

Presented results

- Higgs combination (does not contain the latest results from individual channels*)
 - April 2013 [CMS-PAS-HIG-13-005]
- Properties from H → yy
 - July 2013 [CMS-PAS-HIG-13-016]
- Properties from H → WW (NEW)
 - December 2013 [JHEP01(2014)096]
- Properties from H → ZZ → 4l (NEW)
 - December 2013 [arXiv:1312.5353, Submitted to Phys. Rev. D]

(*) no Run-1 legacy $H \rightarrow ZZ$, WW, $\tau\tau$, no $t\bar{t}H \rightarrow$ multileptons, ...

Why and how studying Higgs properties?

- The discovery of the Higgs-like boson is a discovery of new physics and therefore opened a completely unexplored area
- The nature of the electroweak symmetry breaking mechanism can be probed in an unprecedented manner
 - Precision measurements in the new scalar sector may open a sensitivity to additional new physics
- Different tools are already available to sketch the Higgs sector
 - Mass and width
 - Coupling strengths
 - Assuming SM coupling structure
 - Spin-parity and coupling structure
 - Based on kinematic alone

Observation

- The Higgs-like particle has been observed in different channels
- Bosonic channels ($H \rightarrow yy$, WW, ZZ) are the most significant
 - With a standalone discovery in the ZZ → 4I final state
- And strong evidence of fermionic decays
 - See CMS talk by J. Swanson
- Rates are in agreement with a SM Higgs
 - ... within current (large) uncertainties
- Starting point for property studies

Mass

- With high resolution channels (yy and ZZ → 4I)
 - Assuming it is the same particle
- Combined mass measurement
 - $125.7 \pm 0.3(stat) \pm 0.3(sys)$ GeV
 - Good compatibility between γγ and ZZ → 4I masses before combination
 - <u>yy</u>: 125.4 ± 0.5(stat.) ± 0.6(syst.) GeV
 - $ZZ \rightarrow 4I$: 125.8 ± 0.5(stat.) ± 0.2(syst.) GeV
- To be compared with the latest ZZ → 4I measurement [arXiv:1312.5353]
 - $4 \cdot 125.6 \pm 0.4 \text{ (stat.)} \pm 0.2 \text{ (syst.)} \text{ GeV}$

125

126

127

124

Width

- Measured separately in $\gamma\gamma$ and $ZZ \rightarrow 4I$ channels using the peak width
 - Driven by detector resolutions
 - Only limits far from the SM Higgs width can be set
 - ZZ→4I: < 3.4 GeV @95% CL
 yy: < 6.9 GeV @95% CL
 - Much improved width sensitivity is expected from off-shell production measurement in the $H^* \rightarrow ZZ$ channels
 - CMS result coming soon!

Coupling strength measurements

- SM tensor structure ($J^{CP} = 0^{++}$)
 - Only allow modifications of coupling strengths
- Narrow resonance approximation
 - Production and decay factorize: σ ·BR(xx → H → yy) = σ (xx)·Γ_{vv} / Γ_{tot}
- Deviations from SM predictions are assessed by parameterizing σ and Γ in terms of multiplicative modifiers κ (or their ratios λ)
 - Parameterizations are LO in κ around the state of the art SM prediction
- Different benchmark parameterizations are used to test for possible BSM scenarios [arXiv:1209.0040, LHC Higgs XS WG YR3]
 - With assumptions on some modifiers
 - Possible to use effective couplings for loop-induced couplings, or derive them based on tree-level couplings

Effective loop-induced coupling

28/02/14

Hyy coupling from tree-level couplings

J.-B. Sauvan, La Thuile

Fermion and boson couplings

- Higgs couplings to fermions and bosons come from two distinct parts of the Higgs sector
- The simplest benchmark model introduces two universal modifiers for these couplings
 - ggH and Hyy loop-induced couplings are interpreted in terms of tree level couplings
 - Assume no BSM contributions in loops and decays
 - The relative sign of $\kappa_{\rm v}$ and $\kappa_{\rm f}$ can be assessed from interference between quark and W loops in Hyy
- \mathbf{k}_{V} more constrained than \mathbf{k}_{f}
 - Bosonic channels more significant
- Positive couplings are preferred, with a good compatibility with SM

