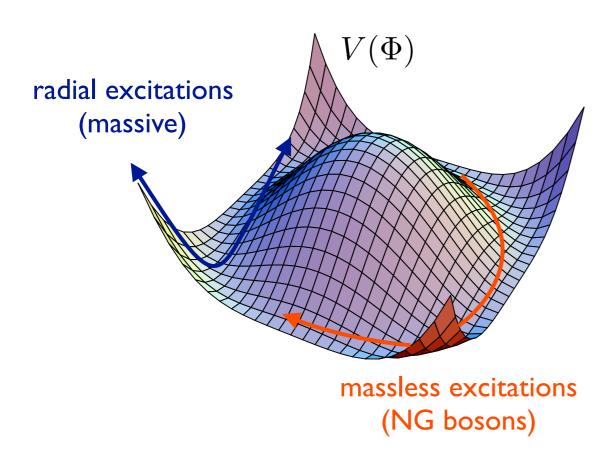

CAN WE CALL h125 THE "SM HIGGS"?

Roberto Contino
EPFL, Lausanne & CERN

Les Rencontres de Physique de la Vallée d'Aoste, LaThuile 23 Feb-1 Mar 2014

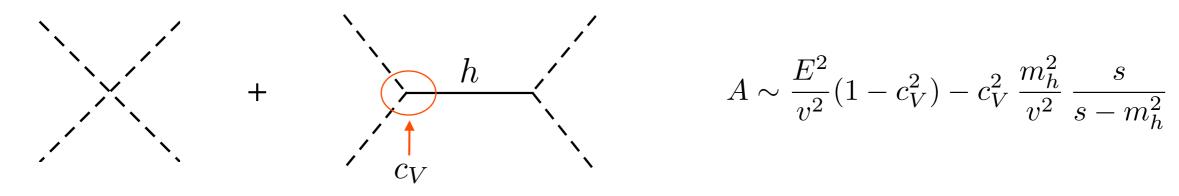

What the SM Higgs boson is

Higgs boson:

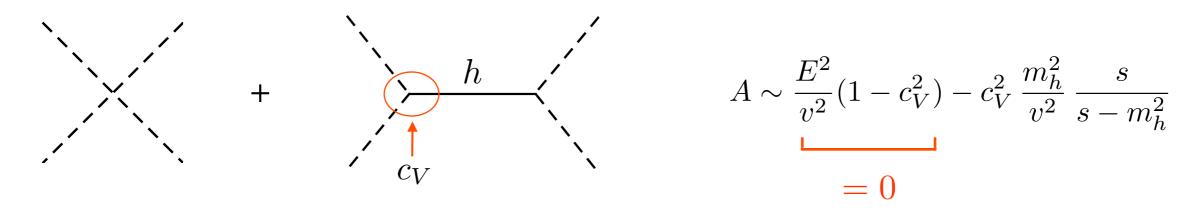
Excitation of the condensate with *tuned* couplings which maintains the theory perturbative up to very high energies

What the SM Higgs boson is

Higgs boson:

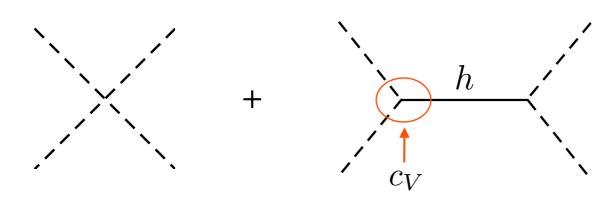

Excitation of the condensate with *tuned* couplings which maintains the theory perturbative up to very high energies

NG boson dynamics becomes strongly coupled at energies $E \sim 4\pi f$


$$f^{2} \left| \partial_{\mu} e^{i\pi/f} \right|^{2} = (\partial \pi)^{2} + \frac{(\pi \partial \pi)^{2}}{f^{2}} + \frac{\pi^{2} (\pi \partial \pi)^{2}}{f^{4}} + \dots$$

$$\pi$$
 π
 π

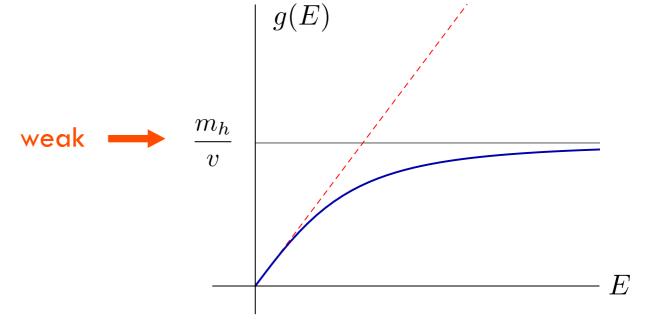
$$A(W_L W_L \to W_L W_L) = A(\pi \pi \to \pi \pi) \sim \frac{E^2}{v^2} \equiv g^2(E)$$

