoste 2014

Mass limits summary (1/2)

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

	Model	e, μ, τ, γ	′ Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[ft	⁻¹]	Mass limit	5	Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \widetilde{q}\widetilde{q}, \widetilde{q} \rightarrow q\widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q q\widetilde{\chi}_{1}^{1} \rightarrow q q \mathcal{W}^{\pm} \widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q q \widetilde{\chi}_{1}^{\pm} \rightarrow q q \mathcal{W}^{\pm} \widetilde{\chi}_{1}^{0} \\ \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \widetilde{\chi}_{1}^{0} \\ GMSB (\widetilde{\ell} \ NLSP) \\ GMSB (\widetilde{\ell} \ NLSP) \\ GGM (bino \ NLSP) \\ GGM (mino \ NLSP) \\ GGM (higgsino-bino \ NLSP) \\ GGM (higgsino \ NLSP) \\ GGM (higgsino \ NLSP) \\ Gravitino \ LSP \end{array}$	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 - 2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets 0-2 jets - 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 4.8 4.8 4.8 4.8 5.8 10.5	q, g g	1.7 TeV 1.7 TeV 1.2 TeV 1.1 TeV 740 GeV 1.3 TeV 1.3 TeV 1.18 TeV 1.12 TeV 1.12 TeV 1.24 TeV 1.4 TeV 1.4 TeV 1.07 TeV 619 GeV 900 GeV 690 GeV 645 GeV	$\begin{array}{l} m(\tilde{q}) = m(\tilde{g}) \\ \text{any } m(\tilde{q}) \\ \text{any } m(\tilde{q}) \\ m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g})) \\ m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} \\ tan\beta < 15 \\ tan\beta > 18 \\ m(\tilde{\chi}_{1}^{0}) > 50 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) > 50 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) > 220 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) > 220 \text{ GeV} \\ m(\tilde{H}) > 200 \text{ GeV} \\ m(\tilde{g}) > 10^{-4} \text{ eV} \end{array}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
gen. g med.	$ \begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array} $	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	δυ	1.2 TeV 1.1 TeV 1.34 TeV 1.3 TeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) \! < \! 600 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) < \! 350 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) \! < \! 400 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) \! < \! 300 \mathrm{GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
direct production	$ \begin{array}{l} \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \rightarrow b \tilde{\chi}_{1}^{0} \\ \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \rightarrow t \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{light}), \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{light}), \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{medium}), \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{medium}), \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{heavy}), \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{heavy}), \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (\text{natural GMSB}) \\ \tilde{t}_{2} \tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{split} \tilde{b}_{1} \\ \tilde{b}_{1} \\ \tilde{t}_{1} \\ \tilde{t}_{2} \end{split} $	100-620 GeV 275-430 GeV 110 <mark>-167 GeV</mark> 130-220 GeV 225-525 GeV 225-525 GeV 220-610 GeV 320-660 GeV 90-200 GeV 500 GeV 271-520 GeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) <\!\! 90 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) =\!\! 2 m(\tilde{\chi}_{1}^{0}) \\ m(\tilde{\chi}_{1}^{0}) =\!\! 55 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) =\!\! m(\tilde{t}_{1}) \cdot \! m(\mathcal{W}) \cdot\!\! 50 \mathrm{GeV}, m(\tilde{t}_{1}) <\!\! <\!\! m(\tilde{\chi}_{1}^{0}) \\ m(\tilde{\chi}_{1}^{0}) =\!\! 0 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) =\!\! 150 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) >\!\! 150 \mathrm{GeV} \\ m(\tilde{\chi}_{1}) =\!\! m(\tilde{\chi}_{1}^{0}) +\!\! 180 \mathrm{GeV} \\ \end{array}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8 \text{ TeV}$ partial data	$\sqrt{s} = 8$ full of	8 TeV data			10 ⁻¹ 1	Mass scale [TeV]	1

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

Mass limits summary (2/2)

