

Higgs Fermionic Properties at CMS

Joshua Swanson on behalf of the CMS Collaboration La Thuile 2014

Introduction

- Observation of new boson dates H→ZZ back to July 2012
 - Evidence in decays to γγ, ZZ, WW
 - No significant excess for ττ, bb
- Does this new boson couple to fermions?
 - Is the coupling proportional to their mass?
- Will discuss today searches for H→μμ, ee, bb, ττ
 - Will also briefly discuss ttH searches

CMS PAS HIG-13-007

$H \rightarrow \mu\mu$ search

- SM predicts tiny branching fraction (2.2 X 10^{-4} @ $m_H = 125$ GeV)
- Search done in categories in η^{μ} , $p_t^{\mu\mu}$, jet multiplicity
- Observed limit 7.4 X SM vs. 5.1 expected at $m_H = 125 \text{ GeV}$

CMS PAS HIG-13-007

4

$H \rightarrow ee search$

- Branching fraction even smaller then μμ:
 - BR(H \rightarrow ee) $\sim 2x10^{-5}$ *BR(H $\rightarrow \mu\mu$)
- Done in different categories
 based on η^e and di-jet tagged
- No significant excess in search region

H(125)→ee/μμ summary (@8 TeV)

 CHN
 Obs. Limit 95% σ^*BR @ 125 GeV

 H \rightarrow ee
 0.038 pb

 H \rightarrow µµ
 0.034 pb

ttH

CMS PAS HIG-13-020 $\mu_{ttH} = 3.7^{+1.6}_{-1.4}$

ttH search: combination

CMS PAS HIG-13-019

- Combination of 3 independent ttH analyses
- Observed limit @ $m_{\rm H} = 125 \text{ GeV } 4.3 \text{X} \sigma_{\rm sm} \text{ vs } 2.9 \text{ expected}$
- Best fit $\mu_{ttH} = 2.5^{+1.1}_{-1.0}$
- Hint of direct coupling to top quarks

H→bb Analysis Overview

- Large Branching Fraction at $m_H = 125 \text{ GeV}$
 - Large SM backgrounds
 - B-Tagging presents challenges at the LHC
- Analysis done in 6 topologies:
 - Z(ll)H(bb), Z(vv)H(bb), W(lv)H(bb)
- Published to arXiv:1310.3687 (Oct 2013) and Phys. Rev. D (Jan 2014)
- CMS also has a VBF H \rightarrow bb analysis CMS-PAS-HIG-13-011

H→bb

- BDT Inputs include kinematics, b-tag information, angles
- Categorized based on p_t(V) for each channel
- As a cross check to the BDT analysis an analysis fitting to m_{jj} is done

Joshua Swanson - Brown University

H→bb Results

 2.1 σ excess is observed at m_H = 125 GeV consistent with the expectation for a SM Higgs

- Best fit $\mu = 1.0 \pm 0.5$
 - Consistent in Z(vv)H, Z(ll)H and WH channels

$H \rightarrow \tau \tau$ Analysis Overview

- Overall search includes 19.7 (4.9) fb⁻¹ @ $\sqrt{s} = 8$ TeV (7 TeV) of LHC data taken with CMS
- Covers 3 leading production modes ggF, VBF, VH
- All ττ decay modes included
 - $\tau_{\mu}\tau_{h}, \tau_{e}\tau_{h}, \tau_{h}\tau_{h}, \tau_{\mu}\tau_{e}, \tau_{\mu}\tau_{\mu}, \tau_{e}\tau_{e}$
- Submitted to arXiv:1401.5041 and JHEP Jan. 2014

10

Search Categories (Non-VH)