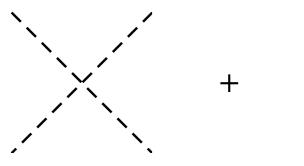


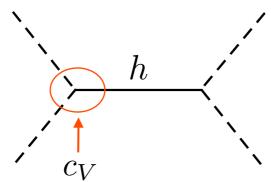
$$A \sim \frac{E^2}{v^2} (1 - c_V^2) - c_V^2 \frac{m_h^2}{v^2} \frac{s}{s - m_h^2}$$

$$A \sim \frac{E^2}{v^2} (1 - c_V^2) - c_V^2 \frac{m_h^2}{v^2} \frac{s}{s - m_h^2}$$

$$= 0$$

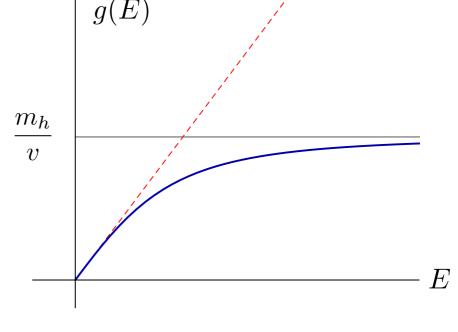



$$A \sim \frac{E^2}{v^2} (1 - c_V^2) - c_V^2 \frac{m_h^2}{v^2} \frac{s}{s - m_h^2}$$


$$= 0$$

SM (elementary) Higgs:

$$c_V = 1$$


$$A \sim \frac{E^2}{v^2} (1 - c_V^2) - c_V^2 \frac{m_h^2}{v^2} \frac{s}{s - m_h^2}$$

$$= 0$$

SM (elementary) Higgs:

$$c_V = 1$$

weak 🗪

• $\delta c_{Vi} \sim O(1)$ possible

More than 1 (elementary) Higgs (ex: SUSY):

$$A \sim \frac{E^2}{v^2} \left(1 - \sum_i c_{Vi}^2 \right) + \dots$$

=0

$$\sum_{i} c_{Vi}^2 = 1$$

$$g = e^{i\alpha} \in G$$

$$g = e^{i\alpha} \in G$$
 $e^{i\pi/f} \to g \cdot e^{i\pi/f}$

$$\pi \to \pi + \alpha + O(\pi^2)$$

They transform linearly under H

 π form representations of H

$$g = e^{i\alpha} \in G$$

$$e^{i\pi/f} \to g \cdot e^{i\pi/f}$$

$$\pi \to \pi + \alpha + O(\pi^2)$$

They transform linearly under H

 π form representations of H

The case of the EW symmetry

- naively:
$$G=SU(2)_L\times U(1)_Y\to U(1)_{em}=H$$

$$g = e^{i\alpha} \in G$$

$$g = e^{i\alpha} \in G$$
 $e^{i\pi/f} \to g \cdot e^{i\pi/f}$

$$\pi \to \pi + \alpha + O(\pi^2)$$

They transform linearly under H

 π form representations of H

The case of the EW symmetry

- naively:
$$G = SU(2)_L \times U(1)_Y \to U(1)_{em} = H$$

- actually:
$$\Delta \rho = 1 - \frac{m_W^2}{\cos^2 \theta_W \, m_Z^2} \ll 1 \qquad \longrightarrow \qquad W_L, Z_L \ \ \text{form a triplet}$$
 of a custodial SU(2)

$$G = SU(2)_L \times SU(1)_R \rightarrow SU(2) = H$$

$$g = e^{i\alpha} \in G$$

$$e^{i\pi/f} \to g \cdot e^{i\pi/f}$$

$$\pi \to \pi + \alpha + O(\pi^2)$$

They transform linearly under H

 π form representations of H

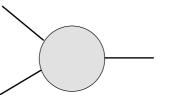
Theory stays perturbative to high energies if:

$$SU(2)_L imes U(1)_Y$$
 is restored (i.e. linearly realized) at $E \gg v$

the Higgs boson must form a doublet of $SU(2)_L \times U(1)_Y$ together with W_L, Z_L

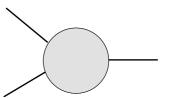
$$H = e^{i\pi/v} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$$

Can we call h125 the "SM Higgs"?

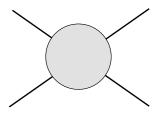

Question can be rephrased as follows:

Is h125 part of a weak doublet which makes $SU(2)_L \times U(1)_Y$ linearly realized at high energies ?