Custodial symmetry

- Custodial symmetry fixes the ratio between the W and Z couplings to the SM one
- It has been tested in two ways, looking at $\lambda_{wz} = \kappa_w / \kappa_z$
 - Directly from BR(H \rightarrow WW) / BR(H \rightarrow ZZ) = λ_{WZ}^2 in 0/1 jet categories
 - [0.60,1.40] @95% CL
 - From a combined fit of the couplings (including information from VBF, VH, Hyy)
 - [0.62, 1.19] @95% CL

28/02/14

Fermion non-universality

- Some BSM theories predict Yukawa couplings modifiers that depend on the fermion type (e.g., 2HDM)
 - □ Differences between up-type and down-type fermions
 - Differences between leptons and quarks
- Measured modifier ratios (constrained to be positive) are in agreement with SM

$$\lambda_{du} = \kappa_{d} / \kappa_{u} \in [0.74, 1.95] @95\% CL$$

 $\lambda_{lq} = \kappa_l / \kappa_q \in [0.57, 2.05] @95\% CL$

BSM in loops

- Loop-induced couplings are particularly sensitive to the presence of new particles
 - Effective gluon and photon couplings are considered free in the fit
 - With the assumption of SM tree-level couplings
- $\kappa_{v} \in [0.59, 1.30] @95\%CL$
- $|\kappa_{a}| \in [0.63, 1.05] @95\%CL$

Effective loop-induced couplings

BSM in decay

- BSM effects can also appear in decays to non-SM states
 - Width parameterized with additional $\Gamma(BSM)$
 - Taking into account both invisible and undetectable decays
 - Fixed SM tree-level couplings and free loop-induced couplings
- BR_{BSM} < 0.52 @95% CL
- To be compared with direct searches (of invisible decays)
 - L VBF, $H \rightarrow inv$: BR_{BSM} < 0.69 @95% CL
 - Ly VH, H → inv: $BR_{BSM} < 0.75 @95\% CL$

BSM in decay

More general (less constrained) fits

6 parameters

- Assuming custodial symmetry
- Couplings to 3rd generation fermions are scaled independently
 - κ_t obtained from $t\bar{t}H$
- Effective couplings to gluons and photons

5 parameters

- Assuming just SM particles in loops
- Top coupling from ggH

Spin and parity

- Spin-parity state and tensor structure have been probed with kinematic information
 - L cos(θ*) for H → yy
 - $_{\bot}$ m_{\top} and m_{\parallel} for H → WW
 - □ Discriminants based on angles and masses for $H \rightarrow ZZ \rightarrow 4I$
- Decay to photons is forbidden for spin 1
 - Nervertheless, spin 1 hypotheses are also tested in ZZ → 4I (assuming different resonances)

g(q)

Spin and parity pure states

- $H \rightarrow ZZ \rightarrow 4I$ is a well-suited channel for probing J^{P}
 - ↓ Kinematic fully reconstructed (with 5 angles and 2 masses)
 - High signal over background ratio
- Various spin 0, 1, 2 hypotheses have been tested (production dependent and independent)
 - All hypotheses are excluded at more than 95% CL, except 2_h^+ , 0_h^+
- Also the $2_{m}^{+}(gg)$ model has been tested in the April 2013 combination

2_m^+ exclusion vs $qq \rightarrow X$ fraction

- The relative 2^+ production via qq or gg is unknown
 - 4 2+ hypotheses can be tested in a production independent way (as in ZZ → 4l)
 - Or different production hypotheses can been tested
- Tested in the yy and WW channels
 - **1** 100% qq rejected in WW @ >99% CL
 - Separation power in yy still too weak to make any statement

16

HZZ spin-0 tensor structure

$$A(H \to ZZ) = v^{-1} \left(a_1 m_Z^2 \epsilon_1^* \epsilon_2^* + a_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$

- Possible CP-odd contribution (a_3) , higher order CP-even contributions (a_2)
- Here only CP-odd CP-even mixture has been probed, with $a_2=0$, and

without phase determination

$$f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_3|^2 \sigma_3}$$

$$f_{a3} = 0 \rightarrow 0+$$

$$f_{a3} = 1 \rightarrow 0$$

- □ Consistent with 0, expected for SM
- Limit of 0.13 (0.04) expected with 300 fb⁻¹ (3000 fb⁻¹)
 - Such measurements will become very important in the next runs of the LHC

28/02/14

Conclusion

- No significant deviations from the SM predictions have been observed so far in Run-1 data
 - Both in the coupling strengths and in spin-parity studies
- But it is only the beginning of the story
 - More production and decay modes will become accessible in the next run of the LHC
 - 4 ... and in parallel we'll have more data in already well-established channels
 - Which will give a much more precise picture of the Higgs couplings (strengths and structure)
- And many new physics scenarios can have a Higgs boson with properties close to the SM one.

