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Higgs and flavor physics as indirect BSM probes

The hierarchy problem and the origin of flavor are two major, 
unsolved mysteries of fundamental physics


• connected to deep questions such as the origin of mass, the 
stability of the electroweak scale, the matter-antimatter 
asymmetry, the origin of fermion generations, and the 
reason for the hierarchies observed in the fermion sector


• we do not understand the SM until we understand these 
puzzles (both rooted in Higgs Yukawa interactions)


Higgs and flavor physics provide unique opportunities to probe the 
structure of electroweak interactions at the quantum level, 
thereby offering sensitive probes of physics beyond the SM
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Higgs and flavor physics as indirect BSM probes

electroweak symmetry 
breaking

ΛHiggs  < 1 TeV Λflavor > 103 TeV 

no fine-tuning bounds on flavor mixing
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Possible solutions to flavor problem explaining ΛHiggs ≪ Λflavor :


(i)  ΛUV ≫ 1 TeV:  Higgs fine tuned, new particles too heavy for LHC

(ii)  ΛUV ≈ 1 TeV:   quark flavor-mixing protected by a flavor symmetry
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Hierarchies from geometry



Flavor structure in RS models

R’R

ultraviolet 

(UV) brane

infrared 

(IR) brane

z

ds2 =
⇤

R

z

⌅2 �
�µ⇥dxµdx⇥ � dz2

⇥

Randall, Sundrum (1999)

Randall-Sundrum (RS) models with a warped extra dimension address, at 
the same time, the hierarchy problem and the flavor puzzle (hierarchies 
seen in the spectrum of quark masses and mixing angles) 
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UV brane IR brane

F(tR)

F(Q3L)

Higgs,

Yukawas

F(dR)
7 14 21 280

light quarks  heavy quarks

Flavor structure in RS models

Grossman, Neubert (1999); Ghergetta, Pomarol (2000)

Localization of fermions in extra dimension depends exponentially on O(1) 
parameters related to the 5D bulk masses. Overlap integrals F(QL), F(qR) with 
Higgs profile are exponentially small for light quarks, while O(1) for top quark
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Flavor structure in RS models

SM mass matrices can be written as: 

where Yq with q = u,d  are structureless, complex Yukawa matrices with O(1) 
entries, and F(Qi) ≪ F(Qj), F(qi) ≪ F(qj) for i < j !
• in analogy to seesaw mechanism, matrices 

of this form give rise to hierarchical mass 
eigenvalues and mixing matrices


• hierarchies can be adjusted by O(1) 
variations of bulk mass parameters


• yet the CKM phase is predicted to be O(1) 
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Warped-space Froggatt-Nielsen mechanism!

Huber (2003)

Casagrande et al. (2008); Blanke et al. (2008)
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warped extra dimension

AdS5 geometry

Kaluza-Klein (KK) excitations of SM particles live close to the IR brane

37

UV brane IR brane

7 14 21 280

Kaluza-Klein (KK) 

modes

light quarks  heavy quarks

warped extra dimension

AdS5 geometry

Flavor structure in RS models

Davoudiasl, Hewett, Rizzo (1999); Pomarol (1999)

6

ln(z/R)



RS-GIM protection of FCNCs

• Tree-level quark FCNCs induced by virtual exchange of Kaluza-Klein (KK) 
gauge bosons (including gluons!)


• Resulting FCNC couplings depend on same exponentially small overlap 
integrals F(QL), F(qR) that generate fermion masses


• FCNCs involving light quarks are strongly suppressed: RS-GIM mechanism                                    
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This mechanism suffices to suppress most  
of the dangerous FCNC couplings!

Huber (2003); Burdman (2003); Agashe et al. (2004); 
Casagrande et al. (2008)

Agashe et al. (2004)
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Example: Rare leptonic Bs/d→μ+μ- decays

Recent LHC(b) results on Bs→μ+μ- begin cutting into the interesting parameter space!

Bauer, Casagrande, Haisch, MN (2009)

see also: Blanke et al. (2008)

Rare decays Bd,s→μ+μ- could be significantly affected, but RS-GIM protection is 
sufficient to prevent too large deviations from SM:

95% excl. û LHCb

0 2 4 6 8 10 12
0

5

10

15

20

BHBd Æ m+m-L @10-10D

B
HB s
Æ
m+
m-
L@1

0-
9 D

SUSY models for comparison

Straub (2012)

8



Example: Rare leptonic Bs/d→μ+μ- decays

Recent LHC(b) results on Bs→μ+μ- begin cutting into the interesting parameter space!

Bauer, Casagrande, Haisch, MN (2009)

see also: Blanke et al. (2008)

Rare decays Bd,s→μ+μ- could be significantly affected, but RS-GIM protection is 
sufficient to prevent too large deviations from SM:

95% excl. û LHCb

0 2 4 6 8 10 12
0

5

10

15

20

BHBd Æ m+m-L @10-10D

B
HB s
Æ
m+
m-
L@1

0-
9 D

SUSY models for comparison

Straub (2012)

RS could be the fundamental theory of flavor !
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Higgs Properties as an Indirect Probe 
for New Physics

Carena, Casagrande, Goertz, Haisch, MN: arXiv:1204.0008 (JHEP)
Goertz, Haisch, MN: arXiv:1112.5099 (PLB)

Malm, MN, Novotny, Schmell: arXiv:1303.5702 (JHEP)
Hahn, Hörner, Malm, MN, Novotny, Schmell: arXiv:1312.5731



Higgs physics as an indirect BSM probe

Higgs discovery marks the birth of 
the hierarchy problem:

• one of the main motivations for 

physics beyond the SM

• detailed study of Higgs properties 

(mass, width, cross section, 
branching fractions) will help to 
probe whether the Higgs sector is 
as simple as predicted by the SM


• Higgs couplings to photons and 
gluons are loop-suppressed in the 
SM and hence are particularly 
sensitive to the presence of new 
particles
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Figure 6: Examples of one-loop contributions involving KK excitations that contribute
to the production and the decay of the Higgs boson at leading order of perturbation
theory. See text for details.
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Similar relations hold in the sector of down-type and λ quarks.15 Since the mass of the first
KK up-type quark is already much larger than the Higgs-boson mass, mu

4/MKK = O(a few) ≫
mh/MKK, it is an excellent approximation to replace the function Ah

q (τ
u
n ) by its asymptotic

value of 1 obtained for τu
n ≡ 4 (mu

n)2 /m2
h → ∞.

Before presenting our numerical results for these contributions, we would like to add some
comments about the convergence of the sum in (167). In the SM, the top-quark contribution
to the gg → h amplitude is proportional to yt/mt in the decoupling limit. In this limit the
amplitude can be described by the effective operator h/v Ga

µνG
a µν , whose Wilson coefficient

is related to the QCD β-function. This relationship arises through low-energy theorems ap-
propriate to external Higgs bosons with vanishing momentum [53–56], which apply to any
quantum field theory. In the context of the RS framework they imply that the sum in (167)
must be convergent, because the running of αs can be shown to be logarithmic in warped
extra-dimension models [24, 57–63]. While the finiteness of the effective hgg coupling is thus
guaranteed on general grounds, an explicit calculation of (167) in the KK decomposed 4D
theory turns out to be non-trivial. This is due to the fact that the Higgs VEV induces O(1)
mixings between the various modes of a single KK level [21]. For example, in the up-type
quark sector there are five types of fields, namely u, u′, uc, U ′, and U . Each of them exists in
three different flavors, so that there are altogether 15 KK modes of similar mass in each level.
In the down-type quark sector, one instead ends up with nine modes, while in the minimal
RS model one has six states per KK level in both the up- and the down-type quark sectors
(corresponding to SU(2)L doublets and singlets). Finally, in the λ-type quark sector one again
faces nine KK excitations per level. In contrast, exotic matter is not present in the minimal

15With λ quarks we denote all fermionic KK excitations with electric charge 5/3.

49

Much like flavor physics, precision Higgs physics 
probes quantum effects of new particles!

In RS models, large number of bulk 
fermionic fields in 5D theory gives 
rise to large loop effects, which change 
the effective hgg and hγγ couplings

!
!
!
!

• KK towers of light quarks contribute 
as much as those of heavy quarks


• effect even more pronounced in 
models with custodial protection

9

Casagrande, Goertz, Haisch, 
MN, Pfoh (2010);

Azatov, Toharia, Zhu (2010)



RS model is an effective theory defined with a physical, 5D position-
dependent cutoff - the warped Planck scale: 


• for loop graphs including a Higgs boson as an external particle, the 
warped Planck scale is in the several TeV range (since z≈R’) 

• two physically different variants of the RS model can be defined, 
depending on whether the structure of the Higgs boson as a 5D bulk 
field can be resolved by the high-momentum modes of the theory, i.e., 
whether the inverse 5D Higgs width v/η (with η≪1) is larger or smaller 
than the cutoff scale:

Higgs physics as an indirect BSM probe

10

Delaunay, Kamenik, Perez, Randall (2012)
Malm, MN, Novotny, Schmell: arXiv:1303.5702
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Carena, Casagrande, Goertz, Haisch, MN (2012)



In any extension of the Standard Model, new-physics contributions can 
affect the measured rates for Higgs production and decay in three ways:

New physics in Higgs decays: 3 portals

11

!
• Higgs production cross section 

(~90% gluon fusion, <10% vector-
boson fusion, ~few % VH prod.)


• Higgs decay rate to the observed 
final state (here VV)


• total Higgs width (sensitive to 
h→bb, h→WW, also h→invisible)

(� · BR)(pp ! h ! V V ) = �(pp ! h)
�(H ! V V )

�(h ! anything)



Four different sources of effects from new physics:

Higgs decay rates to WW* and ZZ*

12

!
• modification of Higgs vev: 


• modification of Higgs coupling to 
gauge-boson pairs:


• modification of W- and Z-boson 
couplings to fermions:


• contribution of heavy KK bosons

v
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�
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(e) (f) (g) (h)

(i) (j) (k)

Figure 1: One-loop Feynman diagrams for the process h → γγ. Diagram (a) contains the
fermion loops, while diagrams (b) – (k) show the contributions from the gauge sector in a
general Rξ gauge. Solid lines represent fermion mass eigenstates, wavy lines vector-boson

mass eigenstates W±(n)
µ , dashed lines scalar mass eigenstates ϕ±(n)

W , and dotted lines ghost

mass eigenstates c±(n)
W . The ghost masses and profiles are the same as for the W bosons and

their KK excitations [38].

gauge-invariant superposition of W±
φ and ϕ±. It has been shown in the same reference that

the effect of these heavy scalar particles on the h → γγ amplitude is

Cφ
1γ =

1

8

∞
∑

n=1

vg(n,n)hφφ
(

mφ
n

)2 Aφ(τ
φ
n ) , Cφ

5γ = 0 , (11)

where τφn = 4(mφ
n)

2/m2
h, and the function

Aφ(τ) = 3τ
[

τf(τ)− 1
]

, with f(τ) = arctan2 1√
τ − 1

, (12)

approaches 1 for τ → ∞. In the limit of a very narrow Higgs profile the couplings g(n,n)hφφ

scale like 1/η, while the masses of the heavy scalar particles scale like MKK/η. It follows that
Cφ

1γ = O(η), and hence this contribution decouples in the limit η → 0, as expected. We will
therefore not consider the corresponding Feynman diagrams in our analysis.

3.1 Fermionic contributions to the Wilson coefficients

The one-loop contributions to the h → γγ amplitude due to the exchange of virtual quarks
and leptons can be derived in a straightforward way from analogous results for the quark
contributions to the gg → h amplitude, which were studied in [19–24]. Here we will use
expressions derived in our previous work [24], where a variety of RS models were considered
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h→γγ decay rate (details of the calculation)

13

Decay h→γγ mediated by loops of gauge bosons (+ KK modes) and 
fermions (+ KK modes):


!

Bosonic contribution expressed in terms of 5D gauge-boson propagators:

(a)

t

t1

t2

k1

k2

(b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 1: Relevant diagrams for the process h → γγ, while diagrams obtained by exchanging
two photons and by charge conjugation are omitted. While diagram (a) involves the fermion
loop, diagrams (b)-(k) give the contributions from the W -boson sector in general Rξ gauge.

Within the loop, solid lines represent fermions, wavy lines W -bosons W±(n)
µ , dashed lines

Goldstone bosons ϕ(n)
W and dotted lines ghosts c±(n)

W .

