Higgs Physics beyond the Standard Model

Matthias Neubert

Mainz Institute for Theoretical Physics Johannes Gutenberg University

Les Rencontres de Physique de La Vallée d'Aoste La Thuile, 23 February - 1 March 2014

Precision Physics, Fundamental Interactions and Structure of Matter

ERC Advanced Grant (EFT4LHC) An Effective Field Theory Assault on the Zeptometer Scale: Exploring the Origins of Flavor and Electroweak Symmetry Breaking

The **hierarchy problem** and the **origin of flavor** are two major, unsolved mysteries of fundamental physics

- connected to deep questions such as the origin of mass, the stability of the electroweak scale, the matter-antimatter asymmetry, the origin of fermion generations, and the reason for the hierarchies observed in the fermion sector
- we do not understand the SM until we understand these puzzles (both rooted in Higgs Yukawa interactions)

Higgs and flavor physics provide unique opportunities to probe the **structure of electroweak interactions at the quantum level**, thereby offering sensitive probes of physics beyond the SM

Higgs and flavor physics as indirect BSM probes

Possible solutions to flavor problem explaining $\Lambda_{\text{Higgs}} \ll \Lambda_{\text{flavor}}$:

(i) $\Lambda_{UV} \gg 1 \text{ TeV}$: Higgs fine tuned, new particles too heavy for LHC

(ii) $\Lambda_{UV} \approx 1 \text{ TeV}$: quark flavor-mixing protected by a flavor symmetry

Hierarchies from geometry

Randall-Sundrum (RS) models with a warped extra dimension address, at the same time, the **hierarchy problem** and the **flavor puzzle** (hierarchies seen in the spectrum of quark masses and mixing angles)

Localization of fermions in extra dimension depends exponentially on O(1) parameters related to the **5D bulk masses**. Overlap integrals $F(Q_L)$, $F(q_R)$ with Higgs profile are **exponentially small** for light quarks, while O(1) for top quark

SM mass matrices can be written as: Huber (2003)

$$\boldsymbol{m}_{q}^{\mathrm{SM}} = \frac{v}{\sqrt{2}} \operatorname{diag} \left[F(Q_{i}) \right] \boldsymbol{Y}_{q} \operatorname{diag} \left[F(q_{i}) \right] =$$

where \mathbf{Y}_q with q = u,d are structureless, complex Yukawa matrices with O(1) entries, and $F(Q_i) \ll F(Q_j)$, $F(q_i) \ll F(q_j)$ for i < j

- in analogy to seesaw mechanism, matrices of this form give rise to hierarchical mass eigenvalues and mixing matrices
- hierarchies can be adjusted by O(1) variations of bulk mass parameters

Warped-space Froggatt-Nielsen mechanism!

Casagrande et al. (2008); Blanke et al. (2008)

Kaluza-Klein (KK) excitations of SM particles live close to the IR brane

Davoudiasl, Hewett, Rizzo (1999); Pomarol (1999)

RS-GIM protection of FCNCs

- Tree-level quark FCNCs induced by virtual exchange of Kaluza-Klein (KK) gauge bosons (including gluons!)
 Huber (2003); Burdman (2003); Agashe et al. (2004); Casagrande et al. (2008)
- Resulting FCNC couplings depend on same exponentially small overlap integrals $F(Q_L)$, $F(q_R)$ that generate fermion masses
- FCNCs involving light quarks are strongly suppressed: **RS-GIM mechanism** Agashe et al. (2004)

This mechanism suffices to suppress most of the dangerous FCNC couplings!

Example: Rare leptonic $B_{s/d} \rightarrow \mu^+ \mu^-$ decays

Rare decays $B_{d,s} \rightarrow \mu^+ \mu^-$ could be significantly affected, but RS-GIM protection is sufficient to prevent too large deviations from SM:

Recent LHC(b) results on $B_s \rightarrow \mu^+ \mu^-$ begin cutting into the interesting parameter space!