Is the EWSB dynamics weak or strong?

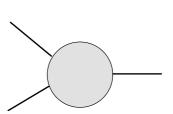

Two ways to test:

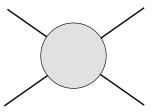
1. Measure Higgs couplings precisely and verify that they agree with SM prediction



Two ways to test:

1. Measure Higgs couplings precisely and verify that they agree with SM prediction


2. Directly access scattering amplitudes which grow with the energy


sensitive to new states (resonances) involved in unitarization

$$A(VV \to VV) \propto E^2$$
 $A(t\bar{t} \to hh/VV) \propto E m_t$ $A(VV \to hh) \propto E^2$ $A(tV \to tV) \propto E m_t$

Measure Higgs couplings precisely and verify that they agree with SM prediction

2. Directly access scattering amplitudes which grow with the energy

sensitive to new states (resonances) involved in unitarization

$$A(VV \to VV) \propto E^2$$

$$A(VV \to VV) \propto E^2$$
 $A(t\bar{t} \to hh/VV) \propto E m_t$ $A(VV \to hh) \propto E^2$ $A(tV \to tV) \propto E m_t$

$$A(VV \to hh) \propto E^2$$

$$A(tV \to tV) \propto E \, m_t$$

 \bigstar Start with building blocks of the $SU(2)_L\times U(1)_Y$ theory w/o Higgs boson

expansion parameter

y = m/v

NG bosons
$$\frac{\partial}{\Lambda} \quad \text{(chiral expansion)}$$
 Gauge fields
$$\frac{\alpha}{4\pi}$$

Fermions

 \bigstar Start with building blocks of the $SU(2)_L \times U(1)_Y$ theory w/o Higgs boson

expansion parameter

NG bosons
$$\frac{\partial}{\Lambda}$$
 (chiral expansion)

Gauge fields
$$\dfrac{\alpha}{4\pi}$$

Fermions
$$\frac{y^2}{16\pi^2} \qquad \qquad y = m/v$$

- 1. Lepton and Baryon numbers (imposed)
- 2. Custodial symmetry (set global coset)
- 3. Flavor?

Approximate symmetries:

 \bigstar Add the light Higgs ($m_h \ll \Lambda$)

Operators built as series in h(x)/v

$$\mathcal{L} = \frac{v^2}{4} |D_{\mu}\Sigma|^2 \left(1 + 2c_V \frac{h}{v} + c_{2V} \frac{h^2}{v^2} + \dots \right)$$

$$+ m_{\psi} \bar{\psi}_L \Sigma \psi_R \left(1 + c_{\psi} \frac{h}{v} + \dots \right) + h.c.$$

$$+ \frac{1}{2} (\partial_{\mu} h)^2 - \frac{1}{2} m_h^2 h^2 \left(1 + c_3 \frac{h}{v} + \dots \right)$$

$$+ \dots$$

$$\Sigma = e^{i\pi/v}$$

 \bigstar Add the light Higgs ($m_h \ll \Lambda$)

Operators built as series in h(x)/v

MFV hypothesis

$$\mathcal{L} = \frac{v^2}{4} |D_{\mu} \Sigma|^2 \left(1 + 2c_V \frac{h}{v} + c_{2V} \frac{h^2}{v^2} + \dots \right) + m_{\psi} \bar{\psi}_L \Sigma \psi_R \left(1 + c_{\psi} \frac{h}{v} + \dots \right) + h.c. + \frac{1}{2} (\partial_{\mu} h)^2 - \frac{1}{2} m_h^2 h^2 \left(1 + c_3 \frac{h}{v} + \dots \right) + \dots$$

 $\Sigma = e^{i\pi/v}$

 \bigstar Add the light Higgs ($m_h \ll \Lambda$)

Operators built as series in h(x)/v

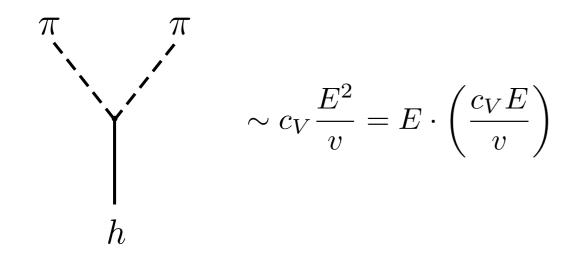
$$\mathcal{L} = \frac{v^2}{4} |D_{\mu}\Sigma|^2 \left(1 + 2c_V \frac{h}{v} + c_{2V} \frac{h^2}{v^2} + \dots \right)$$

$$+ m_{\psi} \bar{\psi}_L \Sigma \psi_R \left(1 + c_{\psi} \frac{h}{v} + \dots \right) + h.c.$$

$$+ \frac{1}{2} (\partial_{\mu} h)^2 - \frac{1}{2} m_h^2 h^2 \left(1 + c_3 \frac{h}{v} + \dots \right)$$