3.1 Issue of gauge invariance

In the SM, a recent paper [2] has thoroughly discussed the ξ-independence of the SM ampli-
tude in dimensional regularization, and has shown that the result agrees with the calculation
performed in the unitary gauge ξ → ∞. In case of the RS model, it is convenient to work
in the KK decomposed theory, where 4D Feynman propagators have the same structure as
in the SM. The Feynman rules and the amplitudes of the diagrams shown in Fig. 1 can be
found in Appendix C. It is straightforward to see that the vertices involving SM photon and
vector W±(n)

µ or ghost c±(n)
W lines are diagonal in the number of KK modes, since the photon

zero-mode profile is flat. Concerning the ϕ±(n)
W scalar, we need to add the diagram with the

Goldstone boson ϕ± coming from the Higgs sector to the corresponding contributions stem-
ming from the 5D field W±

5 . For instance, we can consider the Feynman rule coupling two
scalars to two photons (needed for diagram (f) in Fig. 1)

+

A(0)
µ

A(0)
νW±

5

W∓
5 A(0)

µ

A(0)
νϕ±

ϕ∓

−→ iL4D = 2i e2δnm ηµν ,

which becomes diagonal in the number of modes when both diagrams are combined and when
we use the KK decomposition of W±

5 (5) and decompose the Higgs scalar ϕ± =
∑

n b
W
n ϕ±(n)

W

in terms of a basis that is spanned by the ϕ±(n)
W fields with suitable coefficients bWn [12]. The

right-hand side above then defines the 4D Feynman rule for the mass eigenstates ϕ±(n)
W . Thus,

5



h→γγ decay rate (details of the calculation)
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Parameterization of the decay amplitude:
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5 (5) and decompose the Higgs scalar ϕ± =
∑

n b
W
n ϕ±(n)

W

in terms of a basis that is spanned by the ϕ±(n)
W fields with suitable coefficients bWn [12]. The

right-hand side above then defines the 4D Feynman rule for the mass eigenstates ϕ±(n)
W . Thus,

5

where W±(n)
µ are the KK modes of the vector boson with masses mW

n . The scalar particles

ϕ±(n)
W are unphysical in the sense that they provide the longitudinal degrees of freedom of the

massive W -boson KK modes, thus can be gauged away. Since there is no zero mode of the 5D
field W±

5 due to Dirichlet boundary conditions, the remaining longitudinal degree of freedom

needed for the W -boson zero mode W±(0)
µ is provided by the charged Goldstone bosons from

the Higgs sector, as in the SM.3 The Higgs doublet is given by

Φ(x) =
1√
2

(

−i
√
2ϕ+(x)

v + h(x) + iϕ3(x)

)

, (6)

where the Higgs vacuum expectation value (vev) v has already been separated. Throughout
this paper, we denote the Higgs vev in RS by v, which differs from the SM value vSM ≈ 246GeV
by a small amount [20]. We can decompose the scalar ϕ± into the mass eigenstates ϕ±(n)

W and
further adjust the gauge fixing Lagrangian to cancel mixings between W±

µ and the scalar
degrees of freedom W±

5 and ϕ± [12]. Based on this notation, the contributing Feynman
diagrams are shown in Fig. 1 for a general gauge ξ. In the subsequent Section 3.1, we will
discuss the Rξ gauge invariance of the full amplitude.

In order to include the contributions from the zero modes and the KK tower, it is convenient
to parametrize the h → γγ amplitude by the Wilson coefficients C1γ and C5γ via

A(h → γγ) = C1γ
αe

6πv
⟨γγ|FµνF

µν |0⟩ − C5γ
αe

4πv
⟨γγ|FµνF̃

µν |0⟩ , (7)

where F̃ µν = −1
2ϵ

µναβFαβ with ϵ0123 = −1. For the discussion of the W -boson contributions,
we split the coefficients up into C1γ,5γ = CW

1γ,5γ + Cq
1γ,5γ + C l

1γ,5γ . The quark and leptonic
contributions will be discussed in the phenomenological Section 5, based on the analysis of
[21, 38]. In the following we concentrate on the calculation of CW

1γ,5γ.

Additional diagrams in case of a narrow bulk-Higgs

In our analysis, we will also discuss the case of a Higgs extremely localized towards the IR
brane, where the Higgs width η is subject to the condition (4). In principle, this scenario also

involves diagrams with physical scalar KK modes G±(n)
W that are superpositions of the KK

modes of the Z2-odd scalars of the 5D gauge fields W±
5 and the KK modes of the charged,

scalar components of the 5D Higgs doublet ϕ±. It can be shown that the effect of these scalar
KK modes is [46]

CG±

1γ = −
1

2

∑

n

vg(n,n)hGG

(mG
n )

2
Ah

G(τ
G
n ) , (8)

where τGn = 4(mG
n )

2/m2
h and the function Ah

G(τ) can be found in Appendix A. Since the

couplings g(n,n)hGG cannot compensate [check] the suppression of the KK masses, which behave
like mG

n ∼ β for large β [46], and Ah
G(τ) = 1/4 for τ → ∞, this contribution vanishes in the

limit of a narrow-bulk Higgs scenario. These diagrams can thus be neglected, which we will
do in the following.

3The actual longitudinal degrees of freedom of the W -boson zero- and KK modes are provided by super-
positions of the 4D scalar field ϕ± and the KK excitations of W±

5 , see [12] for further details.
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Exact result for C1γW expressed in terms of a single 5D propagator:
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Before proceeding, we briefly study the behavior of the propagator function in the region of
large space-like momenta. For large Euclidean momenta pE ≫ MKK, this function approaches
an inverse power-law behavior given by

TW (p2E) =
L

2πMKK

1

pE
+O(p−2

E ) . (44)

It follows that both TW (p2E) and pE ∂pETW (p2E) vanish for large Euclidean momenta p2E =
−p2 → ∞, and hence the conditions required for the validity of our relation (32) are indeed
satisfied.

3.5 Analysis of the zero-mode and KK contributions

Our exact expression for the overlap integral TW (−p2) in (42) contains the contribution of the
zero mode – the standard W boson with its modified coupling to the Higgs field – as well as
the infinite tower of KK excitations. It is instructive to isolate the contribution from the zero
mode and the KK tower explicitly. To this end, we expand the exact formula in powers of
v2/M2

KK, using that we need this function for values p2 = O(m2
h) much smaller than the KK

scale M2
KK. We find

T̂W (−p2) =
m2

W

m2
W − p2 − i0

[

1−
m2

W

2M2
KK

(

L

c2ϑ
− 1 +

1

2L

)]

+
m2

W

2M2
KK

(

L

c2ϑ
− 1 +

1

2L

)

+O
(

v4

M4
KK

)

,

(45)
where cϑ = 1 in the minimal RS model. In Section 4.4 we will show that the same result
holds in the custodial RS model, where however the parameter cϑ = 1/

√
2 takes a different

value. In the above result we have replaced the parameter m̃W by the physical W -boson
mass mW using relation (7), which was derived in [10] by solving the eigenvalue equation for
the W -boson profiles and extracting the lowest eigenvalue. In Appendix B, we present an
alternative approach, where the above relation is derived with the help of our expressions for
the 5D gauge-boson propagator.

Based on the formulas above, we can perform the integration over the Feynman parameters
in (32) and find the Wilson coefficient

CW
1γ = −

21

4

[

κWAW (τW ) + νW
]

+O
(

v4

M4
KK

)

, CW
5γ = 0 , (46)

where τW = 4m2
W/m2

h, and the function

AW (τ) =
1

7

[

2 + 3τ + 3τ(2− τ) f(τ)
]

(47)

with f(τ) from (12) approaches 1 for τ → ∞. The first contribution to C1γ arises from the
standard W boson, whose coupling to the Higgs boson is modified, compared with the SM,
by a factor κW times vSM/v. The last factor is accounted for by using the Higgs vev in the
RS model in the definition of the effective operators in (9). The term νW in (46) is due to the
KK excitations. Explicitly, we obtain

κW = 1−
m2

W

2M2
KK

(

L

c2ϑ
− 1 +

1

2L

)

, νW =
m2

W

2M2
KK

(

L

c2ϑ
− 1 +

1

2L

)

. (48)
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the loop integral is performed. Using the results from Appendix A, we extended the form (42)
valid for one fermion generation to the general case of more than one fermion generations. For
η → 0, we find

T+(p
2
E) =

∑

q=u,d

Tr

{
2Xq

sinh 2Xq

[

sinh2Xq +
1

2

(
Zq(p2E)

1 +Zq(p2E)
+

Z†
q (p

2
E)

1 +Z†
q(p2E)

)]}

,

T−(p
2
E) =

∑

q=u,d

Tr

{
2Xq

sinh 2Xq

[
1

2i

(
Zq(p2E)

1 +Zq(p2E)
−

Z†
q (p

2
E)

1 +Z†
q(p2E)

)]}

,

(51)

where the quantity

Zq(p
2
E) =

v2

2M2
KK

tanhXq

Xq
Yq Rq(p̂E)Y

†
q

tanhXq

Xq
RQ(p̂E) (52)

involves a non-trivial product of matrix-valued functions. Note that we have removed any
reference to the matrices X̄q in the final expressions by using the identities Yq f(X̄q) =
f(Xq)Yq and f(X̄q)Y †

q = Y †
q f(Xq), which hold for an arbitrary function f(Xq) that has a

non-singular expansion in powers of X2
q .

We are now ready to derive the final expressions for the loop integrals in (17). The
quantities T±(−m2 − i0) computed using (51) replace the quantity t0 in (44), (45), and (47),
while t1 has already been given in (40). Removing the UV regulator after the integral over
the loop momentum has been performed, we obtain

I+(m
2) =

∑

q=u,d

{

Tr g(Xq) +
1

2
Tr

[
2Xq

sinh 2Xq

(
Zq(−m2)

1 +Zq(−m2)
+

Z†
q (−m2)

1 +Z†
q(−m2)

)]}

,

I−(m
2) =

∑

q=u,d

1

2i
Tr

[
2Xq

sinh 2Xq

(
Zq(−m2)

1 +Zq(−m2)
−

Z†
q(−m2)

1 +Z†
q(−m2)

)]

,

(53)

where m2 ≡ m2 + i0, and the function

g(Xq)
∣∣
brane Higgs

= Xq tanhXq −Xq tanh 2Xq = −
Xq tanhXq

cosh 2Xq
(54)

obeys a non-singular series expansions in powers of X2
q . Note that due to the presence of

strong-interaction phases arising from the analytic continuation from a Euclidean momentum
p2E to −m2 − i0, the functions I±(m2) cannot simply be written in terms of the real and
imaginary parts of a traces over matrices. If instead of the brane-localized Higgs boson we
consider a narrow bulk-Higgs state, then the subtraction term t1 is absent, see (44) and (45).
The expressions in (53) remain valid also in this case, provided we use

g(Xq)
∣∣
narrow bulk Higgs

= Xq tanhXq . (55)

The above equations are the main result of our paper. Up to some small corrections to be
determined below, the first term on the right-hand side of the equation for I+(m2) corresponds
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Results for fermionic contributions (quarks and charged leptons):
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Results depend on very few parameters only:

 difference due to “resonant” contribution from 

high-mass KK modes (~1/η) near the cutoff 
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Figure 3: Excluded regions of parameter space in the minimal RS model, for the brane-
localized Higgs scenario (left) and the narrow bulk-Higgs model (right). The vertical
dashed line denotes the lower bound on Mg(1) obtained from a tree-level analysis of
electroweak precision observables [61].

21
4 AW (τW ) ≈ −4.9. The third line shows the corrections to the Higgs vev and total width,
as parameterized by κh in (76). The upper sign holds for the brane-localized Higgs scenario,
while the lower sign corresponds to the narrow bulk-Higgs case. Above we have used that for
a large set of random complex matrices on average [24]

〈

TrYfY
†
f

〉

= N2
g

y2⋆
2
,

〈

(

YuY
†
u Yu

)

33

(Yu)33

〉

= (2Ng − 1)
y2⋆
2
, (79)

where Ng = 3 is the number of fermion generations. We explicitly see from the first term on
the right-hand side of (78) that the fermionic contributions to the gg → h production process
dominate over those to the h → γγ decay rate and come with opposite sign. Altogether, we
find

Rγγ ≈ 1−
v2

2M2
KK

[

(±9.7− 0.1) y2⋆ + 4.1
]

. (80)

For the case where y∗ = 3 this result is shown by the dashed lines in the figure. Note also
that due to the contribution of the VBF production process the observable Rγγ is bounded
from below in the brane-Higgs case. This explains the behavior for very small MKK values
seen in the left plot in Figure 2. For y∗ = 3, the gg → h production cross section vanishes for
Mg(1) ≈ 3.5TeV, because the new-physics contribution cancels the SM amplitude. However,
due to the VBF production process a non-zero value of Rγγ remains.