Example: Rare leptonic $B_{s/d} \rightarrow \mu^+ \mu^-$ decays

Rare decays $B_{d,s} \rightarrow \mu^+ \mu^-$ could be significantly affected, but RS-GIM protection is sufficient to prevent too large deviations from SM:

Recent LHC(b) results on $B_s \rightarrow \mu^+ \mu^-$ begin cutting into the interesting parameter space!

Higgs Properties as an Indirect Probe for New Physics

Goertz, Haisch, MN: arXiv:1112.5099 (PLB) Carena, Casagrande, Goertz, Haisch, MN: arXiv:1204.0008 (JHEP) Malm, MN, Novotny, Schmell: arXiv:1303.5702 (JHEP) Hahn, Hörner, Malm, MN, Novotny, Schmell: arXiv:1312.5731

Higgs physics as an indirect BSM probe

Higgs discovery marks the birth of the **hierarchy problem**:

- one of the main motivations for physics beyond the SM
- detailed study of Higgs properties (mass, width, cross section, branching fractions) will help to probe whether the Higgs sector is as simple as predicted by the SM
- Higgs couplings to photons and gluons are loop-suppressed in the SM and hence are particularly sensitive to the presence of new particles

In RS models, **large number of bulk fermionic fields** in 5D theory gives rise to large loop effects, which change the effective hgg and $h\gamma\gamma$ couplings

- KK towers of light quarks contribute as much as those of heavy quarks
- effect even more pronounced in models with custodial protection

Much like flavor physics, precision Higgs physics probes quantum effects of new particles!

Higgs physics as an indirect BSM probe

RS model is an effective theory defined with a **physical, 5D positiondependent cutoff** - the warped Planck scale:

$$\Lambda_{\rm UV}(z) \sim M_{\rm Pl} \frac{R}{z} = \Lambda_{\rm TeV} \frac{R'}{z}$$

- for loop graphs including a Higgs boson as an external particle, the warped Planck scale is in the several TeV range (since z≈R')
- two physically different variants of the RS model can be defined, depending on whether the structure of the Higgs boson as a 5D bulk field can be resolved by the high-momentum modes of the theory, i.e., whether the inverse 5D Higgs width v/η (with η«1) is larger or smaller than the cutoff scale:

 $M_{\rm KK} \ll \frac{v}{\eta} \ll \Lambda_{\rm TeV}$ (narrow bulk Higgs)

Carena, Casagrande, Goertz, Haisch, MN (2012) Delaunay, Kamenik, Perez, Randall (2012) Malm, MN, Novotny, Schmell: arXiv:1303.5702

New physics in Higgs decays: 3 portals

In any extension of the Standard Model, new-physics contributions can affect the measured rates for Higgs production and decay in three ways:

$$(\sigma \cdot BR)(pp \to h \to VV) = \sigma(pp \to h) / \frac{\Gamma(H \to VV)}{\Gamma(h \to \text{anything})}$$

- Higgs production cross section (~90% gluon fusion, <10% vectorboson fusion, ~few % VH prod.)
- Higgs **decay rate** to the observed final state (here VV)
- total Higgs width (sensitive to h→bb, h→WW, also h→invisible)

Higgs decay rates to WW* and ZZ*

Four different sources of effects from new physics:

- modification of Higgs vev: κ_v
- modification of Higgs coupling to gauge-boson pairs: κ_W
- modification of W- and Z-boson couplings to fermions: κ_{Γ}
- contribution of heavy KK bosons

Expression for the decay rate:

$$\Gamma(h \to WW^*) = \frac{m_H^3}{16\pi\kappa_v^2 v_{\rm SM}^2} \frac{\kappa_{\Gamma}\Gamma_W}{\pi m_W} \left\{ \kappa_W g\left(\frac{m_W^2}{m_H^2}\right) - \frac{m_H^2}{2M_{\rm KK}^2} \left(1 - \frac{1}{L}\right) h\left(\frac{m_W^2}{m_H^2}\right) \right\}$$

Malm, MN, Schmell: in preparation

Higgs decay rates to WW* and ZZ*

Four different sources of effects from new physics:

- modification of Higgs vev: κ_v
- modification of Higgs coupling to gauge-boson pairs: κ_W
- modification of W- and Z-boson couplings to fermions: κ_{Γ}
- contribution of heavy KK bosons