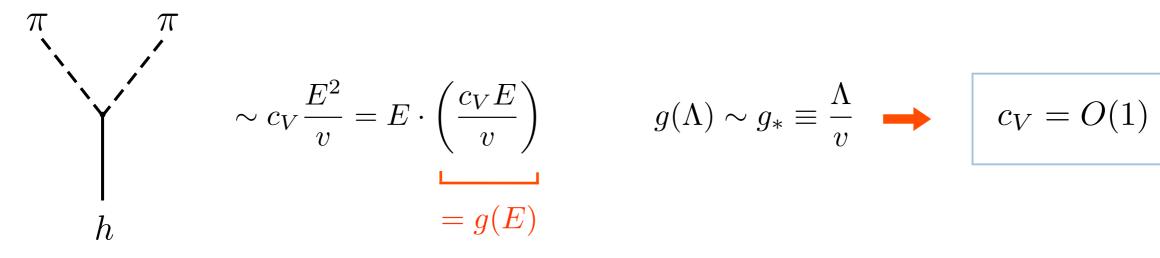
$$+ \dots$$

$$\Sigma = e^{i\pi/v}$$


NO power counting to estimate the new coefficients c_i w/o making NEW ASSUMPTIONS

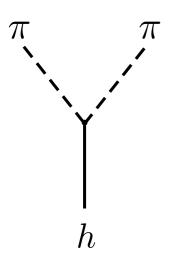
Partial UV completion (PUVC)

at $E\!=\!\Lambda$ coupling strength of the Higgs is of the same order as that of the NG bosons


Partial UV completion (PUVC)

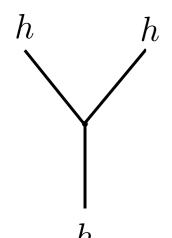
at $E\!=\!\Lambda$ coupling strength of the Higgs is of the same order as that of the NG bosons

Partial UV completion (PUVC)


at $E \! = \! \Lambda$ coupling strength of the Higgs is of the same order as that of the NG bosons

$$g(\Lambda) \sim g_* \equiv \frac{\Lambda}{v} \longrightarrow c_V = O(1)$$

Partial UV completion (PUVC)


at $E = \Lambda$ coupling strength of the Higgs is of the same order as that of the NG bosons

$$\sim c_V \frac{E^2}{v} = E \cdot \left(\frac{c_V E}{v}\right) \qquad g(\Lambda) \sim g_* \equiv \frac{\Lambda}{v} \implies c_V = O(1)$$

$$= g(E)$$

$$g(\Lambda) \sim g_* \equiv \frac{\Lambda}{v} \longrightarrow c_V = O(1)$$

$$\sim \frac{m_h^2}{v}c_3 \equiv m_h \cdot g$$

$$\sim \frac{m_h^2}{v} c_3 \equiv m_h \cdot g \qquad \qquad g \sim g_* \equiv \frac{\Lambda}{v} \qquad \Longrightarrow \qquad c_3 \sim \frac{\Lambda}{m_h}$$

$$c_3 \sim \frac{\Lambda}{m_h}$$

couplings c_i are arbitrary

no relation between terms with $n\!=\!0$ Higgs bosons and terms with $n\!>\!0$

couplings c_i are arbitrary

no relation between terms with $n\!=\!0$ Higgs bosons and terms with $n\!>\!0$

Example:
$$g \, D_\mu W^a_{\mu\nu} {
m Tr} \Big[\Sigma^\dagger i \sigma^a \overleftrightarrow{D}_\nu \Sigma \Big] \left(c_W + c_W' \frac{h}{v} + \dots \right)$$
 $c_W, c_W' \sim \frac{v^2}{\Lambda^2}$

couplings c_i are arbitrary

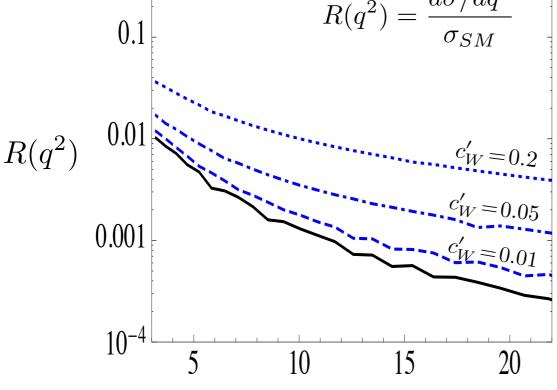
no relation between terms with $n\!=\!0$ Higgs bosons and terms with $n\!>\!0$