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

ATLAS Preliminary

St	atus: SUSY 2013						$\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$	$\sqrt{s} = 7, 8 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	-1] Mass limit	0	Reference
E W direct	$ \begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ 1 e, μ	0 0 - 0 0 2 b	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}, m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0})) \\ p = m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) = 0, m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{\pm}) = m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) = 0, \text{ sleptons decoupled} \\ m(\tilde{\chi}_{1}^{\pm}) = m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) = 0, \text{ sleptons decoupled} \\ \end{array} $	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(\tilde{e}, \tilde{\mu}) + \tau($	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$\tilde{\chi}_1^{\pm}$ 270 GeV \tilde{g} 832 GeV $\tilde{\chi}_1^0$ 475 GeV $\tilde{\chi}_1^0$ 1.0 TeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{\pm})\text{-}m(\tilde{\chi}_{1}^{0}) = 160 \text{ MeV}, \ \tau(\tilde{\chi}_{1}^{\pm}) = 0.2 \text{ ns} \\ m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}, \ 10 \ \mu \text{s}{<}\tau(\tilde{g}){<}1000 \text{ s} \\ 10{<}\tan\beta{<}50 \\ 0.4{<}\tau(\tilde{\chi}_{1}^{0}){<}2 \text{ ns} \\ 1.5 {<}c\tau{<}156 \text{ mm}, \ BR(\mu){=}1, \ m(\tilde{\chi}_{1}^{0}){=}108 \text{ GeV} \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \ \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{1}^{0} \rightarrow ee \tilde{v}_{\mu}, e \mu \tilde{v} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \ \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e \tau \tilde{v} \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{t}_{1} t, \ \tilde{t}_{1} \rightarrow bs \end{array} $	$2 e, \mu 1 e, \mu + \tau 1 e, \mu 4 e, \mu 5 e 4 e, \mu 5 d e, \mu + \tau 0 2 e, \mu (SS)$	- 7 jets - - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c c} \tilde{\nu}_{r} & 1.61 \text{ TeV} \\ \tilde{\nu}_{r} & 1.1 \text{ TeV} \\ \tilde{\eta}, \tilde{g} & 1.2 \text{ TeV} \\ \tilde{\chi}_{1}^{\pm} & 760 \text{ GeV} \\ \tilde{\chi}_{1}^{\pm} & 350 \text{ GeV} \\ \tilde{g} & 916 \text{ GeV} \\ \tilde{g} & 880 \text{ GeV} \end{array} $	$\begin{array}{l} \lambda_{311}'=0.10,\lambda_{132}=0.05\\ \lambda_{311}'=0.10,\lambda_{1(2)33}=0.05\\ m(\tilde{q})=m(\tilde{g}),c\tau_{LSP}<1\ \mathrm{mm}\\ m(\tilde{\chi}_{1}^{0})>300\ \mathrm{GeV},\lambda_{121}>0\\ m(\tilde{\chi}_{1}^{0})>80\ \mathrm{GeV},\lambda_{133}>0\\ \mathrm{BR}(t)=\mathrm{BR}(b)=\mathrm{BR}(c)=0\% \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	$ \begin{array}{c} 0 \\ 2 e, \mu (SS) \\ 0 \end{array} $	4 jets 1 b mono-jet $\sqrt{s} =$	Yes Yes 8 TeV	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 800 GeV M* scale 704 GeV 10 ⁻¹ 1	incl. limit from 1110.2693 $m(\chi)$ <80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147

Summary & Outlook

- The ATLAS Collaboration investigated extensively 8 TeV LHC data
- So far no hint of SUSY physics....
 - Strong sparticles production at TeV scale excluded
 - Use simplified models to set limits
 - Focus on smaller cross section process (limits less stringent)
- High Luminosity LHC will allow to explore more search regions

BACK-UP

Why beyond SM searches?

The Standard Model (SM) of elementary particles works pretty well!

- * predictions verified by many experiments at high precision level
- st the higgs boson's discovery completed the picture
- ... but ... still lots of questions not addressed
- stDark Matter (DM) and full gravitation theory not included
- *matter-antimatter asymmetry and barion number conservation
- *naturalness
- *16 order of magnitude between electro-weak (EW) scale and Plank's mass (hierarchy problem)

A Toroidal Lhe Apparatus

$\underbrace{F}_{T} Diphoton + E_T Miss: background$

- QCD-initiated backgrounds (e.g. $pp \rightarrow \gamma\gamma$, $pp \rightarrow \gamma+jet$, $pp \rightarrow dijets$)
 - Jets mis-identified as γ and E_T^{miss} ;
 - Data-driven Model using tight γ + pseudo γ (i.e. 'loose', but not 'tight' γ)+ E_T^{miss} sample;
 - reproducibility confirmed by MC and side-bands samples, control samples normalized to di- γ data
 - in low stat region (SP1,SP2) bkg estimation confirmed by alternative method using relaxed M_{eff} cuts in control region sidebands
- Electroweak-initiated backgrounds (e.g. $pp \rightarrow W \gamma \rightarrow e + \gamma$)
 - Electrons mis-identified as photons, neutrino leads to MET