		0-jet	1-jet	2-j m _{jj} > 500 GeV IAn _{il} > 3.5	et p ₁ ^{ττ} > 100 GeV m _{jj} > 700 GeV Δη _{ii} > 4.0	• Events split into
μτ _h	p _⊤ (τ _ь) > 45 GeV baseline	high p _T (τ _h) low p _T (τ _h)	high $p_T(T_h)$ high $p_T(T_h)$ boost low $p_T(T_h)$	lopse VBF tag	tight VBF tag (2012 only)	Boost Significance
eτ _h	$p_{T}(T_{h}) > 45 \text{ GeV}$	high p _T (τ _h) Iow p _T (τ _h)	$\begin{array}{c} high p_{T}(T_{h}) \\ high p_{T}(T_{h}) \\ boost \\ low p_{T}(T_{h}) \end{array}$	loose VBF tag	tight VBF tag (2012 only)	• Enhance production modes
еµ	p _T (μ) > 35 GeV	high p _T (μ)	E ^{miss} > 30 GeV high p _τ (μ)	loose VBE tag	tight VBF tag	VBF Modes
ee, µµ	baseline p _τ (l) > 35 GeV	low p _T (μ) high p _T (l)	low p _T (μ) high p _T (l)		(2012 only)	 Boosted modes Initial state gluon
τ.τ.	baseline	low p _T (l)	low p _T (l)	2-jet		radiates a jet
	baseline		boost large boost p _T ^T > 100 GeV	VBF tag /p _T ^{TT} > 100 GeV m _{ij} > 500 GeV Δη _{ij} > 3.5		

2/28/14

Dedicated VH Channels

$T_e T_\mu$ Channel

- Very clean channel
 - ttbar background reduced with a BDT
- Small branching ratio
- SM $H \rightarrow$ WW background in Tight VBF category

$T_e T_h$ Channel

- Tricky $Z \rightarrow$ ee background
 - $e \rightarrow \tau$ fakes
 - With fake MET peaks in signal region
- QCD Multi-jet background is also problematic
 - Tighter cuts reduces signal yields

Joshua Swanson - Brown University

2/28/14

$T_h T_h$ Channel

- 7 TeV analysis not done due to trigger thresholds
- Highest branching ratio
- QCD multi-jet background is large

$T_{\mu}T_{h}$ Channel

- Most sensitive channel
- Smaller QCD/Z \rightarrow ll backgrounds then $\tau_e \tau_h$
- $S/B \sim 1$ in VBF tight signal region

Exclusion Limits

• Clear presence of an excess of events that is compatible with SM Higgs expectation.

Properties of the Excess

- Excess of 3.2 σ observed compared (M_H = 125 GeV) to 3.7 σ expected
- Scan of negative log likelihood difference gives a mass measurement of 122 ± 7 GeV
 - Compatible with more sensitive mass measurements in $ZZ,\gamma\gamma$ searches
- Best fit $\mu = 0.78 \pm 0.27$ (@ m_H = 125 GeV)

Combination bb/тт

- Combination of VH(bb) and H→ττ searches
- Submitted to arXiv:1401.6527 and Nature Physics Jan 2014
- Combined excess of 3.8 σ for M_H = 125 GeV compared to an expectation of 4.4 σ
- Best fit $\mu = 0.83 \pm 0.24$
- Strong evidence for H(125) decays to fermions

Channel	Signific	Best-fit	
$(m_{\rm H}=125{ m GeV})$	Expected	Observed	μ
$VH \to b\bar{b}$	2.3	2.1	1.0 ± 0.5
$\mathrm{H} \to \tau\tau$	3.7	3.2	0.78 ± 0.27
Combined	4.4	3.8	0.83 ± 0.24

CMS Experiment at the LHC, CERN

Data recorded: 2012-Jun-05 09:58:43.400262 GMT(11:58:43 CEST) Run / Event: 195552 / 61758463

Summary

- CMS has well rounded searches covering Higgs Fermionic properties
- Hint of direct coupling of Higgs to top quarks
- 3.2 σ excess is observed over the background expectation for H $\rightarrow \tau\tau$
 - Best fit $\mu = 0.78 \pm 0.27$
- Strong evidence for Higgs decays to fermions of 3.8 σ (Combination of bb/ττ searches)
 - Best fit $\mu = 0.83 \pm 0.24$
- No significant evidence for decays to ee/μμ
 - Strong evidence for flavor nonuniversality