Example:
$$g \, D_{\mu} W^a_{\mu\nu} {
m Tr} \Big[\Sigma^{\dagger} i \sigma^a \overleftrightarrow{D}_{\nu} \Sigma \Big] \, \Big(c_W + c_W' \frac{h}{v} + \dots \Big)$$
 $c_W, c_W' \sim \frac{v^2}{\Lambda^2}$

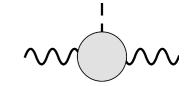
modifies q^2 spectrum in Higgs associated production $pp\!\to\!Vh$

$$\frac{d\sigma}{dq^2} / \left(\frac{d\sigma}{dq^2}\right)_{SM} = 1 + 2g^2 c_W' \left(1 + \frac{q^2}{m_V^2}\right)$$

Isidori, Trott JHEP 02 (2014) 082


couplings c_i are arbitrary

no relation between terms with n=0Higgs bosons and terms with n > 0

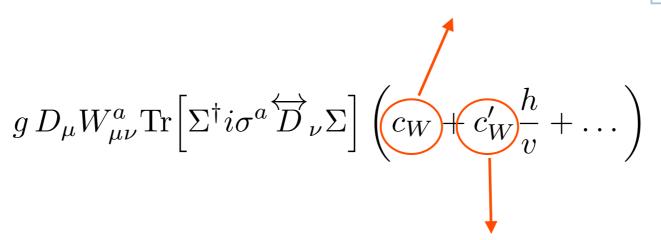

$$g D_{\mu} W^{a}_{\mu\nu} \operatorname{Tr} \left[\Sigma^{\dagger} i \sigma^{a} \overleftrightarrow{D}_{\nu} \Sigma \right] \left(c_{W} + c'_{W} \frac{h}{v} + \dots \right)$$

$$c_W, c_W' \sim rac{v^2}{\Lambda^2}$$

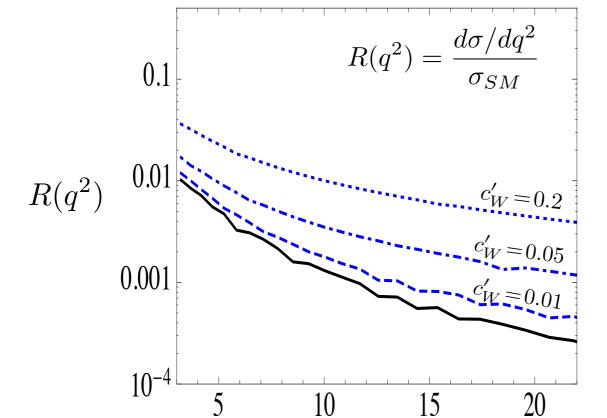
modifies q^2 spectrum in Higgs associated production $pp \! \to \! Vh$

$$\frac{d\sigma}{dq^2} / \left(\frac{d\sigma}{dq^2}\right)_{SM} = 1 + 2g^2 c_W' \left(1 + \frac{q^2}{m_V^2}\right)$$