Expression for the decay rate:

$$\Gamma(h \to WW^*) = \frac{m_H^3}{16\pi\kappa_v^2 v_{\rm SM}^2} \frac{\kappa_{\Gamma}\Gamma_W}{\pi m_W} \left\{ \kappa_W g\left(\frac{m_W^2}{m_H^2}\right) - \frac{m_H^2}{2M_{\rm KK}^2} \left(1 - \frac{1}{L}\right) h\left(\frac{m_W^2}{m_H^2}\right) \right\}$$

Malm, MN, Schmell: in preparation

Correction factors:

$$\begin{split} \kappa_v &= 1 + \frac{Lm_W^2}{4M_{\rm KK}^2} \,, \qquad \kappa_{\Gamma} = 1 - \frac{m_W^2}{4LM_{\rm KK}^2} \,, \qquad \kappa_W = 1 - \frac{m_W^2}{2M_{\rm KK}^2} \left(L - 1 + \frac{1}{2L}\right) \\ &\left(\text{with:} \quad L = \ln(M_{\rm Pl}/\Lambda_{\rm TeV}) \approx 34\right) \end{split}$$

$h \rightarrow \gamma \gamma$ decay rate (details of the calculation)

Decay $h \rightarrow \gamma \gamma$ mediated by loops of gauge bosons (+ KK modes) and fermions (+ KK modes):

Bosonic contribution expressed in terms of 5D gauge-boson propagators:

$$\begin{split} i\mathcal{A}(h\to\gamma\gamma) &= -\frac{2\tilde{m}_W^2}{v} \, 2\pi e^2 \, \epsilon^*_\mu(k_1) \, \epsilon^*_\nu(k_2) \, \eta^{\alpha\beta} \int \frac{d^d p}{(2\pi)^d} \int_{\epsilon}^1 dt \, \delta^\eta(t-1) \, \frac{2\pi}{L} \int_{\epsilon}^1 \frac{dt_1}{t_1} \\ &\times \left[\frac{2\pi}{L} \int_{\epsilon}^1 \frac{dt_2}{t_2} \, 2V^{\gamma\mu\lambda\rho\nu\delta} \, D^{\xi\to\infty}_{W,\alpha\gamma}(t,t_1,p+k_1) \, D^{\xi\to\infty}_{W,\lambda\rho}(t_1,t_2,p) \, D^{\xi\to\infty}_{W,\delta\beta}(t_2,t,p-k_2) \right. \\ &\left. + \left(2\eta^{\gamma\delta}\eta^{\mu\nu} - \eta^{\delta\nu}\eta^{\gamma\mu} - \eta^{\nu\gamma}\eta^{\mu\delta} \right) \, D^{\xi\to\infty}_{W,\alpha\gamma}(t,t_1,p+k_1) \, D^{\xi\to\infty}_{W,\beta\delta}(t_1,t,p-k_2) \right] \end{split}$$

$h \rightarrow \gamma \gamma$ decay rate (details of the calculation)

Decay $h \rightarrow \gamma \gamma$ mediated by loops of gauge bosons (+ KK modes) and fermions (+ KK modes):

Parameterization of the decay amplitude:

$$\mathcal{A}(h \to \gamma \gamma) = C_{1\gamma} \frac{\alpha_e}{6\pi v} \langle \gamma \gamma | F_{\mu\nu} F^{\mu\nu} | 0 \rangle - C_{5\gamma} \frac{\alpha_e}{4\pi v} \langle \gamma \gamma | F_{\mu\nu} \tilde{F}^{\mu\nu} | 0 \rangle$$

$h \rightarrow \gamma \gamma$ decay rate (details of the calculation)

Exact result for $C_{1\gamma}^{W}$ expressed in terms of a single 5D propagator:

$$C_{1\gamma}^{W} = -3\pi \tilde{m}_{W}^{2} \left[T_{W}(0) + 6 \int_{0}^{1} dx \int_{0}^{1-x} dy \left(1 - 2xy\right) T_{W}(-xym_{h}^{2}) \right]$$

with:

Hahn, Hörner, Malm, MN, Novotny, Schmell: arXiv:1312.5731

$$T_W(-p^2) = \int_{\epsilon}^{1} dt \,\delta^{\eta}(t-1) \,B_W(t,t;-p^2-i0) = B_W(1,1;-p^2-i0) + \mathcal{O}(\eta)$$
$$D_{W,\mu\nu}^{\xi}(t,t';p) = B_W(t,t';-p^2-i0) \left(\eta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2}\right) + B_W(t,t';-p^2/\xi-i0) \frac{p_{\mu}p_{\nu}}{p^2}$$

Results for bosonic contributions:

$$C_{1\gamma}^{W} = -\frac{21}{4} \left[\kappa_{W} A_{W}(\tau_{W}) + \nu_{W} \right] + \mathcal{O}\left(\frac{v^{4}}{M_{KK}^{4}}\right), \qquad C_{5\gamma}^{W} = 0$$

$$\kappa_{W} = 1 - \frac{m_{W}^{2}}{2M_{KK}^{2}} \left(L - 1 + \frac{1}{2L}\right), \qquad \nu_{W} = \frac{m_{W}^{2}}{2M_{KK}^{2}} \left(L - 1 + \frac{1}{2L}\right)$$

Higgs production in gluon fusion

Results for fermionic contributions (quarks and charged leptons):

$$\begin{split} C_{1\gamma}^{q} &\approx \left[1 - \frac{v^{2}}{3M_{\mathrm{KK}}^{2}} \operatorname{Re} \frac{(\boldsymbol{Y}_{u} \boldsymbol{Y}_{u}^{\dagger} \boldsymbol{Y}_{u})_{33}}{(\boldsymbol{Y}_{u})_{33}}\right] N_{c} Q_{u}^{2} A_{q}(\tau_{t}) + N_{c} Q_{d}^{2} A_{q}(\tau_{b}) + \sum_{q=u,d} N_{c} Q_{q}^{2} \operatorname{Re} \operatorname{Tr} g(\boldsymbol{X}_{q}) \\ C_{5\gamma}^{q} &\approx -\frac{v^{2}}{3M_{\mathrm{KK}}^{2}} \operatorname{Im} \left[\frac{(\boldsymbol{Y}_{u} \boldsymbol{Y}_{u}^{\dagger} \boldsymbol{Y}_{u})_{33}}{(\boldsymbol{Y}_{u})_{33}} \right] N_{c} Q_{u}^{2} B_{q}(\tau_{t}) + \sum_{q=u,d} N_{c} Q_{q}^{2} \operatorname{Im} \operatorname{Tr} g(\boldsymbol{X}_{q}) \\ C_{1\gamma}^{l} + i C_{5\gamma}^{l} &\approx Q_{e}^{2} \operatorname{Tr} g(\boldsymbol{X}_{e}) \end{split} \qquad \begin{aligned} \boldsymbol{X}_{q} &= \frac{v}{\sqrt{2}M_{\mathrm{KK}}} \sqrt{\boldsymbol{Y}_{q} \boldsymbol{Y}_{q}^{\dagger}} \\ 0 &\leq |(\boldsymbol{Y}_{f})_{ij}| \leq y_{\star} \end{aligned}$$

3.0

Hahn, Hörner, Malm, MN, Novotny, Schmell: arXiv:1312.5731

with:

$$g(\boldsymbol{X}_q)\big|_{\text{brane Higgs}} = \boldsymbol{X}_q \tanh \boldsymbol{X}_q - \boldsymbol{X}_q \tanh 2\boldsymbol{X}_q$$

$$g(\boldsymbol{X}_q) \Big|_{\text{narrow bulk Higgs}} = \boldsymbol{X}_q \tanh \boldsymbol{X}_q$$

difference due to "resonant" contribution from high-mass KK modes (~1/ η) near the cutoff