Even at the present level of precision, the existing measurements of the observable Rγγ

already provide some interesting constraints on the parameter space of the RS models under
consideration. In Figure 3 we show the regions in the Mg(1) – y⋆ parameter space that are
excluded by the current data at various confidence levels. For instance, for the particular choice
y⋆ = 3 one finds Mg(1) > 8.5TeV at 95% CL for the brane-Higgs model and Mg(1) > 6.4TeV at
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coupling to a bb̄ pair can be well approximated by [19, 22, 23]

κmin.RS
b ≈ 1−

v2

3M2
KK

(YdY
†
d Yd)33

(Yd)33
, κcust.RS

b ≈ 1−
2v2

3M2
KK

(YdY
†
d Yd)33

(Yd)33
. (77)

It is an important goal of future LHC and ILC analyses to determine as many of the
effective Higgs couplings κi as possible from a global fit to the data. A detailed discussion
of the individual effective Higgs couplings to fermions and gauge bosons in the context of RS
models will be presented in a future work [54]. At present, however, the experimental groups
have not yet presented a detailed, model-independent analysis of Higgs couplings [57–59], and
we will thus focus on the ratio Rγγ in the present work. Note also that, in contrast to the
observable Rγγ , the quantities κi and κi5 are not directly observable. The gluon-fusion rate
is proportional to the sum of the absolute squares of κg and κg5, and no observable sensitive
to a different combination of these parameters is experimentally accessible. In the case of
h → γγ decay, it is in principle possible to access the CP-violating coefficient κγ5 by studying
the distribution of the two electron-positron pairs in events in which both photons undergo
nuclear conversions [56], however this will be very challenging experimentally.

Figure 2 shows our predictions for Rγγ obtained in the minimal RS model with a brane-
localized Higgs sector (left plot) and a narrow bulk-Higgs state (right plot). The new-physics
effects arising in these scenarios scale with 1/M2

KK. We find it useful to convert the mass
parameter MKK to the physical mass Mg(1) ≈ 2.45MKK of the lightest KK gluon (or KK
photon) state, which is independent of the details of the localization of the scalar sector and
of the choice of the electroweak gauge group in the bulk [40, 41]. Our numerical results also
depend on the RS volume L = ln(MPl/ΛTeV) and the dimensionless 5D Yukawa matrices Yu,
Yd and Yl. Typical values for L fall in the range 33 – 34, corresponding to ΛTeV ∼ 20 – 50TeV,
and we take L = 33.5 for concreteness. We work with anarchic Yukawa matrices, whose
individual entries are taken to be random complex numbers subject to the condition that
0 ≤ |(Yf)ij| ≤ y⋆. As a further constraint, we impose that these matrices correctly reproduce
the Wolfenstein parameters ρ and η of the unitarity triangle (see [10] for explicit formulae)
and that, with appropriately chosen bulk mass parameters ci, one can reproduce the correct
values for the masses of the SM quarks. The dominant corrections to the gg → h and h → γγ
amplitudes arise from fermionic loop contributions and scale with y2⋆ [19–24]. The value of y⋆
should be naturally of O(1), and requiring that one-loop corrections to the Yukawa couplings
remain perturbative one can derive an upper bound y⋆ ! 3 [9] (see also [24] for a detailed
discussion). The green, red, and blue scatter points in the figure correspond to RS model
points obtained using three different values of y⋆. The latest experimental values for Rγγ

reported by the ATLAS and CMS collaborations are RATLAS
γγ = 1.55+0.33

−0.28 (at mh = 125.5GeV)
[57] and RCMS

γγ = 0.77 ± 0.27 (at mh = 125.7GeV) [58] which we naively average to obtain
Rγγ = 1.08+0.21

−0.19. The 1σ error band corresponding to this result is shown by the blue band in
the two plots. Model points falling outside these bands are excluded at 68% confidence level
(CL). It is interesting to observe that for relatively large values for y⋆ the data already disfavor
KK gluon masses in the low TeV range. The tensions between our theoretical predictions and
the experimental data are stronger for the brane-Higgs model due to the mild tendency of
an enhanced cross section seen in the data, which is in conflict with the suppression of the
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This is nothing but the statement that the Z2-odd fermion profiles obey Dirichlet boundary
conditions on the two branes.

In order to solve the coupled equations (23), we first combine them to yield the second-order
differential equation

[
∂2

∂t2
−M2

q(t)−
dMq(t)

dt
− p̂2E

]
∆q

LL(t, t
′;−p2) =

1

M2
KK

δ(t− t′) , (26)

where p̂2E ≡ −p2/M2
KK. We then solve this equation assuming that t ̸= t′, in which case

the right-hand side vanishes. Next, we compute the function ∆q
RL(t, t

′;−p2) from the second
equation in (23). In the final step we determine the constants of integration by means of
the jump conditions (24) and the boundary conditions (25). The solution of the second-order
differential equation involves as integration “constants” functions Ci(t′) with i = 1, . . . , 8,
which are 3×3 matrices in generation space and whose values can differ depending on whether
t > t′ or t < t′. In total, we thus have 16 functions C>

i (t
′) and C<

i (t
′). The jump conditions

impose eight relations among these functions, and the boundary conditions give four conditions
each on the UV and IR branes. Solving these relations determines the coefficient functions
uniquely.

Up to this point our discussion is completely general and holds for an arbitrary bulk-Higgs
field. Unfortunately, it is impossible to obtain a closed form of the solution for the general
case of an arbitrary mass matrix Mq(t). Only for the special case where pE = 0 a formal
solution in terms of an ordered exponential can be given [23]. To proceed, we exploit the fact
that the result of the calculation must be regularization independent in the limit η → 0. We
therefore assume a particularly simple form of the regularized δ-function for the profile of the
Higgs vev, for which we take a square box of width η and height 1/η:

δηv (t− 1) →
1

η
θ(t− 1 + η) , with η ≪

v|Yq|
MKK

. (27)

It then follows that for t < 1− η, where the Higgs profile vanishes, we have

M2
q(t) +

dMq(t)

dt
=

1

t2

(
cQ (cQ − 1) 0

0 cq (cq + 1)

)
, (28)

while for t > 1− η we can approximate

M2
q(t) +

dMq(t)

dt
=

v2

2M2
KKη

2

[(
YqY

†
q 0

0 Y †
q Yq

)
+O

(
ηMKK

v|Yq|

)]

. (29)

The omitted terms are suppressed, relative to the leading one, by at least a factor η. It will
be useful to introduce the abbreviations

Xq =
v√

2MKK

√
YqY

†
q , X̄q =

v√
2MKK

√
Y †

q Yq (30)

for the positive, hermitian 3×3 matrices entering the leading term, which are given entirely in
terms of the 5D anarchic Yukawa matrices. The general solution to (26) in the region t < 1−η
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Rγγ = 1.08+0.21

−0.19. The 1σ error band corresponding to this result is shown by the blue band in
the two plots. Model points falling outside these bands are excluded at 68% confidence level
(CL). It is interesting to observe that for relatively large values for y⋆ the data already disfavor
KK gluon masses in the low TeV range. The tensions between our theoretical predictions and
the experimental data are stronger for the brane-Higgs model due to the mild tendency of
an enhanced cross section seen in the data, which is in conflict with the suppression of the
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Signal strength 
Significant excess in all three dominant channels (γγ, 
ZZ, WW) compared to background only

H->bb ̅ and H->ττ not yet updated to full dataset

25

strengths of the five channels and the SM expectation of one is about 8%. The compatibility between
the combined best-fit signal strength µ̂ and the best-fit signal strengths of the five channels is 13%. The
dependence of the combined value of µ̂ on the assumed mH has been investigated and is relatively weak:
changing the mass hypothesis between 124.5 and 126.5 GeV changes the value of µ̂ by about 4%.

Table 2: Summary of the best-fit values and uncertainties for the signal strength µ for the individual
channels and their combination at a Higgs boson mass of 125.5 GeV.

Higgs Boson Decay µ
(mH=125.5 GeV)

VH → Vbb −0.4 ± 1.0
H → ττ 0.8 ± 0.7

H → WW (∗) 1.0 ± 0.3
H → γγ 1.6 ± 0.3

H → ZZ(∗) 1.5 ± 0.4
Combined 1.30 ± 0.20

)µSignal strength (
  -1  0 +1

Combined

 4l→ (*) ZZ→H 

γγ →H 

νlν l→ (*) WW→H 

ττ →H 

 bb→W,Z H 

-1Ldt = 4.6 - 4.8 fb∫ = 7 TeV:  s
-1Ldt = 13 - 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.8 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 20.7 fb∫ = 8 TeV:  s

-1Ldt = 4.6 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s

-1Ldt = 4.7 fb∫ = 7 TeV:  s
-1Ldt = 13 fb∫ = 8 TeV:  s

 = 125.5 GeVHm

 0.20± = 1.30 µ

ATLAS Preliminary

Figure 1: Measurements of the signal strength parameter µ for mH =125.5 GeV for the individual chan-
nels and their combination.

In the SM, the production cross sections are completely fixed once mH is specified. The best-fit value
for the global signal strength factor µ does not give any direct information on the relative contributions
from different production modes. Furthermore, fixing the ratios of the production cross sections to the
ratios predicted by the SM may conceal tension between the data and the SM. Therefore, in addition to
the signal strength in different decay modes, the signal strengths of different Higgs production processes
contributing to the same final state are determined. Such a separation avoids model assumptions needed

5
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Figure 3: Predictions for the ratio Rh in the minimal RS model, for the cases of a
brane-localized Higgs boson (left) and a narrow bulk-Higgs field (right). The green,
red, and blue scatter points correspond to model points obtained using y∗ = 0.5, 1.5,
and 3, respectively. The overlaid lines show fits to the various distributions. The area
colored in blue represents the experimental 1σ band. Effects of higher-dimensional
operators are neglected, which is justified as long as ceff ≪ 3.8 y2∗. See text for further
explanation.

formulae). This requirement helps to eliminate some outliers in the plots presented below. We
also require that, with appropriately chosen bulk mass parameters ci, one can reproduce the
correct values for the masses of the SM quarks; however, imposing this condition only has a
minor impact on our results.

Figure 3 shows the results for the ratio Rh defined in (113) in the minimal RS model for
the scenarios with a brane-localized Higgs boson (left) and a narrow bulk-Higgs field (right),
in dependence of the mass Mg(1) of the lightest KK gluon state. We use the mass of the
first excited gluon state as a reference, because it is more physical than the KK scale MKK,
and because its value Mg(1) ≈ 2.45MKK is a model-independent prediction of the RS models
considered in this work. The green, red, and blue scatter points refer to the three different
values of y∗. They have been obtained using the approximate expressions for the Wilson
coefficients given in (70), but at the scale of the plots they are indistinguishable from the
results one would obtain using the exact expressions in (16) and (53). We use mh = 126GeV
for the mass of the Higgs boson, and mt = 172.6GeV and mb = mb(mh) = 2.9GeV for the
masses of the third-generation quarks. While for the heavy top-quark it is appropriate to use
the pole mass, a running mass should be used for the b-quark. We observe that the ratio Rh

is strictly below 1 for the case of a brane-localized Higgs sector, while it is larger than 1 for
the case of a narrow bulk-Higgs state. This observation allows for a clear distinction between
the two scenarios. Only for very small y∗, a few points exist for which Rh lies slightly below
1. This effect is due to the modification of the Higgs vev in the RS model, which always gives
rise to a negative contribution.