Isidori, Trott JHEP 02 (2014) 082



constrained by LEP

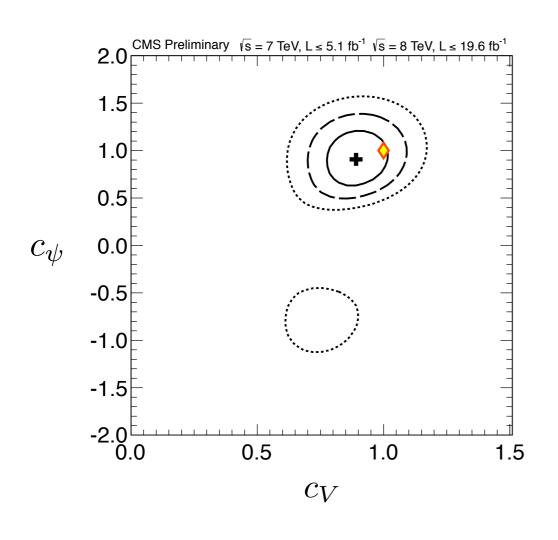

$$c_W \lesssim 1 \times 10^{-2}$$

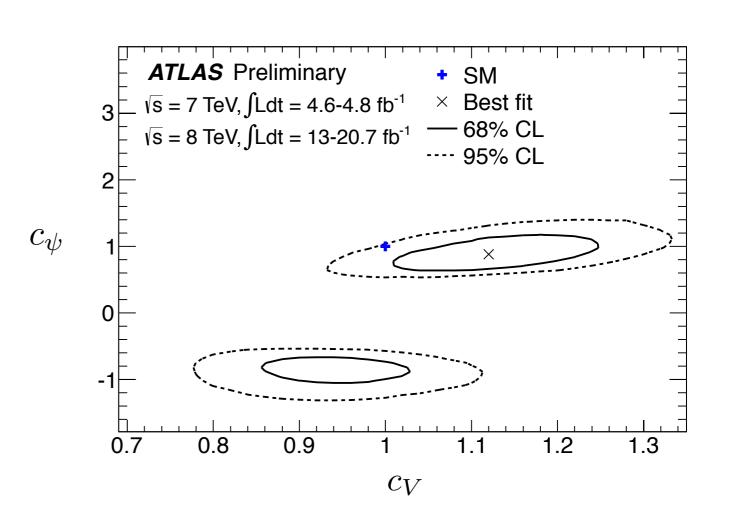
Example:

$$g D_{\mu} W^{a}_{\mu\nu} \text{Tr} \left[\Sigma^{\dagger} i \sigma^{a} \overleftrightarrow{D}_{\nu} \Sigma \right]$$

$$c_W, c_W' \sim rac{v^2}{\Lambda^2}$$

modifies q^2 spectrum in Higgs associated production $pp \rightarrow Vh$

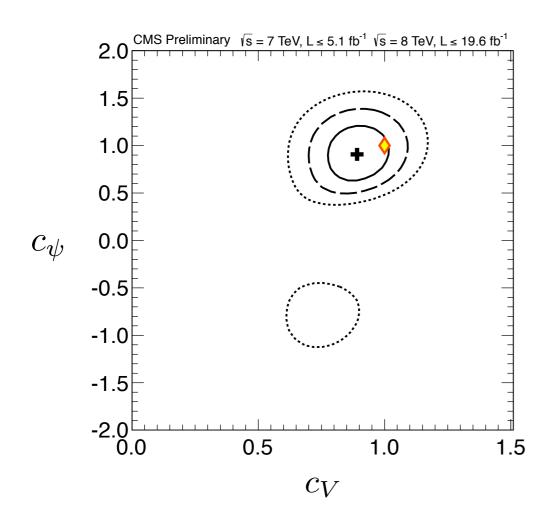


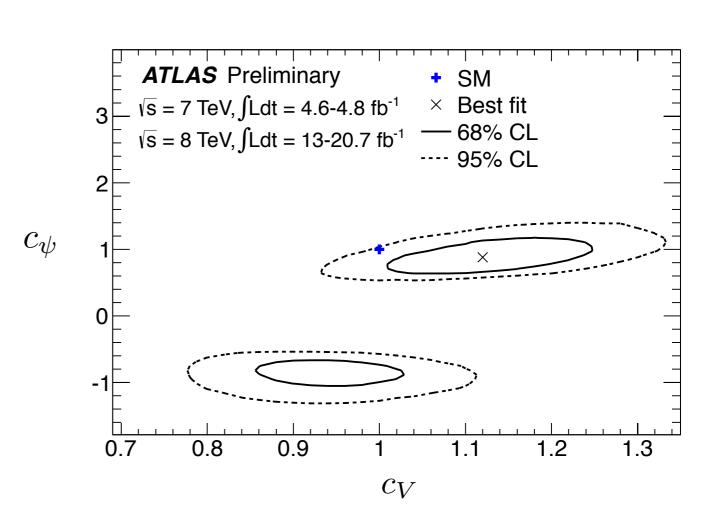

$$\frac{d\sigma}{dq^2} / \left(\frac{d\sigma}{dq^2}\right)_{SM} = 1 + 2g^2 c_W' \left(1 + \frac{q^2}{m_V^2}\right)$$

Isidori, Trott JHEP 02 (2014) 082

$$(c_i - 1) \ll 1$$

Couplings close to SM point





Current data indicate:

$$(c_i-1)\ll 1$$

Couplings close to SM point

How to live near the SM:

1. The new boson is part of an $SU(2)_L$ doublet

$$H = e^{i\pi/v} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$$

2. There is a gap between the NP scale and m_h

Q: What is already constrained by experiments w/o Higgs?

Q: What is already constrained by experiments w/o Higgs?

In total: 59 dim-6 operators Grzadkowski et al. JHEP 1010 (2010) 085

Q: What is already constrained by experiments w/o Higgs?

In total: 59 dim-6 operators Grzadkowski et al. JHEP 1010 (2010) 085

17 involve the Higgs

Q: What is already constrained by experiments w/o Higgs?

In total: 59 dim-6 operators Grzadkowski et al. JHEP 1010 (2010) 085

17 involve the Higgs

8 affect Higgs physics only

Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066

Pomarol, Riva JHEP 01 (2014) 151

Q: What is already constrained by experiments w/o Higgs?