Results depend on very few parameters only:

$$M_{\rm KK}, \qquad L, \qquad \left\langle \operatorname{Tr} \boldsymbol{Y}_f \boldsymbol{Y}_f^{\dagger} \right\rangle = N_g^2 \frac{y_{\star}^2}{2}, \qquad \left\langle \frac{\left(\boldsymbol{Y}_u \boldsymbol{Y}_u^{\dagger} \boldsymbol{Y}_u\right)_{33}}{\left(\boldsymbol{Y}_u\right)_{33}} \right\rangle = (2N_g - 1) \frac{y_{\star}^2}{2}$$

Extended RS model with **custodial symmetry** protecting the *T* parameter, the left-handed $Zb\overline{b}$ couplings and flavor-violating *Z*-boson couplings

Bulk symmetry group: $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_X \times P_{LR}$

Representations of quark multiplets:

$$Q_{L} = \begin{pmatrix} u_{L}^{(+)} \frac{2}{3} & \lambda_{L}^{(-)} \frac{5}{3} \\ d_{L}^{(+)} - \frac{1}{3} & u_{L}^{'(-)} \frac{2}{3} \end{pmatrix}_{\frac{2}{3}}^{2}, \qquad u_{R}^{c} = \left(u_{R}^{c\,(+)} \frac{2}{3} \right)_{\frac{2}{3}}^{2}$$
$$\mathcal{T}_{R} = \mathcal{T}_{1R} \oplus \mathcal{T}_{2R} = \begin{pmatrix} \Lambda_{R}^{'(-)} \frac{5}{3} \\ U_{R}^{'(-)} \frac{2}{3} \\ D_{R}^{'(-)} - \frac{1}{3} \end{pmatrix}_{\frac{2}{3}}^{2} \oplus \left(D_{R}^{(+)} - \frac{1}{3} & U_{R}^{(-)} \frac{2}{3} & \Lambda_{R}^{(-)} \frac{5}{3} \right)_{\frac{2}{3}}^{2}$$

Ratio $R_h = \frac{\sigma(gg \to h)_{RS}}{\sigma(gg \to h)_{SM}}$ in RS model with **custodial symmetry**:

Ratio $R_{\gamma\gamma} \equiv \frac{(\sigma \cdot BR)(pp \rightarrow h \rightarrow \gamma\gamma)_{RS}}{(\sigma \cdot BR)(pp \rightarrow h \rightarrow \gamma\gamma)_{SM}}$ compared with data from ATLAS and CMS:

Ratio $R_{\gamma\gamma} \equiv \frac{(\sigma \cdot BR)(pp \to h \to \gamma\gamma)_{RS}}{(\sigma \cdot BR)(pp \to h \to \gamma\gamma)_{SM}}$ in RS model with **custodial symmetry**:

Strong correlation between $R_{\gamma\gamma}$ and R_{ZZ}

Strong correlation of the predictions for $R_{\gamma\gamma}$ and R_{ZZ} is observed!

Parameter scan of model points satisfying the bounds from electroweak precision tests:

More precise measurements at LHC and ILC will allow one to differentiate between different variants of RS models

Conclusions

- Higgs phenomenology provides a superb laboratory for probing new physics in the EWSB sector at the quantum level
- Much like rare FCNC processes, Higgs production in gluon fusion and Higgs decays into two photons are loop-suppressed processes, which are sensitive to new heavy particles
- Warped extra-dimension models provide an appealing framework for addressing the hierarchy problem and the flavor puzzle within the same geometrical approach
- Find that the contribution of the Kaluza-Klein towers of SM quarks and gauge bosons are universal and given entirely in terms of fundamental 5D Yukawa matrices and KK mass scale
- Effects are enhanced by the large multiplicity of 5D fermion states and probe regions of parameter space not accessible to direct searches

BACKUP SLIDES

Representations of lepton multiplets

Extended RS model with **custodial symmetry** protecting the *T* parameter, the left-handed $Zb\overline{b}$ couplings and flavor-violating *Z*-boson couplings

Bulk symmetry group: SU(3)_c x SU(2)_L x SU(2)_R x U(1)_X x P_{LR}

Representations of lepton multiplets: minimal model

$$L_L = \begin{pmatrix} \nu_{L \ 0}^{(+)} \\ e_{L \ -1}^{(+)} \end{pmatrix}_{-\frac{1}{2}}, \qquad L_R^c = \begin{pmatrix} e_{R \ -1}^{c(+)} \\ N_{R \ 0}^{(-)} \end{pmatrix}_{-\frac{1}{2}}$$