Backup

Combination signal strengths

Combination: ggH, VBF

28/02/14

HZZ: probabilities

$$\begin{split} \mathcal{P}_{\text{bkg}} &= \mathcal{P}_{\text{bkg}}^{\text{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega}|m_{4\ell}) \times \mathcal{P}_{\text{bkg}}^{\text{mass}}(m_{4\ell}), \\ \mathcal{P}_{J^P} &= \mathcal{P}_{J^P}^{\text{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega}|m_{4\ell}) \times \mathcal{P}_{\text{sig}}^{\text{mass}}(m_{4\ell}|m_{\text{H}}), \end{split}$$

HZZ: discriminants

Discriminant signal-background

$$\mathcal{D}_{\text{bkg}}^{\text{kin}} = \frac{\mathcal{P}_{0^{+}}^{\text{kin}}}{\mathcal{P}_{0^{+}}^{\text{kin}} + \mathcal{P}_{\text{bkg}}^{\text{kin}}} = \left[1 + \frac{\mathcal{P}_{\text{bkg}}^{\text{kin}}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega}|m_{4\ell})}{\mathcal{P}_{0^{+}}^{\text{kin}}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega}|m_{4\ell})}\right]^{-1}$$

Discriminant signal-background including mass probabilities

$$\mathcal{D}_{\text{bkg}} = \left[1 + \frac{\mathcal{P}_{\text{bkg}}^{\text{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega}|m_{4\ell}) \times \mathcal{P}_{\text{bkg}}^{\text{mass}}(m_{4\ell})}{\mathcal{P}_{0^+}^{\text{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega}|m_{4\ell}) \times \mathcal{P}_{\text{sig}}^{\text{mass}}(m_{4\ell}|m_{0^+})}\right]^{-1}$$

Discriminant spin hypotheses

$$\mathcal{D}_{J^P} = \left[1 + rac{\mathcal{P}^{ ext{kin}}_{J^P}(m_{Z_1}, m_{Z_2}, \vec{\Omega}|m_{4\ell})}{\mathcal{P}^{ ext{kin}}_{0^+}(m_{Z_1}, m_{Z_2}, \vec{\Omega}|m_{4\ell})}
ight]^{-1}$$

Production independent discriminants

$$\mathcal{D}_{\text{bkg}}^{\text{dec}} = \left[1 + \frac{\frac{1}{4\pi} \int d\Phi_1 d\cos\theta^* \mathcal{P}_{\text{bkg}}^{\text{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega}|m_{4\ell}) \times \mathcal{P}_{\text{bkg}}^{\text{mass}}(m_{4\ell})}{\mathcal{P}_{0^+}^{\text{kin}}(m_{Z_1}, m_{Z_2}, \vec{\Omega}|m_{4\ell}) \times \mathcal{P}_{\text{sig}}^{\text{mass}}(m_{4\ell}|m_{0^+})}\right]^{-1},$$

$$\mathcal{D}_{J^{P}}^{\text{dec}} = \left[1 + \frac{\frac{1}{4\pi} \int d\Phi_{1} d\cos\theta^{*} \mathcal{P}_{J^{P}}^{\text{kin}}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{0^{+}}^{\text{kin}}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega} | m_{4\ell})} \right]^{-1}.$$

HZZ: likelihoods

Limits and p-values

$$\mathcal{L}_{3D}^{\mu} \equiv \mathcal{L}_{3D}^{\mu,0/1\text{-jet}}(m_{4\ell}, \mathcal{D}_{\text{bkg}}^{\text{kin}}, p_{\text{T}}^{4\ell}) = \mathcal{P}(m_{4\ell}|m_{\text{H}}, \Gamma)\mathcal{P}(\mathcal{D}_{\text{bkg}}^{\text{kin}}|m_{4\ell}) \times \mathcal{P}(p_{\text{T}}^{4\ell}|m_{4\ell}),$$

$$\mathcal{L}_{3D}^{\mu} \equiv \mathcal{L}_{3D}^{\mu, \text{dijet}}(m_{4\ell}, \mathcal{D}_{\text{bkg}}^{\text{kin}}, \mathcal{D}_{\text{jet}}) = \mathcal{P}(m_{4\ell}|m_{\text{H}}, \Gamma)\mathcal{P}(\mathcal{D}_{\text{bkg}}^{\text{kin}}|m_{4\ell}) \times \mathcal{P}(\mathcal{D}_{\text{jet}}|m_{4\ell}).$$