In total: 59 dim-6 operators Grzadkowski et al. JHEP 1010 (2010) 085

17 involve the Higgs

8 affect Higgs physics only

Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066

Pomarol, Riva JHEP 01 (2014) 151

All other operators probed already by LEP $+ m_W + TGC$

Q:

What is already constrained by experiments w/o Higgs?

In total: 59 dim-6 operators

Grzadkowski et al. JHEP 1010 (2010) 085

17 involve the Higgs

8 affect Higgs physics only

Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066

Pomarol, Riva JHEP 01 (2014) 151

$$O_{H} = (\partial_{\mu}|H|^{2})^{2}$$

$$O_{BB} = g'^{2}|H|^{2}B_{\mu\nu}B^{\mu\nu}$$

$$O_{WW} = g^{2}|H|^{2}W_{\mu\nu}W^{\mu\nu}$$

$$O_{GG} = g_{s}^{2}|H|^{2}G_{\mu\nu}G^{\mu\nu}$$

$$O_{y_{d}} = y_{d}|H|^{2}\bar{q}_{L}Hd_{R}$$

$$O_{y_{u}} = y_{u}|H|^{2}\bar{q}_{L}\tilde{H}u_{R}$$

$$O_{y_{e}} = y_{e}|H|^{2}\bar{L}_{L}He_{R}$$

$$O_{6} = \lambda|H|^{6}$$

Q:

What is already constrained by experiments w/o Higgs?

In total: 59 dim-6 operators

Grzadkowski et al. JHEP 1010 (2010) 085

17 involve the Higgs

8 affect Higgs physics only

Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066

Pomarol, Riva JHEP 01 (2014) 151

All other operators probed already by LEP $+ m_W + TGC$

$$O_H = (\partial_\mu |H|^2)^2$$

shifts all couplings

$$O_{BB} = g'^{\,2} |H|^2 B_{\mu\nu} B^{\mu\nu}$$

$$O_{WW} = g^2 |H|^2 W_{\mu\nu} W^{\mu\nu}$$

$$O_{GG} = g_s^2 |H|^2 G_{\mu\nu} G^{\mu\nu}$$

$$O_{y_d} = y_d |H|^2 \bar{q}_L H d_R$$

$$O_{y_u} = y_u |H|^2 \bar{q}_L \tilde{H} u_R$$

$$O_{y_e} = y_e |H|^2 \bar{L}_L H e_R$$

$$O_6 = \lambda |H|^6$$

Q:

What is already constrained by experiments w/o Higgs?

In total: 59 dim-6 operators

Grzadkowski et al. JHEP 1010 (2010) 085

17 involve the Higgs

8 affect Higgs physics only

Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066

Pomarol, Riva JHEP 01 (2014) 151

$$O_H=(\partial_\mu|H|^2)^2$$
 shifts all couplings $O_{BB}=g'^2|H|^2B_{\mu\nu}B^{\mu\nu}$ $h o\gamma\gamma$ $O_{WW}=g^2|H|^2W_{\mu\nu}W^{\mu\nu}$ $O_{GG}=g_s^2|H|^2G_{\mu\nu}G^{\mu\nu}$ $O_{y_d}=y_d|H|^2ar q_LHd_R$ $O_{y_u}=y_u|H|^2ar q_Lar Hu_R$ $O_{y_e}=y_e|H|^2ar L_LHe_R$ $O_{g_e}=\lambda|H|^6$

Q:

What is already constrained by experiments w/o Higgs?

In total: 59 dim-6 operators

Grzadkowski et al. JHEP 1010 (2010) 085

17 involve the Higgs

8 affect Higgs physics only

Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066

Pomarol, Riva JHEP 01 (2014) 151

$$O_H=(\partial_\mu|H|^2)^2$$
 shifts all couplings $O_{BB}=g'^2|H|^2B_{\mu\nu}B^{\mu\nu}$ $h o\gamma\gamma$ $O_{WW}=g^2|H|^2W_{\mu\nu}W^{\mu\nu}$ $h o Z\gamma$ $O_{GG}=g_s^2|H|^2G_{\mu\nu}G^{\mu\nu}$ $O_{y_d}=y_d|H|^2ar q_LHd_R$ $O_{y_u}=y_u|H|^2ar q_L\tilde Hu_R$ $O_{y_e}=y_e|H|^2ar L_LHe_R$ $O_{g_e}=\lambda|H|^6$

Q:

What is already constrained by experiments w/o Higgs?