- Data-driven model using e+'tight' γ events, normalized using rate of e mis-identified as γ in $Z \rightarrow ee$ events, fake factor as a function of pseudorapidity

- Tri-boson production (irreducible) (e.g. $pp \rightarrow Z\gamma\gamma \rightarrow v\overline{v}\gamma\gamma$, $pp \rightarrow W^{\pm}\gamma\gamma \rightarrow I^{\pm}v\gamma\gamma$)
 - Events are produced with real E_T^{miss} and two real γ ; irreducible
 - Control region used to determine normalization of cross sections

Set 3 leptons $+ E_T^{miss}$: selection

SR	$\mathrm{SR0} au\mathrm{a}$	$\mathrm{SR0} au\mathrm{b}$	$\mathrm{SR}1 au$	$\mathrm{SR}2 au\mathrm{a}$	$\mathrm{SR}2 au\mathrm{b}$
flavour/sign	$\ell^+\ell^-\ell^\pm, \ell^+\ell^-\ell'^\pm$	$\ell^{\pm}\ell^{\pm}\ell^{\prime\mp}$	$\tau^{\pm}\ell^{\mp}\ell^{\mp}, \tau^{\pm}\ell^{\mp}\ell'^{\mp}$	$ au au \ell$	$ au^{\pm} au^{\mp}\ell$
<i>b</i> -tagged jet	veto	veto	veto	veto	veto
$E_{\mathrm{T}}^{\mathrm{miss}}$	binned	> 50	> 50	> 50	> 60
other	$m_{ m SFOS}$ binned	$p_{\rm T}^{3^{\rm rd}\ell} > 20$	$p_{\rm T}^{2^{\rm nd}\ell} > 30$	$\max m_{T2} > 100$	$\sum p_{\mathrm{T}}^{\tau} > 110$
—	$m_{\rm T}$ binned	$\Delta \phi_{\ell\ell} \le 1.0$	$\sum p_{\mathrm{T}}^{\ell} > 70$	—	$70 < m_{\tau \tau} < 120$
—	—	—	$m_{\ell \tau} < 120$	—	—
—	—	—	m_{ee} Z-veto	—	—
Target model	$\tilde{\ell}, WZ$ -mediated	Wh-mediated	Wh-mediated	$ ilde{ au}_L$ -mediated	Wh-mediated
Dominant background	WZ, tt	tt, VVV	WZ, tt	WZ, tt	WZ, tt

Set 3 leptons $+ E_T^{miss}$: pMSSM

Search for direct production of $\tilde{\chi}^{\pm_1}$ and $\tilde{\chi}^{0_2}$ in 3 final state leptons: pMSSM interpretation

Les Rencontres de Physique de la Vallée d'Aoste 2014

limited sensitivity for

 $M1 \sim M2 < \mu$ due to small mass

difference between $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{o}_{2}$ and

the LSP

R-parity violation search

The proton stability forbids simultaneous lepton and baryon number violation, but no

Long lived sleptons

In the GMSB models the NLSP stau may be long lived and decay outside the detector Long-lived $\tilde{\tau}_1$ s appear as if they are heavy muons, charged and penetrating

 10^{2}

- Background mainly composed of mis-measured high p_T muons, estimated from data
- Selection mainly based on quality cuts
- $\vec{\tau}_1$ mass estimated using $m = p / (\gamma \beta)$
 - $\checkmark \beta$ is estimated using the time of flight (calorimeters and muon system)
 - $\checkmark p$ estimated from the particle track
- ✓ 2 candidates search matched SM expectations

Long lived stans excluded for masses below 402-347 GeV for tan β =5-50. Model independent limits also set for :

- directly produced long-lived sleptons (below 342 Gev for small mass difference between the
- light sleptons and the stan, and below 300 GeV for mass splittings of 90 GeV);
- directly produced long lived stan excluded for mass below 267 GeV.
- neutralinos decaying to long-lived stans excluded for masses below 475 GeV.

31