Mass and width

$$\mathcal{L}_{3D}^{m,\Gamma} \equiv \mathcal{L}_{3D}^{m,\Gamma}(m_{4\ell},\mathcal{D}_{\mathrm{m}},\mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}}) = \mathcal{P}(m_{4\ell}|m_{\mathrm{H}},\Gamma,\mathcal{D}_{\mathrm{m}})\mathcal{P}(\mathcal{D}_{\mathrm{m}}|m_{4\ell}) \times \mathcal{P}(\mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}}|m_{4\ell}).$$

Spin-parity

$$\mathcal{L}_{2D}^{J^P} \equiv \mathcal{L}_{2D}^{J^P}(\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{J^P}).$$

24

25

HZZ: resolutions

HZZ: mass compatibility

Spin 2 tested models

$$\begin{split} A(X \to V_1 V_2) &= \Lambda^{-1} \boxed{2g_1^{(2)} t_{\mu\nu} f^{*(1)\mu\alpha} f^{*(2)\nu\alpha} + 2g_2^{(2)} t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*(1)\mu\alpha} f^{*(2)\nu\beta} + g_3^{(2)} \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} (f^{*(1)\mu\nu} f^{*(2)}_{\mu\alpha} + f^{*(2)\mu\nu} f^{*(1)}_{\mu\alpha}) \\ &+ g_4^{(2)} \boxed{\tilde{q}^\nu \tilde{q}^\mu}_{\Lambda^2} t_{\mu\nu} f^{*(1)\alpha\beta} f^{*(2)}_{\alpha\beta} + m_V^2 \Biggl(2g_5^{(2)} t_{\mu\nu} \epsilon_1^{*\mu} \epsilon_2^{*\nu} + 2g_6^{(2)} \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} (\epsilon_1^{*\nu} \epsilon_2^{*\alpha} - \epsilon_1^{*\alpha} \epsilon_2^{*\nu}) + g_7^{(2)} \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon_1^{*\epsilon} \epsilon_2^{*\epsilon} \Biggr) \\ &+ g_8^{(2)} \boxed{\tilde{q}^\mu \tilde{q}^\nu}_{\Lambda^2} t_{\mu\nu} f^{*(1)\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + m_V^2 \Biggl(g_9^{(2)} \frac{t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} \epsilon_1^{*\nu} \epsilon_2^{*\rho} q^\sigma + \frac{g_{10}^{(2)} t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^4} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma (\epsilon_1^{*\nu} (q\epsilon_2^*) + \epsilon_2^{*\nu} (q\epsilon_1^*)) \Biggr) \Biggr] \end{split}$$

 2_m^+ : KK Graviton-like with minimal couplings $(gg \rightarrow X \text{ or } q\overline{q} \rightarrow X)$

$$91 = 95 ≠ 0$$

- $\mathbf{2}_{b}^{+}$: KK Graviton-like with SM in the bulk (gg \rightarrow X)
 - Joseph g5 ≠ 0 for $X \rightarrow ZZ$ and g1 ≠ 0 for gg $\rightarrow X$
- 2_h^+ : BSM tensor with higher dimension operators (gg \rightarrow X)
 - \downarrow g4 \neq 0
- \mathbf{Z}_{h} : BSM pseudo-tensor with higher dimension operators (gg \rightarrow X)
 - **4** g8 ≠ 0

Hyy: mass spectrum

Hyy: p-value

HWW: signal strength

Five exclusive categories

- 4 2l2υ + 0/1 jet → ggH production
- 4 2l2υ + 2 jets → VBF production
- 4 2l2υ + 2 jets → VH production
- ↓ 3l3υ → WH production
- Ly 3lυ + 2 jets → ZH production (hadronic W)

HWW: production and couplings

HWW: mass and spin

HWW: spin templates