In total: 59 dim-6 operators

Grzadkowski et al. JHEP 1010 (2010) 085

17 involve the Higgs

8 affect Higgs physics only

Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066

Pomarol, Riva JHEP 01 (2014) 151

$$O_H=(\partial_\mu|H|^2)^2$$
 shifts all couplings $O_{BB}=g'^2|H|^2B_{\mu\nu}B^{\mu\nu}$ $h o\gamma\gamma$ $O_{WW}=g^2|H|^2W_{\mu\nu}W^{\mu\nu}$ $h o Z\gamma$ $O_{GG}=g_s^2|H|^2G_{\mu\nu}G^{\mu\nu}$ $gg o h$ $O_{y_d}=y_d|H|^2ar{q}_LHd_R$ $O_{y_u}=y_u|H|^2ar{q}_L ilde{H}u_R$ $O_{y_e}=y_e|H|^2ar{L}He_R$ $O_{g_e}=\lambda|H|^6$

Q:

What is already constrained by experiments w/o Higgs?

In total: 59 dim-6 operators

Grzadkowski et al. JHEP 1010 (2010) 085

17 involve the Higgs

8 affect Higgs physics only

Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066

Pomarol, Riva JHEP 01 (2014) 151

$$\begin{split} O_H &= (\partial_\mu |H|^2)^2 & \text{shifts all couplings} \\ O_{BB} &= g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu} & h \to \gamma \gamma \\ O_{WW} &= g^2 |H|^2 W_{\mu\nu} W^{\mu\nu} & h \to Z \gamma \\ O_{GG} &= g_s^2 |H|^2 G_{\mu\nu} G^{\mu\nu} & gg \to h \\ O_{y_d} &= y_d |H|^2 \bar{q}_L H d_R \\ O_{y_u} &= y_u |H|^2 \bar{q}_L \tilde{H} u_R & \text{shift } h \psi \psi \\ O_{y_e} &= y_e |H|^2 \bar{L}_L H e_R \\ O_6 &= \lambda |H|^6 \end{split}$$

Q:

What is already constrained by experiments w/o Higgs?

In total: 59 dim-6 operators

Grzadkowski et al. JHEP 1010 (2010) 085

17 involve the Higgs

8 affect Higgs physics only

Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066

Pomarol, Riva JHEP 01 (2014) 151

$$O_H=(\partial_\mu|H|^2)^2$$
 shifts all couplings $O_{BB}=g'^2|H|^2B_{\mu\nu}B^{\mu\nu}$ $h o\gamma\gamma$ $O_{WW}=g^2|H|^2W_{\mu\nu}W^{\mu\nu}$ $h o Z\gamma$ $O_{GG}=g_s^2|H|^2G_{\mu\nu}G^{\mu\nu}$ $gg o h$ $O_{y_d}=y_d|H|^2ar q_LHd_R$ $O_{y_u}=y_u|H|^2ar q_Lar Hu_R$ shift $h\psi\psi$ $O_{y_e}=y_e|H|^2ar L_LHe_R$ $gg o hh$

Q: What is already constrained by experiments w/o Higgs?

In total: 59 dim-6 operators

Grzadkowski et al. JHEP 1010 (2010) 085

17 involve the Higgs

8 affect Higgs physics only

Elias-Miro, Espinosa, Masso, Pomarol JHEP 1311 (2013) 066

Pomarol, Riva JHEP 01 (2014) 151

$$O_H = (\partial_\mu |H|^2)^2$$
 shifts all couplings $O_{BB} = g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu}$ $h o \gamma \gamma$ $O_{WW} = g^2 |H|^2 W_{\mu\nu} W^{\mu\nu}$ $h o Z \gamma$ $gg o h$ only 2 operators $O_{Yd} = y_d |H|^2 ar{q}_L H d_R$ $O_{Yu} = y_u |H|^2 ar{q}_L H u_R$ shift $h \psi \psi$ $O_{Ye} = y_e |H|^2 ar{L}_L H e_R$ $O_{GG} = \lambda |H|^6$ $gg o hh$

 Model-independent parametrization (and perspective) needed to test nature of Higgs boson

 Model-independent parametrization (and perspective) needed to test nature of Higgs boson

- Higgs data seem to indicate:
 - i) Higgs boson is part of a doublet ($SU(2)_L \times U(1)_Y$ linearly realized)
 - ii) gap between EW scale and cutoff

 Model-independent parametrization (and perspective) needed to test nature of Higgs boson

- Higgs data seem to indicate:
 - i) Higgs boson is part of a doublet ($SU(2)_L \times U(1)_Y$ linearly realized)
 - ii) gap between EW scale and cutoff

Dimension-6 analysis of Higgs physics:
 only 2 un-probed directions to New Physics
 many directions closed by past experiments