Candidate CMS $H \rightarrow \tau \tau$ VBF Event

BACKUP

Acceptance

Channel	HLT requirement	Ι	.epton selecti	on
$\mu \tau_{\rm h}$	$\mu(12-18) \& \tau_{\rm h}(10-20)$	$p_{\rm T}^{\mu} > 17-20$	$ \eta^{\mu} < 2.1$	$R^{\mu} < 0.1$
,		$p_{\rm T}^{t_{\rm h}} > 30$	$ \eta^{ au_{ m h}} < 2.4$	$I^{ au_{ m h}} < 1.5$
eτ _h	e(15–22) & τ _h (15–20)	$p_{\rm T}^{\rm e} > 20-24$	$ \eta^{\rm e} < 2.1$	$R^{\rm e} < 0.1$
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 30$	$ \eta^{ au_{ m h}} < 2.4$	$I^{ au_{ m h}} < 1.5$
$\tau_{\rm h} \tau_{\rm h}$	$ au_{\rm h}(35) \& au_{\rm h}(35)$	$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 45$	$ \eta^{ au_{ m h}} < 2.1$	$I^{ au_{ m h}} < 1$
(2012 only)	$\tau_{\rm h}(30) \& \tau_{\rm h}(30) \& \text{jet}(30)$	-		
eμ	$e(17) \& \mu(8)$	$p_{\mathrm{T}}^{\ell_1}>20$	$ \eta^{\mu} < 2.1$	$R^{\ell} < 0.1 - 0.15$
	$e(8) \& \mu(17)$	$p_{\mathrm{T}}^{ar{\ell}_2} > 10$	$ \eta^{\rm e} < 2.3$	
μμ	$\mu(17) \& \mu(8)$	$p_{\rm T}^{\hat{\mu}_1} > 20$	$ \eta^{\mu_1} < 2.1$	$R^{\mu} < 0.1$
		$p_{\rm T}^{{{{ar \mu }_2}}} > 10$	$ \eta^{\mu_2} < 2.4$	
ee	e(17) & e(8)	$p_{\rm T}^{{ m e}_1} > 20$	$ \eta^{\rm e} < 2.3$	$R^{\rm e} < 0.1 - 0.15$
		$p_{\rm T}^{{ m e}_2} > 10$		
$\mu + \mu \tau_{\rm h}$	$\mu(17) \& \mu(8)$	$p_{\rm T}^{\mu_1} > 20$	$ \eta^{\mu} < 2.4$	$R^{\mu} < 0.1$ –0.2
		$p_{\rm T}^{\hat{\mu}_2} > 10$		
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 20$	$ \eta^{ au_{ m h}} < 2.3$	$I^{ au_{ m h}} < 2$
$e + \mu \tau_h /$	$e(17) \& \mu(8)$	$p_{\mathrm{T}}^{\ell_1}>20$	$ \eta^{\rm e} < 2.5$	$R^{\ell} < 0.1 - 0.2$
$\mu + e\tau_h$	$e(8) \& \mu(17)$	$p_{\mathrm{T}}^{ ilde{\ell}_2} > 10$	$ \eta^{\mu} < 2.4$	
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 20$	$ \eta^{ au_{ m h}} < 2.3$	$I^{ au_{ m h}} < 2$
$\mu + \tau_{\rm h} \tau_{\rm h}$	$\mu(24)$	$p_{ m T}^{\mu}>24$	$ \eta^{\mu} < 2.1$	$R^{\mu} < 0.1$
		$p_{\mathrm{T}}^{ au_{h,1}}>25$	$ \eta^{ au_{ m h}} < 2.3$	$I^{\tau_{\rm h}} < 2 - 3$
		$p_{\mathrm{T}}^{ au_{h,2}}>20$		
$e + \tau_h \tau_h$	$e(20) \& \tau_h(20)$	$p_{\mathrm{T}}^{\mathrm{e}} > 24$	$ \eta^{\rm e} < 2.1$	$R^{\rm e} < 0.1 - 0.15$
	$e(22) \& \tau_h(20)$	$p_{\mathrm{T}}^{ au_{h,1}}>25$	$ \eta^{ au_{ m h}} < 2.3$	$I^{ au_{ m h}} < 2$
		$p_{\mathrm{T}}^{ au_{h,2}} > 20$		