37

68!CL

95!CL

99!CL

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

68!CL

95!CL

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Mg(1) [TeV]Mg(1) [TeV]

y ∗y ∗

minimal RS model
brane Higgs

minimal RS model
bulk Higgs

Figure 4: Excluded regions of parameter space in the minimal RS model, for the cases
of a brane-localized Higgs boson (left) and a narrow bulk-Higgs field (right). The
vertical dashed line shows the lower bound on Mg(1) obtained from a tree-level analysis
of electroweak precision observables.

theoretical and experimental errors in quadrature, and test at which confidence level this ratio
is compatible with 1. In both versions of the RS model, the data exclude significant portions
of the model parameter space. With the conventional choice y∗ = 3, for example, one finds
Mg(1) > 13TeV for the brane-Higgs model and Mg(1) > 4.5TeV for the bulk-Higgs scenario,
both at 95% CL. Weaker constraints are obtained for smaller values of y∗. These bounds
may be compared with those derived from the analysis of electroweak precision observables.
The strongest constraint arises from the S and T parameters [59], whose present values are
S = 0.03 ± 0.10 and T = 0.05 ± 0.12, with a correlation coefficient ρ = 0.89 [60]. In the
minimal RS model, one obtains at tree level [61]

S =
2πv2

M2
KK

(
1−

1

L

)
, T =

πv2

2 cos2 θW M2
KK

(
L−

1

2L

)
. (117)

Requiring that these corrections are compatible with the experimental data, we find that
Mg(1) > 12TeV at 95% CL. This strong bound, which is indicated by the dashed line in Fig-
ure 4, may however be weakened in several ways, for instance by including loop corrections, by
reducing the size L of the extra dimension (so-called “little RS models”) [62], or by introducing
large brane-localized kinetic terms in the RS Lagrangian [61]. We note that for Mg(1) > 12TeV
there is no significant flavor problem of the minimal RS model, as the tightest constraint from
the ϵK parameter in K – K̄ mixing [9] can be satisfied with a modest 25% fine-tuning [63].

Softening the constraints from electroweak precision tests by means of a symmetry is the
main motivation for extending the RS model by enlarging the gauge group in the bulk [26–
28]. We now proceed to study the RS model with custodial symmetry, in which the Wilson
coefficients C1 and C5 are given in (112). The corresponding numerical results are shown in
Figure 5. For large massesMg(1) we can derive analogously to (116) a formula for Rh depending
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In order to compare our predictions with experiment, we consider the cross section for the
process pp → h → ZZ(∗) → 4ℓmeasured at the LHC. Since gg → h is the dominant production
channel, accounting for about 90% of the events in the SM, and because corrections to the
hZZ coupling in RS models are in general very small [19, 22], we assume that any deviation
of the rate for this process from its SM value can be traced back to new-physics contributions
to the gluon fusion amplitude. The ATLAS and CMS collaborations have recently reported
updated results for the ratio µZZ = σ(pp → h → ZZ(∗))/σSM(pp → h → ZZ(∗)), which
were obtained using the full data set collected up to the end of 2012 (approximately 25 fb−1).
The observed values are µATLAS

ZZ = 1.7 +0.5
−0.4 (at mh = 124.3GeV) and µCMS

ZZ = 0.91 +0.30
−0.24 (at

mh = 125.8GeV) [58],13 which we naively average to obtain µZZ = 1.12 +0.26
−0.21. The 1σ range

corresponding to this result is shown by the blue band in the two plots. In our analysis we
will assume that µZZ ≈ Rh, i.e., that any possible deviation from 1 is due to a modification of
the production cross section of the Higgs boson in gluon fusion. Model points falling outside
these bands are excluded at the 68% confidence level (CL). While for small y∗ = 0.5 most
model points are in agreement with the data, it is interesting to observe that for larger y∗
the data already disfavor KK gluon masses in the low TeV range. The discrepancies between
theory and experiment are stronger for the brane-Higgs model, because the mild tendency of
an enhanced production rate seen in the data is in conflict with the suppression of the cross
section predicted in this case.

The overlaid, solid lines in Figure 3 show fits to the various distributions of model points.
In regions of parameter space where the deviations of Rh from 1 are modest enough in order
to be compatible with the data, a good approximation to these curves can be obtained by ap-
proximating the functions g(Xq) in (54) and (55) by the first terms in their Taylor expansions
and exploiting the anarchy of the 5D Yukawa matrices. In this way we find

Rh ≈ 1−
v2

2M2
KK

[(
±4N2

g +
8

3
Ng −

4

3

)
⟨|(Yq)ij|2⟩+

Lm2
W

v2

]
, (116)

where the upper sign corresponds to the brane-localized Higgs sector and the lower sign to the
narrow bulk-Higgs scenario. For randomly chosen complex elements of the Yukawa matrices,
it follows that ⟨|(Yq)ij|2⟩ = y2∗/2. The terms in brackets then evaluate to approximately
[21.3 y2∗ + 3.6] for the RS model with a brane-localized Higgs, and [−14.7 y2∗ + 3.6] for the
model with a narrow bulk Higgs (with L = 33.5). Relation (116) exhibits the quadratic
dependency on the number of quark generations Ng and on the maximum absolute value y∗
imposed on the entries of the random Yukawa matrices.

Even at the present level of precision, the existing measurements of the Higgs-boson pro-
duction cross section already provide highly non-trivial constraints on the parameter space
of RS models. In Figure 4, we show the regions in the Mg(1) – y∗ parameter space which are
already excluded by the current experimental data at various confidence levels. To obtain
these regions, we first fit an approximately gaussian distribution to the model points shown
in Figure 3 for each pair of Mg(1) and y∗, and extract from it our theoretical prediction Rth

h

and uncertainty ∆Rth
h for these parameters. We then take the ratio Rth

h /Rexp
h , combine the

13At mh = 125.5GeV, the ATLAS result is shifted to µATLAS
ZZ = 1.5± 0.4, which is closer to the CMS value

and gives rise to the average result µZZ = 1.09+0.24
−0.21.

38

experimental data 

extracted from |(Yq)ij |  y⇤

y⇤ = 1.5
y⇤ = 3

y⇤ = 0.5

Ratio                           compared with data from ATLAS and CMS:

of (70)
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1−
2v2

3M2
KK

Re
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YuY

†
u Yu

)
33

(Yu)33

]

A(τt) + A(τb) + Tr g
(√

2Xu

)
+ 3Tr g

(√
2Xd

)
,

C5 ≈ −
2v2

3M2
KK

Im
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YuY

†
u Yu

)
33

(Yu)33

]

B(τt) ,

(112)

which once again is independent of the bulk mass parameters ci. We find that this approx-
imation is accurate to better than 2% for MKK ! 2TeV. Whereas the small corrections pa-
rameterized by κqi and εqi have only a minor impact, the main difference between the minimal
and the custodial RS models consists in the different multiplicity factors in the trace terms
in (70) and (112). Since the functions g(Xq) start with a quadratic term, we must compare
X2

u+X2
d in the minimal model with the combination 2X2

u+6X2
d in the custodial model. Since

we assume that the 5D Yukawa matrices in the up- and down-type quark sectors are random
matrices of similar magnitude, it follows that the effect of the KK modes in the custodial
model is approximately four times as large as in the minimal model.10

8 Phenomenological implications

We now present a numerical study of our results for both the minimal RS model and its
extension with custodial symmetry. In each case, we distinguish the two cases of a brane-
localized scalar sector and a narrow bulk-Higgs scenario. At the end of this section, we also
discuss the generalization of the brane-Higgs scenario with two different Yukawa matrices,
which was discussed in Section 5.7. For the purposes of our discussion here, we will neglect
the impact of the power-suppressed, higher-dimensional |Φ|2(Ga

µν)
2 operators, which give rise

to the effective Lagrangian (80). As discussed in detail in Section 6, their numerical effects
are expected to be smaller than the RS loop effects provided that ceff ≪ 3.8 y2∗, where y∗ is the
upper bound on the magnitudes of the complex entries of the random 5D Yukawa matrices,
see (87). Below we shall assume that this condition is satisfied.

Based on the expressions obtained in Sections 5 and 7, we evaluate the Higgs-boson pro-
duction cross section via gluon fusion relative to the SM cross section [23],

Rh =
σ(gg → h)RS

σ(gg → h)SM
=

|κg|2 + |κg5|2

κ2
v

, (113)

where κg and κg5 parametrize the values of the Wilson coefficients, normalized to the SM value
CSM

1 = A(τt) + A(τb), such that κg = C1/CSM
1 and κg5 =

3
2 C5/CSM

1 . The quantity κv in (113)
denotes the shift of the Higgs vev v in the RS model relative to the value vSM of the SM [18].
We determine κv from the shift to the Fermi constant derived in the RS model by considering
(at tree level) the effect of the exchange of the infinite tower of KK gauge bosons on the rate

10Based on a naive counting of degrees of freedom, this factor was estimated as 11/4 (instead of 4) in [22].
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In order to compare our predictions with experiment, we consider the cross section for the
process pp → h → ZZ(∗) → 4ℓmeasured at the LHC. Since gg → h is the dominant production
channel, accounting for about 90% of the events in the SM, and because corrections to the
hZZ coupling in RS models are in general very small [19, 22], we assume that any deviation
of the rate for this process from its SM value can be traced back to new-physics contributions
to the gluon fusion amplitude. The ATLAS and CMS collaborations have recently reported
updated results for the ratio µZZ = σ(pp → h → ZZ(∗))/σSM(pp → h → ZZ(∗)), which
were obtained using the full data set collected up to the end of 2012 (approximately 25 fb−1).
The observed values are µATLAS

ZZ = 1.7 +0.5
−0.4 (at mh = 124.3GeV) and µCMS

ZZ = 0.91 +0.30
−0.24 (at

mh = 125.8GeV) [58],13 which we naively average to obtain µZZ = 1.12 +0.26
−0.21. The 1σ range

corresponding to this result is shown by the blue band in the two plots. In our analysis we
will assume that µZZ ≈ Rh, i.e., that any possible deviation from 1 is due to a modification of
the production cross section of the Higgs boson in gluon fusion. Model points falling outside
these bands are excluded at the 68% confidence level (CL). While for small y∗ = 0.5 most
model points are in agreement with the data, it is interesting to observe that for larger y∗
the data already disfavor KK gluon masses in the low TeV range. The discrepancies between
theory and experiment are stronger for the brane-Higgs model, because the mild tendency of
an enhanced production rate seen in the data is in conflict with the suppression of the cross
section predicted in this case.

The overlaid, solid lines in Figure 3 show fits to the various distributions of model points.
In regions of parameter space where the deviations of Rh from 1 are modest enough in order
to be compatible with the data, a good approximation to these curves can be obtained by ap-
proximating the functions g(Xq) in (54) and (55) by the first terms in their Taylor expansions
and exploiting the anarchy of the 5D Yukawa matrices. In this way we find

Rh ≈ 1−
v2

2M2
KK

[(
±4N2

g +
8

3
Ng −

4

3

)
⟨|(Yq)ij|2⟩+

Lm2
W

v2

]
, (116)

where the upper sign corresponds to the brane-localized Higgs sector and the lower sign to the
narrow bulk-Higgs scenario. For randomly chosen complex elements of the Yukawa matrices,
it follows that ⟨|(Yq)ij|2⟩ = y2∗/2. The terms in brackets then evaluate to approximately
[21.3 y2∗ + 3.6] for the RS model with a brane-localized Higgs, and [−14.7 y2∗ + 3.6] for the
model with a narrow bulk Higgs (with L = 33.5). Relation (116) exhibits the quadratic
dependency on the number of quark generations Ng and on the maximum absolute value y∗
imposed on the entries of the random Yukawa matrices.

Even at the present level of precision, the existing measurements of the Higgs-boson pro-
duction cross section already provide highly non-trivial constraints on the parameter space
of RS models. In Figure 4, we show the regions in the Mg(1) – y∗ parameter space which are
already excluded by the current experimental data at various confidence levels. To obtain
these regions, we first fit an approximately gaussian distribution to the model points shown
in Figure 3 for each pair of Mg(1) and y∗, and extract from it our theoretical prediction Rth

h

and uncertainty ∆Rth
h for these parameters. We then take the ratio Rth

h /Rexp
h , combine the

13At mh = 125.5GeV, the ATLAS result is shifted to µATLAS
ZZ = 1.5± 0.4, which is closer to the CMS value

and gives rise to the average result µZZ = 1.09+0.24
−0.21.
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which once again is independent of the bulk mass parameters ci. We find that this approx-
imation is accurate to better than 2% for MKK ! 2TeV. Whereas the small corrections pa-
rameterized by κqi and εqi have only a minor impact, the main difference between the minimal
and the custodial RS models consists in the different multiplicity factors in the trace terms
in (70) and (112). Since the functions g(Xq) start with a quadratic term, we must compare
X2

u+X2
d in the minimal model with the combination 2X2

u+6X2
d in the custodial model. Since

we assume that the 5D Yukawa matrices in the up- and down-type quark sectors are random
matrices of similar magnitude, it follows that the effect of the KK modes in the custodial
model is approximately four times as large as in the minimal model.10

8 Phenomenological implications

We now present a numerical study of our results for both the minimal RS model and its
extension with custodial symmetry. In each case, we distinguish the two cases of a brane-
localized scalar sector and a narrow bulk-Higgs scenario. At the end of this section, we also
discuss the generalization of the brane-Higgs scenario with two different Yukawa matrices,
which was discussed in Section 5.7. For the purposes of our discussion here, we will neglect
the impact of the power-suppressed, higher-dimensional |Φ|2(Ga

µν)
2 operators, which give rise

to the effective Lagrangian (80). As discussed in detail in Section 6, their numerical effects
are expected to be smaller than the RS loop effects provided that ceff ≪ 3.8 y2∗, where y∗ is the
upper bound on the magnitudes of the complex entries of the random 5D Yukawa matrices,
see (87). Below we shall assume that this condition is satisfied.