→ used as default

Representations of lepton multiplets

Extended RS model with **custodial symmetry** protecting the *T* parameter, the left-handed $Zb\overline{b}$ couplings and flavor-violating *Z*-boson couplings

Bulk symmetry group: SU(3)_c x SU(2)_L x SU(2)_R x U(1)_X x P_{LR}

Representations of lepton multiplets: extended model

$$\xi_{1L} = \begin{pmatrix} \nu_{L \ 0}^{(+)} & \psi_{L \ 1}^{(-)} \\ e_{L \ -1}^{(+)} & \nu_{L \ 0}^{\prime(-)} \end{pmatrix}_{0}, \qquad \xi_{2R} = \begin{pmatrix} \nu_{R \ 0}^{c(+)} \\ e_{R \ 0}^{c(+)} \\ 0 \end{pmatrix}_{0},$$

$$\xi_{3R} = \mathcal{T}_{3R} \oplus \mathcal{T}_{4R} = \begin{pmatrix} \Psi_{R \ 1}^{\prime(-)} \\ N_{R \ 0}^{\prime(-)} \\ E_{R \ -1}^{\prime(-)} \end{pmatrix}_{0} \oplus \begin{pmatrix} E_{R \ -1}^{(+)} & N_{R \ 0}^{(-)} & \Psi_{R \ 1}^{(-)} \end{pmatrix}_{0}$$

$$L_L = \begin{pmatrix} \nu_{L \ 0}^{(+)} \\ e_{L \ -1}^{(+)} \end{pmatrix}_{-\frac{1}{2}}, \qquad L_R^c = \begin{pmatrix} e_{R \ -1}^{c(+)} \\ N_{R \ 0}^{(-)} \end{pmatrix}_{-\frac{1}{2}}$$

$gg \rightarrow h$ production (details of the calculation)

Definition of the $gg \rightarrow h$ amplitude:

$$\mathcal{A}(gg \to h) = C_1 \,\frac{\alpha_s}{12\pi v} \,\langle \, 0 \, | G^a_{\mu\nu} \, G^{\mu\nu,a} | gg \rangle - C_5 \,\frac{\alpha_s}{8\pi v} \,\langle \, 0 \, | G^a_{\mu\nu} \, \widetilde{G}^{\mu\nu,a} | gg \rangle$$

Expression in terms of 5D propagators:

$$\mathcal{A}(gg \to h) = ig_s^2 \,\delta^{ab} \sum_{q=u,d} \int \frac{d^d p}{(2\pi)^d} \int_{\epsilon}^1 dt_1 \int_{\epsilon}^1 dt_2 \int_{\epsilon}^1 dt \,\delta_h^{\eta}(t-1)$$

$$\times \operatorname{Tr} \left[\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \mathbf{Y}_q \\ \mathbf{Y}_q^{\dagger} & 0 \end{pmatrix} \mathbf{S}^q(t, t_2; p-k_2) \, \boldsymbol{\xi}(k_2) \, \mathbf{S}^q(t_2, t_1; p) \, \boldsymbol{\xi}(k_1) \, \mathbf{S}^q(t_1, t; p+k_1) \right]$$

with:

$$i\mathbf{S}^{q}(t,t';p) = \int d^{4}x \, e^{ip \cdot x} \left\langle 0 \right| T \left(\mathcal{Q}_{L}(t,x) + \mathcal{Q}_{R}(t,x) \right) \left(\bar{\mathcal{Q}}_{L}(t',0) + \bar{\mathcal{Q}}_{R}(t',0) \right) \left| 0 \right\rangle$$
$$= \left[\mathbf{\Delta}_{LL}^{q}(t,t';-p^{2}) \not p + \mathbf{\Delta}_{RL}^{q}(t,t';-p^{2}) \right] P_{R} + (L \leftrightarrow R)$$