Based on the expressions obtained in Sections 5 and 7, we evaluate the Higgs-boson pro-
duction cross section via gluon fusion relative to the SM cross section [23],

Rh =
σ(gg → h)RS

σ(gg → h)SM
=

|κg|2 + |κg5|2

κ2
v

, (113)

where κg and κg5 parametrize the values of the Wilson coefficients, normalized to the SM value
CSM

1 = A(τt) + A(τb), such that κg = C1/CSM
1 and κg5 =

3
2 C5/CSM

1 . The quantity κv in (113)
denotes the shift of the Higgs vev v in the RS model relative to the value vSM of the SM [18].
We determine κv from the shift to the Fermi constant derived in the RS model by considering
(at tree level) the effect of the exchange of the infinite tower of KK gauge bosons on the rate

10Based on a naive counting of degrees of freedom, this factor was estimated as 11/4 (instead of 4) in [22].
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Figure 5: Predictions for the ratio Rh in the custodial RS model, for the cases of a
brane-localized Higgs boson (left) and a narrow bulk-Higgs field (right). The meaning
of the colors and curves is the same as in Figure 3. Effects of higher-dimensional
operators are neglected, which is justified as long as ceff ≪ 15 y2∗.

explicitly on Ng and y∗, which in the present case reads

Rh ≈ 1−
v2

2M2
KK

[(
±16N2

g +
16

3
Ng −

8

3

)
⟨|(Yq)ij |2⟩+

2Lm2
W

v2

]
. (118)

Note that the leading terms proportional to N2
g are enhanced by a factor 4 compared with the

minimal model, reflecting the larger multiplicity of KK quark states. The remaining terms
are enhanced by a factor 2, as can be seen from (110) and (114). As a result, in the custodial
RS model one finds significantly larger corrections to the SM prediction Rh = 1 than in the
minimal model [22]. The terms in brackets then evaluate to approximately [78.7 y2∗ + 7.1]
for the RS model with a brane-localized Higgs, and [−65.3 y2∗ + 7.1] for the model with a
narrow bulk Higgs. For the same reason, the relative effect of higher-dimensional operators is
suppressed compared with the minimal RS model. In relation (88), the right-hand side must
be multiplied by a factor 4.

Figure 5 confirms the fact that the corrections to the Higgs-boson production rate are
much enhanced compared with the case of the minimal RS model. Correspondingly, we obtain
significantly larger exclusion regions than for the minimal model. This is shown in Figure 6. In
the brane-Higgs scenario, we obtain the exclusion range 4.5TeV < Mg(1) < 19TeV for y∗ = 3
at 99% CL, while in the bulk-Higgs model we find the lower bound Mg(1) > 9.5TeV at 95% CL.
Note that the allowed region in the upper left corner (at small Mg(1) and large y∗) of the first
plot in the figure is one in which the new-physics contribution to the gluon fusion amplitude
is larger than the SM contribution by about a factor 2 and interferes destructively, which
appears somewhat unnatural. Moreover, it has been argued that most models in which the
gluon fusion amplitude has the opposite sign than in the SM have problems with fine-tuning
and vacuum stability [64]. The bounds on the RS parameter space that can be derived from
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Figure 6: Excluded regions of parameter space in the custodial RS model, for the
cases of a brane-localized Higgs boson (left) and a narrow bulk-Higgs field (right). The
vertical dashed line shows the lower bound on Mg(1) obtained from a tree-level analysis
of electroweak precision observables.

Figure 5 are stronger than those derived from the analysis of electroweak precision observables.
In the custodial model the formula for the S parameter shown in (117) is left unchanged, while
the custodial protection removes the leading term proportional to L in the expression for the
T parameter, such that T = −πv2/(4L cos2 θWM2

KK) [26]. Requiring that these corrections
are compatible with the experimental data, we find that Mg(1) > 4.7TeV at 95% CL. As
indicated by the dashed line in Figure 6, this lower bound is generally much weaker than the
constraints implied by Higgs physics, except for regions in parameter space where y∗ is very
small. Note that for such small values of the KK mass scale but y∗ ≈ 3, the RS flavor problem
for the ϵK parameter can be solved by a fine-tuning of 5 – 10%, or alternatively by enlarging
the strong-interaction gauge group in the bulk [63].

We may also read the exclusion plots in a different way. If we would like to have the first
KK excitations in the reach for direct production at the LHC, then this imposes a strong
upper bound on the maximum allowed values of the elements of the 5D Yukawa matrices. For
instance, assuming that Mg(1) = 5TeV, we find that y∗ < 0.6 in the brane-Higgs model, and
y∗ < 1.5 in the bulk-Higgs scenario (both at 95% CL). Too small Yukawa couplings would
however give rise to enhanced corrections to ϵK [9], and hence they would reinforce the RS
flavor problem.

The above analysis shows that Higgs physics, and in particular the Higgs-boson production
rate in gluon fusion, provide sensitive probes of the virtual effects of KK excitations in the
context of various RS scenarios. While models with a brane-localized scalar sector predict a
suppression of the gluon fusion rate, this rate tends to be enhanced in scenarios with a bulk-
Higgs field. The two classes of models can thus easily be distinguished in their signatures.
The bounds on the model parameters obtained from Higgs physics are complementary to and
sometimes stronger than those derived from the analysis of electroweak precision observables
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experimental data 

from ATLAS/CMS


(combined) 

Ratio                                         compared with data from ATLAS and CMS:

|(Yq)ij |  y⇤

4.6 Final results for the Wilson coefficients

For the total contribution of the RS model with custodial protection, C1γ,5γ = CW
1γ,5γ+Cq

1γ,5γ+
C l

1γ,5γ , we have to add the fermion part, which reads [38]

Cq
1γ ≈ NcQ
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2
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λ) ReTr g(

√
2Xd)
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5γ ≈ −
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3M2
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Im
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†
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]

Nc Q
2
t B(τt) +Nc Q

2
u ImTr g(

√
2Xu)

+Nc (Q
2
u +Q2

d +Q2
λ) ImTr g(

√
2Xd) .

(66)

The lepton contribution is assumed to be the same as in the minimal RS model, C l
1γ ≈

Q2
l ReTr g(Xl) and C l

5γ ≈ Q2
l ImTr g(Xl), since we do not know the exact implementation of

the lepton sector in the custodial RS model. The function g(Xq) is given in (34) and (35),
where the modified Yukawa matrices are now defined as Ỹq = [tanh

√
2Xq/

√
2Xq]

√
2Y C

q , with

an extra factor of
√
2 inserted compared to the minimal model. Recall that the function g(Xq)

starts its Taylor expansion with X2
q , thus the factors of

√
2 double the contribution from the

minimal model. Combined with the large electric charge Qλ = 5/3 of the λ-type quarks, we
see that due to the higher multiplicity of KK quark states the contribution in the custodial
RS model is much larger than in the minimal model. Evaluating all factors and charges, we
find that the leading KK contribution in the custodial RS model is 71/8 ≈ 9 times as large as
in the minimal model.

5 Phenomenological implications

We now present a numerical study of the Higgs decay into two photons in both the minimal and
the custodial RS model which can be directly compared to experimental values. Analogously
to our recent work [38], we will distinguish the two cases of a brane-localized and a narrow
bulk-Higgs scenario. As discussed in [38], the numerical effects of the power-suppressed, higher-
dimensional |Φ|2(Fµν)2 operator7 are expected to be smaller than the RS loop effects provided
that ceff ≪ 20.8 |Yq|2, where ceff is the Wilson coefficient and |Yq|2 is a generic entry of the 5D
Yukawa matrices. Below we will assume that this condition is satisfied.

For our numerical analysis, we will consider the ratio of the measured cross section of the
process pp → h → γγ relative to the SM value,

Rγγ ≡
(σ · BR)(pp → h → γγ)RS

(σ · BR)(pp → h → γγ)SM
=

[(

|κg|2 + |κg5|2
)

fGF + κ2
V fVBF

][

|κγ|2 + |κγ5|2
]

κh
, (67)

where we have split the Higgs production process into the two main production channels via
gluon fusion (GF) and via vector-boson fusion (VBF), with probabilities of fGF ≈ 0.9 and

7The impact of this operator can be analogously calculated as in the case of gluon fusion, that has been
comprehensively treated in [38], therefore we refrain from presenting more details here.
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Figure 3: Excluded regions of parameter space in the minimal RS model, for the brane-
localized Higgs scenario (left) and the narrow bulk-Higgs model (right). The vertical
dashed line denotes the lower bound on Mg(1) obtained from a tree-level analysis of
electroweak precision observables [61].

21
4 AW (τW ) ≈ −4.9. The third line shows the corrections to the Higgs vev and total width,
as parameterized by κh in (76). The upper sign holds for the brane-localized Higgs scenario,
while the lower sign corresponds to the narrow bulk-Higgs case. Above we have used that for
a large set of random complex matrices on average [24]

〈

TrYfY
†
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〉

= N2
g

y2⋆
2
,

〈

(

YuY
†
u Yu

)

33

(Yu)33

〉

= (2Ng − 1)
y2⋆
2
, (79)

where Ng = 3 is the number of fermion generations. We explicitly see from the first term on
the right-hand side of (78) that the fermionic contributions to the gg → h production process
dominate over those to the h → γγ decay rate and come with opposite sign. Altogether, we
find

Rγγ ≈ 1−
v2

2M2
KK

[

(±9.7− 0.1) y2⋆ + 4.1
]

. (80)

For the case where y∗ = 3 this result is shown by the dashed lines in the figure. Note also
that due to the contribution of the VBF production process the observable Rγγ is bounded
from below in the brane-Higgs case. This explains the behavior for very small MKK values
seen in the left plot in Figure 2. For y∗ = 3, the gg → h production cross section vanishes for
Mg(1) ≈ 3.5TeV, because the new-physics contribution cancels the SM amplitude. However,
due to the VBF production process a non-zero value of Rγγ remains.

Even at the present level of precision, the existing measurements of the observable Rγγ

already provide some interesting constraints on the parameter space of the RS models under
consideration. In Figure 3 we show the regions in the Mg(1) – y⋆ parameter space that are
excluded by the current data at various confidence levels. For instance, for the particular choice
y⋆ = 3 one finds Mg(1) > 8.5TeV at 95% CL for the brane-Higgs model and Mg(1) > 6.4TeV at
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Figure 2: Predictions for the ratio Rγγ as a function of the lightest KK gluon mass
Mg(1) and for different values of the parameter y⋆ in the minimal RS model, for the
cases of a brane-localized Higgs boson (left) and a narrow bulk-Higgs field (right). The
dashed curves show the approximation (78) for y⋆ = 3.

predicted cross section in this case. We emphasize, however, that using the individual values
for Rγγ reported by ATLAS and CMS one would obtain different conclusions.

The shape of the various bands of scatter points shown in the plots can be understood
as follows. For not too small Yukawa couplings, the largest RS corrections are those arising
from fermionic loop contributions. In the brane-localized Higgs (narrow bulk-Higgs) scenario,
they suppress (enhance) the gluon-fusion cross section and enhance (suppress) the decay rate
into photons. Since the dominant SM contribution to h → γγ involves W -boson loops and
acts in the opposite direction as the fermionic contributions, the RS corrections to the Higgs
production cross section dominate over those to the decay rate. Hence, we find a suppression
(an enhancement) of Rγγ in the brane-Higgs (narrow bulk-Higgs) scenario. To see this more
explicitly, it is instructive to expand the various expressions in (74) to first order in v2/M2

KK

and to approximate Aq(τt) ≈ 1 and Aq(τb) ≈ 0. Keeping the dependence on AW (τW ) ≈ 1.19
explicit, we obtain

Rγγ ≈ 1 +
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(78)
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)
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,

where the first two lines contain the corrections to the production and decay rates, with
corrections to the h → γγ rate being accompanied by a factor of 1/|CSM

γ | with CSM
γ ≈ 4

3 −
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Ratio                                          in RS model with custodial symmetry:

4.6 Final results for the Wilson coefficients

For the total contribution of the RS model with custodial protection, C1γ,5γ = CW
1γ,5γ+Cq

1γ,5γ+
C l

1γ,5γ , we have to add the fermion part, which reads [38]

Cq
1γ ≈ NcQ
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(66)

The lepton contribution is assumed to be the same as in the minimal RS model, C l
1γ ≈

Q2
l ReTr g(Xl) and C l

5γ ≈ Q2
l ImTr g(Xl), since we do not know the exact implementation of

the lepton sector in the custodial RS model. The function g(Xq) is given in (34) and (35),
where the modified Yukawa matrices are now defined as Ỹq = [tanh

√
2Xq/

√
2Xq]

√
2Y C

q , with

an extra factor of
√
2 inserted compared to the minimal model. Recall that the function g(Xq)

starts its Taylor expansion with X2
q , thus the factors of

√
2 double the contribution from the

minimal model. Combined with the large electric charge Qλ = 5/3 of the λ-type quarks, we
see that due to the higher multiplicity of KK quark states the contribution in the custodial
RS model is much larger than in the minimal model. Evaluating all factors and charges, we
find that the leading KK contribution in the custodial RS model is 71/8 ≈ 9 times as large as
in the minimal model.

5 Phenomenological implications

We now present a numerical study of the Higgs decay into two photons in both the minimal and
the custodial RS model which can be directly compared to experimental values. Analogously
to our recent work [38], we will distinguish the two cases of a brane-localized and a narrow
bulk-Higgs scenario. As discussed in [38], the numerical effects of the power-suppressed, higher-
dimensional |Φ|2(Fµν)2 operator7 are expected to be smaller than the RS loop effects provided
that ceff ≪ 20.8 |Yq|2, where ceff is the Wilson coefficient and |Yq|2 is a generic entry of the 5D
Yukawa matrices. Below we will assume that this condition is satisfied.

For our numerical analysis, we will consider the ratio of the measured cross section of the
process pp → h → γγ relative to the SM value,

Rγγ ≡
(σ · BR)(pp → h → γγ)RS

(σ · BR)(pp → h → γγ)SM
=

[(

|κg|2 + |κg5|2
)

fGF + κ2
V fVBF

][

|κγ|2 + |κγ5|2
]

κh
, (67)

where we have split the Higgs production process into the two main production channels via
gluon fusion (GF) and via vector-boson fusion (VBF), with probabilities of fGF ≈ 0.9 and

7The impact of this operator can be analogously calculated as in the case of gluon fusion, that has been
comprehensively treated in [38], therefore we refrain from presenting more details here.
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Figure 4: Predictions for the ratio Rγγ as a function of the KK gluon mass Mg(1) in the
custodial RS model with minimal lepton sector (56), for the cases of a brane-localized
Higgs boson (left) and a narrow bulk-Higgs field (right).

approximation (81) breaks down for large values y∗, as is evident from the discrepancy between
the dashed curve and the blue band of scatter points. A reasonable approximation, shown
by the solid line, is obtained by linearizing the expressions for the various κi parameters
but not further expanding expression (74). It turns out that the negative corrections to the
h → γγ decay rate are so significant in this model that they compensate the large positive
corrections to the gluon-fusion rate in the region of large Mg(1) . For smaller KK masses, these
negative corrections become dominant and drive the ratio Rγγ toward values significantly less
than 1. Eventually, for Mg(1) ≈ 3TeV (for y∗ = 1.5) and 5.5TeV (for y∗ = 3), the di-photon
decay rate even vanishes. It is obvious that in regions of parameter space where such dramatic
cancellations occur our predictions are highly model dependent. Given the preliminary pattern
of Higgs couplings seen in experiment, which within errors agree with the SM predictions, it
appears unlikely (but not impossible) that there could be O(1) corrections to the gg → h and
h → γγ production and decay rates, which cancel each other in the result for the observable
Rγγ . Too large corrections to the gluon-fusion rate are also disfavored by the good agreement
of the pp → ZZ(∗) → 4l rate with its SM value. A detailed discussion of the corresponding
constraints on the RS parameter space has been presented in [24].

Figure 5 shows the excluded regions of RS parameter space derived from the analysis of the
observable Rγγ in the custodial RS model. In the scenario with a brane-localized Higgs sector,
we obtain the exclusion range 5.9TeV < Mg(1) < 13.4TeV and Mg(1) < 3.5TeV for y⋆ = 3,
while in the narrow bulk-Higgs model we can exclude 5.2TeV < Mg(1) < 8.4TeV, both at 95%
CL. Note that there is a small region in the upper left corner (at small Mg(1) and large y⋆) of
the left plot, which is allowed by both Rγγ and the T parameter constraint Mg(1) > 4.7TeV
at 95% CL. However, bounds derived from the analysis of the decay h → ZZ(∗) → 4l exclude
this region [24, 54].

One can also read the exclusion plots in Figures 3 and 5 in a different way. Under the
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Figure 5: Excluded regions of parameter space in the custodial RS model with min-
imal lepton sector (56), for the brane-localized Higgs scenario (left) and the narrow
bulk-Higgs model (right). The vertical dashed line denotes the lower bound on Mg(1)

obtained from a tree-level analysis of electroweak precision observables [61].

optimistic assumption that the first KK gluon resonance is in reach for direct production at
the LHC, these plots allow one to impose bounds on y⋆. For instance, in the minimal RS
model with a hypothetical KK gluon mass Mg(1) = 5TeV, our results imply an upper bound
of y⋆ < 1.5 at 95% CL in the brane-Higgs model, and y⋆ < 2.4 at 68% CL in the narrow
bulk-Higgs scenario. In the custodial RS model, those bounds are tightened to y⋆ < 0.9 for
a brane Higgs and y⋆ < 1.7 for a narrow bulk Higgs, both at 95% CL. Even though the
constraints are rather strong in the case of the custodial RS model, they do not quite compete
with those stemming from the decays h → ZZ(∗),WW (∗) [24, 54]. This is due to the fact that
the RS corrections to the decay into two photons partially compensate the huge effect in the
gluon-fusion production process. This compensation does not occur in the decays into two
weak gauge bosons, whose couplings to the Higgs are only slightly affected by new-physics
effects.

6 Conclusions

The discovery of a Higgs boson at the LHC in the summer of 2012 [1, 2] has marked the
beginning of a new era in elementary particle physics. The couplings of this new particle
are found to be non-universal and indeed very close to those predicted for the elementary
scalar boson of the SM. An explanation for the hierarchy problem is thus more pressing than
ever. Measuring precisely the Higgs couplings to various SM particles provides an important
tool to discover and distinguish between new-physics models that can address the hierarchy
problem. Especially interesting are loop-induced processes like Higgs production via gluon
fusion gg → h and the radiative decay h → γγ.
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Strong correlation of the predictions for Rγγ and RZZ is observed!


Parameter scan of model points satisfying the bounds from electroweak 
precision tests: 


!

!

More precise measurements at LHC and ILC will allow one to differentiate 
between different variants of RS models                                  

experimental data from ATLAS/CMS (combined)

Malm, MN, Schmell: in preparation
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Figure 1: Correlation between the predictions for the ratios Rγγ and RZZ for RS
parameter points satisfying the bounds from EWPTs.
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Conclusions

• Higgs phenomenology provides a superb laboratory for probing new 
physics in the EWSB sector at the quantum level


• Much like rare FCNC processes, Higgs production in gluon fusion and 
Higgs decays into two photons are loop-suppressed processes, which 
are sensitive to new heavy particles


• Warped extra-dimension models provide an appealing framework for 
addressing the hierarchy problem and the flavor puzzle within the 
same geometrical approach 

• Find that the contribution of the Kaluza-Klein towers of SM quarks and 
gauge bosons are universal and given entirely in terms of fundamental 
5D Yukawa matrices and KK mass scale 

• Effects are enhanced by the large multiplicity of 5D fermion states and 
probe regions of parameter space not accessible to direct searches
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Representations of lepton multiplets

Extended RS model with custodial symmetry protecting the T parameter, 
the left-handed Zbb couplings and flavor-violating Z-boson couplings


Bulk symmetry group:  SU(3)c x SU(2)L x SU(2)R x U(1)X x PLR


Representations of lepton multiplets: minimal model 

→ used as default



Representations of lepton multiplets

Extended RS model with custodial symmetry protecting the T parameter, 
the left-handed Zbb couplings and flavor-violating Z-boson couplings


Bulk symmetry group:  SU(3)c x SU(2)L x SU(2)R x U(1)X x PLR


Representations of lepton multiplets: extended model 



gg→h production (details of the calculation)

Definition of the gg→h amplitude:


Expression in terms of 5D propagators:

!

with:


p

k1

k2

t

t1

t2

Figure 1: Effective hgg couplings induced by the exchange of 5D quark states. The
positions of the vertices along the extra dimension are denoted by t1,2 and t.

which are diagonal 3 × 3 matrices in generation space. These can be expressed in terms of
combinations of Bessel functions, whose rank depends on the bulk mass parameters cQ =
MQ/k and cu,d = −Mu,d/k of the 5D fermion fields [4, 5]. Without loss of generality, we
work in a basis where the ci matrices are diagonal. The SU(2)L gauge symmetry in the bulk
implies that the SU(2)-doublet quark fields have common cQ parameters. The 3-component

vectors a(A)
n , on the other hand, describe the flavor mixings of the 5D interaction eigenstates

into the 4D mass eigenstates, which are generated by the Yukawa interactions on the IR brane.
Because of electroweak symmetry breaking, these vectors are different for A = U,D, u, d. For
simplicity, from now on we use the generic notation Q for U,D and q for u, d. The 3 × 3
matrices Yq contain the dimensionless Yukawa couplings of the 5D theory, which are obtained
from the dimensionful Yukawa couplings Y 5D

q in the original 5D Lagrangian by the rescaling
Y 5D

q = 2Yq/k [4, 5] (see also the discussion of Yukawa interactions in Appendix B). Contrary
to the SM, these matrices are assumed to have an anarchical structure, meaning that they
are non-hierarchical matrices with O(1) complex elements. The hierarchies of the Yukawa
matrices of the SM quarks in the effective 4D theory are explained in terms of a geometrical
realization of the Froggatt-Nielsen mechanism in RS models [9–11, 49].

The one-loop graph giving rise to the gluon fusion amplitude is shown in Figure 1, where at
each vertex an integral over the fifth coordinate t = ekr(|φ|−π) is implied, which varies between
ϵ = e−krπ ≈ 10−15 on the UV brane and t = 1 on the IR brane. We summarize the results of
the calculation in terms of two coefficients C1 and C5 defined by the decomposition

A(gg → h) = C1
αs

12πv
⟨ 0 |Ga

µν G
µν,a|gg⟩ − C5

αs

8πv
⟨ 0 |Ga

µν G̃
µν,a|gg⟩ , (9)

where G̃µν,a = −1
2ϵ

µναβ Ga
αβ (with ϵ0123 = −1) denotes the dual field-strength tensor. Note

that, contrary to [23], the Wilson coefficients C1 and C5 also include the contributions of the
SM quarks. Throughout this paper, v denotes the value of the Higgs vev in the RS model,
which differs from the SM value vSM ≈ 246GeV by a small amount [18] (see Section 8).