Malm, MN, Novotny, Schmell: arXiv:1303.5702

 $llll t_1 k_1$

gg→h production (details of the calculation)

Exact analytic results for Wilson coefficients in terms of an integral over a single 5D propagator function:

$$\begin{aligned} C_{1\gamma}^{q} &= 3N_{c} \sum_{f=u,d} Q_{q}^{2} \int_{0}^{1} dx \int_{0}^{1-x} dy \left(1 - 4xy\right) \left[T_{+}^{q}(-xym_{h}^{2}) - T_{+}^{q}(\Lambda_{\text{TeV}}^{2})\right] \\ C_{5\gamma}^{q} &= 2N_{c} \sum_{f=u,d} Q_{q}^{2} \int_{0}^{1} dx \int_{0}^{1-x} dy \left[T_{-}^{q}(-xym_{h}^{2}) - T_{-}^{q}(\Lambda_{\text{TeV}}^{2})\right] \end{aligned}$$

where:

$$T_{+}(p_{E}^{2}) = -\sum_{q=u,d} \frac{v}{\sqrt{2}} \int_{\epsilon}^{1} dt \,\delta_{h}^{\eta}(t-1) \operatorname{Tr} \left[\begin{pmatrix} 0 & \boldsymbol{Y}_{q} \\ \boldsymbol{Y}_{q}^{\dagger} & 0 \end{pmatrix} \frac{\boldsymbol{\Delta}_{RL}^{q}(t,t;p_{E}^{2}) + \boldsymbol{\Delta}_{LR}^{q}(t,t;p_{E}^{2})}{2} \right]$$
$$T_{-}(p_{E}^{2}) = -\sum_{q=u,d} \frac{v}{\sqrt{2}} \int_{\epsilon}^{1} dt \,\delta_{h}^{\eta}(t-1) \operatorname{Tr} \left[\begin{pmatrix} 0 & \boldsymbol{Y}_{q} \\ \boldsymbol{Y}_{q}^{\dagger} & 0 \end{pmatrix} \frac{\boldsymbol{\Delta}_{RL}^{q}(t,t;p_{E}^{2}) - \boldsymbol{\Delta}_{LR}^{q}(t,t;p_{E}^{2})}{2i} \right]$$

Contributions at large momenta (near cutoff) vanish if the Higgs is a bulk field, but not if it lives on the IR brane!

Impact of higher-dimensional hgg operators

Consider a dimension-6 operator localized on the IR brane, which can mediate $gg \rightarrow h$ at tree level with effective strength c_{eff} (could be O(1) for strong coupling):

$$S_{\text{eff}} = \int d^4x \int_{-r\pi}^{r\pi} dx_5 \, c_{\text{eff}} \,\delta(|x_5| - r\pi) \,\frac{\Phi^{\dagger}\Phi}{\Lambda_{\text{TeV}}^2} \,\frac{g_{s,5}^2}{4} \,\mathcal{G}^a_{\mu\nu} \,\mathcal{G}^{\mu\nu,a} + \dots$$

Resulting effective Lagrangian:

$$\mathcal{L}_{\text{eff}} = \frac{c_{\text{eff}}}{\Lambda_{\text{TeV}}^2} \mathcal{O}_{\text{eff}} \qquad \text{with} \qquad \mathcal{O}_{\text{eff}} = \Phi^{\dagger} \Phi \, \frac{g_s^2}{4} \, G_{\mu\nu}^a \, G^{\mu\nu,a} \ni \frac{g_s^2 v^2}{8} \left(1 + \frac{h(x)}{v} \right)^2 G_{\mu\nu}^a \, G^{\mu\nu,a}$$

Resulting contribution to Wilson coefficient C₁:

$$\Delta C_1 = \frac{3c_{\text{eff}}}{4} \left(\frac{4\pi v}{\Lambda_{\text{TeV}}}\right)^2 \approx c_{\text{eff}} \left(\frac{2.7 \text{ TeV}}{\Lambda_{\text{TeV}}}\right)^2$$

for Λ_{TeV} ~20-50 TeV, as is appropriate for KK masses in 5-15 TeV range, this effect is very small !