In order to perform the calculation of the gluon fusion amplitude at one-loop order con-
sistently, it is necessary to introduce two different kinds of regulators. For a brane-localized
scalar sector, the fermion profile functions are discontinuous on the IR brane, and hence their
overlap integrals with a δ-function type Higgs profile are ill defined. Before computing these
integrals, it is important to regularize the Higgs profile by giving it a small but finite width

8

η ≪ 1 [24]. We therefore use the notation δηh(t − 1) in (6) and (8), where the regularized
profile has unit area and support in the interval 1 − η ≤ t ≤ 1. Many of our results will be
independent of the shape of the Higgs profile and would remain valid for the case of a general
bulk-Higgs field, which we briefly discuss in Appendix B. Only at the end of our analysis we
will specialize to the case of a very narrow Higgs profile, with η satisfying one of the conditions
(3) or (4). Note that we use the same Yukawa matrix Yq in the two off-diagonal blocks in (6).
For a bulk-Higgs field, the equality of the two Yukawa matrices is a consequence of 5D Lorentz
invariance. If the Higgs field is confined to the IR brane this argument no longer applies, and
it would in principle be possible to allow for two different Yukawa matrices Y C

q and Y S†
q in

the two terms in the last line of (8) [20, 24]. This generalization is discussed in Appendix C,
and the corresponding results are summarized in Section 5.7.

Secondly, as has been emphasized in [23], it is important to introduce a consistent UV
regulator in the calculation, even though the final answer for the gluon fusion amplitude is
UV finite. This should not come as a surprise, as it is well known that even in the 4D case
the introduction of a UV regulator is required in order to obtain a gauge-invariant answer. To
see this, consider the loop diagram for a single KK mode, which naively is linearly divergent.
Using invariance under p → −p, a superficial logarithmic divergence remains. In dimensional
regularization, one encounters the integral

∫
ddp

(2π)d

[
4− d

d

p2

(p2 −∆)3
+

∆

(p2 −∆)3

]
ε(k1) · ε(k2) , (10)

which identically vanishes for d ̸= 4. Here ∆ = m2
qn − xy(1 − y)m2

h arises after combining
denominator using Feynman parameters. Note that if the calculation was performed naively
in four dimensions, then only the second term would be present, and it would correspond to
a gauge-dependent operator Aa

µA
µ,a. In the 5D model, the UV regulator has the additional

effect of regularizing the infinite sum over KK modes, which once again is superficially loga-
rithmically divergent [23]. The relevant sum is of the form (recall that n = 4 labels the lightest
KK excitation)

lim
N→∞, η→0

∑

q=u,d

3+6N∑

n=4

vgqnn
mqn

(
µ

mqn

)4−d

, (11)

wheremqn are the masses of the KK quarks and gqnn denote their effective 4D Yukawa couplings
as defined in (8). For d = 4, one obtains different results depending on which of the two limits
is evaluated first. However, in the presence of the dimensional regulator d < 4 the order of
limits becomes irrelevant, and one obtains a unique answer for the sum, which in the limit
d → 4 (taken at the end of the calculation) coincides with the result found in [19].

With the regulators in place, the gluon fusion amplitude can be written in the form

A(gg → h) = ig2s δ
ab
∑

q=u,d

∫
ddp

(2π)d

∫ 1

ϵ

dt1

∫ 1

ϵ

dt2

∫ 1

ϵ

dt δηh(t− 1)

× Tr

[
1√
2

(
0 Yq

Y †
q 0

)
Sq(t, t2; p− k2) /ε(k2)S

q(t2, t1; p) /ε(k1)S
q(t1, t; p+ k1)

]

,

(12)
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which we adopt the mixed momentum-position representation [39, 45–48] (with q = u, d)

iSq(t, t′; p) =

∫
d4x eip·x ⟨ 0| T

(
QL(t, x) +QR(t, x)

)(
Q̄L(t

′, 0) + Q̄R(t
′, 0)
)
|0 ⟩

=
[
∆q

LL(t, t
′;−p2) /p+∆q

RL(t, t
′;−p2)

]
PR + (L ↔ R) ,

(5)

where PR,L = 1
2(1±γ5), and the symbol T denotes time ordering. We begin by considering the

minimal RS model with the SM gauge group in the bulk. An extended model with a custodial
symmetry will be discussed in Section 7. The minimal model contains an SU(2)L doublet
quark field Q(t, x) and two SU(2)L singlet fields u(t, x) and d(t, x) in the 5D Lagrangian,
each of which are three-component vectors in generation space. The 5D fermion states can be
described by four-component Dirac spinors [4, 5]. We use a compact notation, where we collect
the left- and right-handed components of the up- and down-type states into six-component
vectors UA = (UA, uA)T and DA = (DA, dA)T with A = L,R, which are collectively referred
to as QL,R in the equation above. The Yukawa interactions of the Higgs boson with up- and
down-type quarks are then given by4

Lhqq(x) = −
∑

q=u,d

∫ 1

ϵ

dt δηh(t− 1) h(x) Q̄L(t, x)
1√
2

(
0 Yq

Y †
q 0

)
QR(t, x) + h.c.

= −
∑

q=u,d

∑

m,n

gqmn h(x) q̄
(m)
L (x) q(n)R (x) + h.c. ,

(6)

where the zeros in the diagonal blocks of the 6 × 6 Yukawa matrices are required by gauge-
invariance. The function δηh(t − 1) denotes the normalized Higgs profile along the extra di-
mension, which we take to be a regularized δ-function (see below). In the second step we have
decomposed the 5D fermion spinors into 4D KK modes,

QA(t, x) =
∑

n

Q(n)
A (t) q(n)A (x) ; A = L,R . (7)

The superscript n labels the different mass eigenstates in the 4D effective theory, such that
n = 1, 2, 3 refer to the SM quarks, while n = 4, . . . , 9 label the six fermion modes of the first
KK level, and so on. The functions Q(n)

L,R(t) denote the wave functions of the left- and right-
handed components of the nth KK mass eigenstate along the extra dimension. The Yukawa
couplings gqmn are given in terms of the overlap integrals [19]

gumn =
1√
2

∫ 1

ϵ

dt δηh(t− 1) U †(m)
L (t)

(
0 Yu

Y †
u 0

)
U (n)
R (t)

=

√
2π

Lϵ

∫ 1

ϵ

dt δηh(t− 1)
[
a(U)†
m C(Q)

m (t)Yu C
(u)
n (t) a(u)n + a(u)†m S(u)

m (t)Y †
u S(Q)

n (t) a(U)
n

]
,

(8)

and likewise in the down-type quark sector. In the last step we have rewritten the answer
in terms of the Z2-even and Z2-odd fermion profiles C

(A)
n (t) and S

(A)
n (t) introduced in [10],

4To keep the notation transparent, we do not use boldface symbols for unit and zero matrices.
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Figure 1: Effective hgg couplings induced by the exchange of 5D quark states. The
positions of the vertices along the extra dimension are denoted by t1,2 and t.

which are diagonal 3 × 3 matrices in generation space. These can be expressed in terms of
combinations of Bessel functions, whose rank depends on the bulk mass parameters cQ =
MQ/k and cu,d = −Mu,d/k of the 5D fermion fields [4, 5]. Without loss of generality, we
work in a basis where the ci matrices are diagonal. The SU(2)L gauge symmetry in the bulk
implies that the SU(2)-doublet quark fields have common cQ parameters. The 3-component

vectors a(A)
n , on the other hand, describe the flavor mixings of the 5D interaction eigenstates

into the 4D mass eigenstates, which are generated by the Yukawa interactions on the IR brane.
Because of electroweak symmetry breaking, these vectors are different for A = U,D, u, d. For
simplicity, from now on we use the generic notation Q for U,D and q for u, d. The 3 × 3
matrices Yq contain the dimensionless Yukawa couplings of the 5D theory, which are obtained
from the dimensionful Yukawa couplings Y 5D

q in the original 5D Lagrangian by the rescaling
Y 5D

q = 2Yq/k [4, 5] (see also the discussion of Yukawa interactions in Appendix B). Contrary
to the SM, these matrices are assumed to have an anarchical structure, meaning that they
are non-hierarchical matrices with O(1) complex elements. The hierarchies of the Yukawa
matrices of the SM quarks in the effective 4D theory are explained in terms of a geometrical
realization of the Froggatt-Nielsen mechanism in RS models [9–11, 49].

The one-loop graph giving rise to the gluon fusion amplitude is shown in Figure 1, where at
each vertex an integral over the fifth coordinate t = ekr(|φ|−π) is implied, which varies between
ϵ = e−krπ ≈ 10−15 on the UV brane and t = 1 on the IR brane. We summarize the results of
the calculation in terms of two coefficients C1 and C5 defined by the decomposition

A(gg → h) = C1
αs

12πv
⟨ 0 |Ga

µν G
µν,a|gg⟩ − C5

αs

8πv
⟨ 0 |Ga

µν G̃
µν,a|gg⟩ , (9)

where G̃µν,a = −1
2ϵ

µναβ Ga
αβ (with ϵ0123 = −1) denotes the dual field-strength tensor. Note

that, contrary to [23], the Wilson coefficients C1 and C5 also include the contributions of the
SM quarks. Throughout this paper, v denotes the value of the Higgs vev in the RS model,
which differs from the SM value vSM ≈ 246GeV by a small amount [18] (see Section 8).

In order to perform the calculation of the gluon fusion amplitude at one-loop order con-
sistently, it is necessary to introduce two different kinds of regulators. For a brane-localized
scalar sector, the fermion profile functions are discontinuous on the IR brane, and hence their
overlap integrals with a δ-function type Higgs profile are ill defined. Before computing these
integrals, it is important to regularize the Higgs profile by giving it a small but finite width
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gg→h production (details of the calculation)

where ki denote the incoming momenta of the external gluons, a and b their color indices, and
ε(ki) their polarization vectors. We may now insert the decomposition of the 5D propagator
given in (5) and try to simplify the result. This task is made complicated by the fact that the
propagator functions∆AB are complicated functions of the 4-momentum p and the coordinates
t, t′. In order to simplify the calculation, it is convenient to use in intermediate steps their
representations as sums over KK modes. Using the KK decomposition (7), it is straightforward
to show that

∆q
LL(t, t

′;−p2) =
∑

n

1

p2 −m2
qn

Q(n)
L (t)Q(n)†

L (t′) ,

∆q
RL(t, t

′;−p2) =
∑

n

mqn

p2 −m2
qn

Q(n)
R (t)Q(n)†

L (t′) ,

(13)

and similarly for the other two propagator functions. With the dimensional regulator in place,
the 4D loop integral as well as the infinite sums over KK modes converge, and therefore the KK
representations provide exact representations of the 5D propagator functions. The integrals
over the coordinates t1 and t2 of the two external gluons can then be performed using the
orthonormality relations [10]

∫ 1

ϵ

dtQ(m)†
A (t)Q(n)

A (t) = δmn ; A = L,R . (14)

After this is done, the 5D loop amplitude A in (12) is expressed as a single sum over KK
modes, and we find that it can be reduced to integrals of the regularized Higgs profile with
traces of the mixed-chirality components of the 5D propagator evaluated at t = t′. We define

T+(p
2
E) = −

∑

q=u,d

v√
2

∫ 1

ϵ

dt δηh(t− 1) Tr

[(
0 Yq

Y †
q 0

)
∆q

RL(t, t; p
2
E) +∆q

LR(t, t; p
2
E)

2

]

,

T−(p
2
E) = −

∑

q=u,d

v√
2

∫ 1

ϵ

dt δηh(t− 1) Tr

[(
0 Yq

Y †
q 0

)
∆q

RL(t, t; p
2
E)−∆q

LR(t, t; p
2
E)

2i

]

,

(15)

where p2E ≡ −p2 denotes the square of the Euclidean loop momentum after the Wick rotation.
Matching the resulting expression for the amplitude A with the two-gluon matrix elements in
(9), we obtain

C1 =
3

2

∫ 1

0

dx

∫ 1

0

dy
(
1− 4xyȳ

)
I+(xyȳ m

2
h) =

3

2

∫ 1

0

dz (1− z) f(z) I+
(
z
m2

h

4

)
,

C5 =

∫ 1

0

dx

∫ 1

0

dy I−(xyȳ m
2
h) =

∫ 1

0

dz f(z) I−
(
z
m2

h

4

)
,

(16)

where mh is the Higgs-boson mass, x and y are Feynman parameters, and we abbreviate
ȳ ≡ 1− y and f(z) = arctanh

√
1− z. The quantities

I±(m
2) =

eϵ̂γEµ2ϵ̂

Γ(2− ϵ̂)

∫ ∞

0

dp2E p2(1−ϵ̂)
E

(
∂

∂p2E

)2

T±
(
p2E −m2 − i0

)

= −
eϵ̂γEµ2ϵ̂

Γ(1− ϵ̂)

∫ ∞

0

dpE p−2ϵ̂
E

∂

∂pE
T±
(
p2E −m2 − i0

)
(17)
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Exact analytic results for Wilson coefficients in terms of an integral over a 
single 5D propagator function:


!

where:


!

Contributions at large momenta (near cutoff) vanish if the Higgs is a bulk 
field, but not if it lives on the IR brane!



Impact of higher-dimensional hgg operators

whereas C5 = 0. The first term in the first line is the result of the summation over the KK
tower of quark states, while the second term gives the contributions of the SM quarks, whose
Yukawa couplings are modified with respect to their values in the SM by factors (1 − εqi).
It suffices for all practical purposes to keep only the terms shown in the second line. Apart
from the last term, they agree with a corresponding result presented in [18]. The first two
corrections to the SM result are numerically very small, because 1 − A(τt) ≈ −0.03 and the
quantity εb is chirally suppressed. The third correction, which arises from the infinite sum over
KK states, gives the dominant contribution by far. This effect was not found in [20], because
in this paper the brane-Higgs case was derived by taking a limit of a bulk-Higgs result. If
one formally introduces two different Yukawa matrices in the narrow bulk-Higgs scenario, one
indeed finds that g(Xq) defined in (55) vanishes in the limit where Y S

q → 0. However, in the
context of a bulk Higgs model taking Y S

q different from Y C
q violates 5D Lorentz invariance,

and moreover (as we have explained several times) the brane-Higgs case cannot be derived by
taking a limit of the bulk-Higgs results.

In practice, we find that the corrections to the gluon fusion amplitude found in the type-II
brane-Higgs scenario are numerically very similar to those obtained in the original brane-
Higgs model. The main difference is a slightly larger spread of the distribution of points
obtained when one scans the parameter space of the model. In our phenomenological analysis
in Section 8 we will therefore restrict ourselves to a study of the case where Y C

q = Y S
q .

6 Impact of higher-dimensional |Φ|2(Ga
µν)

2 operators

We have argued in the introduction that RS models must be considered as effective field
theories, valid below a (position-dependent) UV cutoff given by the warped Planck scale.
The UV completion of these models is unknown. It may be strongly coupled, for instance
due to effects of quantum gravity. Short-distance contributions from physics above the cutoff
scale give rise to higher-dimensional operators, such as those studied briefly in Section 5.3.
Two particularly interesting higher-dimensional operators relevant for Higgs production are
Φ†ΦGa

MNGMN,a and Φ†ΦGa
MN G̃MN,a, which mediate effective hgg couplings at tree level. Here

Ga
MN is the 5D gluon field-strength tensor. We will now address the question how important

the contributions of these operator are in the low-energy effective theory, focussing on the first
operator for concreteness.

In the RS model with the scalar sector localized on the IR brane, the relevant effective
action is

Seff =

∫
d4x

∫ rπ

−rπ

dx5 ceff δ(|x5|− rπ)
Φ†Φ

Λ2
TeV

g2s,5
4

Ga
µν Gµν,a + . . . , (77)

where we do not bother to write down terms involving Ga
µ5. Here gs,5 is the five-dimensional

strong coupling, which is related to the coupling gs of the SM by gs,5 =
√
2πr gs [53]. The

natural UV cutoff governing the suppression of the brane-localized higher-dimensional operator
is ΛTeV. NDA suggests that the dimensionless coupling ceff could be as large as O(1) if the
UV completion above the cutoff of the RS model is strongly coupled. In the absence of a
complete model, it is impossible to say how ceff might depend on other parameters, such as
the Yukawa couplings or the number of fermion generations. Even in a strongly coupled theory,
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it is possible that ceff could be significantly smaller than 1,7 for instance because the effective
degrees of freedom coupling the Higgs boson to two gluons can only be pair produced, or
because they have suppressed couplings to the operators Φ†Φ or Ga

µν Gµν,a. Following common
practice, we shall assume that taking ceff = O(1) provides a conservative upper bound for the
effect of the brane-localized operators on the gluon fusion amplitude.

Using the KK decomposition of the gluon field,

Ga
µν(x,φ) =

1√
r

∑

n

G(n) a
µν (x)χG

n (φ) =
1√
2πr

Ga
µν(x) + KK modes , (78)

where the zero mode (the SM gluon Ga
µν ≡ G(0) a

µν ) has a flat profile along the extra dimension,
and writing the scalar doublet in the standard form

Φ(x) =

(
−iϕ+(x)

1√
2

[
v + h(x) + iϕ3(x)

]

)

, (79)

we find that the relevant terms in the action (77) gives rise to the effective Lagrangian

Leff =
ceff
Λ2

TeV

Oeff , (80)

where

Oeff = Φ†Φ
g2s
4
Ga

µν G
µν,a ∋

g2sv
2

8

(
1 +

h(x)

v

)2

Ga
µν G

µν,a . (81)

We now repeat this analysis for an RS model in which the Higgs field lives in the bulk of
the extra dimension. A detailed discussion of the properties of a bulk-Higgs field and its vev
is presented in Appendix B. In this case the higher-dimensional operator can be localized on
both the IR and UV branes, or it can live in the bulk. We thus consider the action

Seff =

∫
d4x

∫ rπ

−rπ

dx5

[
c1 + c2 δ(|x5|− rπ) + c3 δ(x5)

] Φ†Φ

M2
Pl

g2s,5
4

Ga
µν Gµν,a + . . . , (82)

where the coupling c1 is dimensionless, while c2,3 ∼ 1/MPl. Since all fields live in the bulk,
the natural cutoff suppressing the operator is set by the Planck scale. Also, the scalar field
now takes the form shown in relation (B.4) in Appendix B. Using the KK decomposition of
the Higgs field given in (B.17), we find that

Seff =

∫
d4x

g2s
4
Ga

µν(x)G
µν,a(x)

2π

L

∫ 1

ϵ

dt

t

v2(t)

2Λ2
UV(t)

(
1 + h(x)

χ0(t)

v(t)

)2

×
{
c1 +

k

2

[
c2 δ(t− 1) + ϵ c3 δ(t− ϵ)

]}
+ . . . ,

(83)

where ΛUV(t) = MPl ϵ/t is the warped Planck scale as introduced in (2), and v(t) and χ0(t)
are the profiles of the Higgs vev and the physical SM Higgs boson along the extra dimension.

7An example is provided by the π0 → γγ decay amplitude, which is loop suppressed in the SM despite the
fact that QCD is strongly coupled in the low-energy regime.
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it is possible that ceff could be significantly smaller than 1,7 for instance because the effective
degrees of freedom coupling the Higgs boson to two gluons can only be pair produced, or
because they have suppressed couplings to the operators Φ†Φ or Ga

µν Gµν,a. Following common
practice, we shall assume that taking ceff = O(1) provides a conservative upper bound for the
effect of the brane-localized operators on the gluon fusion amplitude.

Using the KK decomposition of the gluon field,
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µν(x,φ) =
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∑
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µν (x)χG

n (φ) =
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µν(x) + KK modes , (78)

where the zero mode (the SM gluon Ga
µν ≡ G(0) a

µν ) has a flat profile along the extra dimension,
and writing the scalar doublet in the standard form

Φ(x) =

(
−iϕ+(x)

1√
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[
v + h(x) + iϕ3(x)

]

)

, (79)

we find that the relevant terms in the action (77) gives rise to the effective Lagrangian

Leff =
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Oeff , (80)

where
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4
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µν,a ∋
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2

8

(
1 +
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v
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We now repeat this analysis for an RS model in which the Higgs field lives in the bulk of
the extra dimension. A detailed discussion of the properties of a bulk-Higgs field and its vev
is presented in Appendix B. In this case the higher-dimensional operator can be localized on
both the IR and UV branes, or it can live in the bulk. We thus consider the action

Seff =

∫
d4x

∫ rπ

−rπ

dx5

[
c1 + c2 δ(|x5|− rπ) + c3 δ(x5)

] Φ†Φ

M2
Pl

g2s,5
4

Ga
µν Gµν,a + . . . , (82)

where the coupling c1 is dimensionless, while c2,3 ∼ 1/MPl. Since all fields live in the bulk,
the natural cutoff suppressing the operator is set by the Planck scale. Also, the scalar field
now takes the form shown in relation (B.4) in Appendix B. Using the KK decomposition of
the Higgs field given in (B.17), we find that

Seff =

∫
d4x

g2s
4
Ga

µν(x)G
µν,a(x)

2π

L

∫ 1

ϵ

dt

t

v2(t)

2Λ2
UV(t)

(
1 + h(x)

χ0(t)

v(t)

)2

×
{
c1 +

k

2

[
c2 δ(t− 1) + ϵ c3 δ(t− ϵ)

]}
+ . . . ,

(83)

where ΛUV(t) = MPl ϵ/t is the warped Planck scale as introduced in (2), and v(t) and χ0(t)
are the profiles of the Higgs vev and the physical SM Higgs boson along the extra dimension.

7An example is provided by the π0 → γγ decay amplitude, which is loop suppressed in the SM despite the
fact that QCD is strongly coupled in the low-energy regime.
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We now use the explicit form of the profile of the Higgs vev given in (B.16), as well as the
fact that according to (B.25) we have χ0(t)/v(t) = 1/v up to corrections of order m2

h/M
2
KK,

which we neglect here. Here v ≈ 246GeV denotes the SM value of the Higgs vev. It is then
straightforward to perform the integration over t in the above result. Matching the answer
onto the effective Lagrangian given in (80), we obtain

ceff =
1 + β

2 + β
c1 + (1 + β) kc2

β≫1−→ c1 + |µ|c2 , (84)

where the parameter β ∼ 1/η is related to the width of the profile of the scalar field (see
Appendix B). NDA suggests that c1 and kc2 can be as large as O(1) if the UV completion
of the RS model is strongly coupled. The contribution of the operator localized on the UV
brane is of O(ϵ4+2β) c3 and thus entirely negligible. This suppression results from a factor
1/M2

Pl times v2(ϵ) ∼ ϵ2+2β reflecting the smallness of the Higgs vev profile on the UV brane.
Note that in the limit of a very narrow bulk-Higgs field, corresponding to β ≫ 1 (or η ≪ 1),
the largest mass scale in the model is the Higgs mass parameter |µ| ≈ βk = O(MPl) in (B.1)
and (B.7), and hence it is more appropriate to assume that c2 ∼ 1/|µ| ∼ 1/MPl. Once again,
this leads to ceff = O(1). The structure of the result (84) is completely analogous to the
corresponding expression in (80) valid for a brane-localized Higgs boson. In both cases the
results for ceff , and hence the magnitude of the contributions of higher-dimensional operators,
are expected to be of the same order.

The effective Lagrangian (80) yields a contribution to the Wilson coefficient C1 in (9) given
by

∆C1 =
3ceff
4

(
4πv

ΛTeV

)2

≈ ceff

(
2.7TeV

ΛTeV

)2

. (85)

In order for this contribution to be much smaller than the SM value C1 = 1, we need to assume
that either the cutoff scale is much larger than about 3TeV or that |ceff | ≪ 1 for some reason.
With ΛTeV ∼ 10MKK ∼ 20 – 50TeV, the first criterion is satisfied in realistic RS models even
if ceff = O(1). The expected contribution to the Wilson coefficient C1 is then in the percent
range, which is negligible in view of the current experimental uncertainty in the measurements
of the Higgs-boson couplings. Another interesting question is under which assumptions the
contribution (85) is much smaller than the corrections to the SM result C1 = 1 which we have
obtained from loop effects in the RS model, which are approximately given by

|C1 − 1| ≈
v2

2M2
KK

∑

q=u,d

Tr
(
YqY

†
q

)
≈

v2

2M2
KK

2N2
g |Yq|2 , (86)

where Ng = 3 is the number of fermion generations, and |Yq| is the typical size of an element
of the anarchic 5D Yukawa matrices, defined by

|Yq|2 ≡ ⟨|(Yq)ij |2⟩ =
y2∗
2
. (87)

We work with anarchic 5D Yukawa matrices and assume that the entries (Yq)ij are random
complex numbers, which with equal probability can take any value in the complex plane inside
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Consider a dimension-6 operator localized on the IR brane, which can 
mediate gg→h at tree level with effective strength ceff (could be O(1) for 
strong coupling):


Resulting effective Lagrangian:


Resulting contribution to Wilson coefficient C1:

 for ΛTeV~20-50 TeV, as is appropriate for KK masses 

in 5-15 TeV range, this effect is very small !

with