Resonance	HLT requirement	L	epton selectio	on
$Z \rightarrow \mu \mu$	$\mu(17) \& \mu(8)$	$p_{\rm T}^{\mu_1} > 20$	$ \eta^{\mu} < 2.4$	$R^{\mu} < 0.3$
		$p_{\rm T}^{\hat{\mu}_2} > 10$		
$Z \rightarrow ee$	e(17) & e(8)	$p_{\rm T}^{\rm e_1} > 20$	$ \eta^{\rm e} < 2.5$	$R^{\rm e} < 0.3$
		$p_{\rm T}^{{ m e}_2} > 10$		
$H \rightarrow \mu \tau_h$		$p_{\rm T}^{\mu} > 10$	$ \eta^{\mu} < 2.4$	$R^{\mu} < 0.3$
		$p_{\mathrm{T}}^{\hat{ au}_{\mathrm{h}}} > 15$	$ \eta^{ au_{ m h}} < 2.3$	$I^{ au_{ m h}} < 2$
${ m H} ightarrow { m e} au_{ m h}$		$p_{\rm T}^{\rm e} > 10$	$ \eta^{\rm e} < 2.5$	$R^{\rm e} < 0.2$
		$p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 15$	$ \eta^{\tau_{ m h}} < 2.3$	$I^{\tau_{\rm h}} < 2$
$H \rightarrow \tau_h \tau_h$		$p_{\rm T}^{ au_{ m h}} > 15$	$ \eta^{\tau_{\rm h}} < 2.3$	$I^{ au_{ m h}} < 1$
$H \rightarrow e \mu$		$p_{\mathrm{T}}^{\ell} > 10$	$ \eta^{\rm e} < 2.5$	$R^{\ell} < 0.3$
			$ \eta^{\mu} < 2.4$	

Yields (1)

``					* ~	~		
	SM Higgs ($m_{\rm H} = 125 {\rm GeV}$)						$\sigma_{\rm eff}$	
Event category	ggH	VBF	VH	Σ signal	Background	Data	$\frac{S}{S+B}$	(GeV)
$\mu \tau_{\rm h}$					_			
0-jet low- $p_{\rm T}^{\rm Th}$ 7 TeV	23.1	0.2	0.1	23.5 ± 3.4	11950 ± 590	11959	0.002	17.4
0-jet low- $p_{\rm T}^{t_{\rm h}}$ 8 TeV	83.0	0.8	0.4	85.0 ± 11.0	40800 ± 1900	40353	0.003	16.3
0-jet high- $p_{T}^{\tau_{h}}$ 7 TeV	17.5	0.2	0.2	17.9 ± 2.6	1595 ± 83	1594	0.022	15.1
0-jet high- $p_{T}^{t_{h}}$ 8 TeV	66.2	0.7	0.6	67.5 ± 9.3	5990 ± 250	5789	0.020	15.2
1-jet low- $p_{\rm T}^{\tau_{\rm h}}$ 7 TeV	9.1	1.6	0.8	11.5 ± 1.7	2020 ± 120	2047	0.012	18.8
1-jet low- $p_{T}^{t_{h}}$ 8 TeV	36.0	6.0	3.0	45.0 ± 6.0	9030 ± 360	9010	0.010	18.6
1-jet high- $p_{T}^{\tau_{h}}$ 7 TeV	7.7	1.1	0.6	9.4 ± 1.3	796 ± 39	817	0.033	19.1
1-jet high- $p_{T}^{t_{h}}$ 8 TeV	29.6	4.3	2.4	36.3 ± 4.6	3180 ± 130	3160	0.029	19.7
1-jet high- $p_T^{t_h}$ boosted 7 TeV	2.6	0.8	0.5	3.9 ± 0.6	282 ± 16	269	0.054	17.7
1-jet high- $p_T^{t_h}$ boosted 8 TeV	11.5	2.9	2.0	16.5 ± 2.6	1265 ± 62	1253	0.072	17.2
VBF tag 7 TeV	0.2	1.3	_	1.6 ± 0.1	22 ± 2	23	0.14	19.6
Loose VBF tag 8 TeV	1.1	3.4	_	4.5 ± 0.4	81 ± 7	76	0.17	17.0
Tight VBF tag 8 TeV	0.3	2.0	_	2.4 ± 0.2	15 ± 2	20	0.49	18.1
eth								
0-jet low- $p_{\rm T}^{\tau_{\rm h}}$ 7 TeV	11.8	0.1	0.1	12.0 ± 1.8	6140 ± 320	6238	0.002	16.4
0-jet low- $p_{\rm T}^{\tau_{\rm h}}$ 8 TeV	33.4	0.3	0.2	34.0 ± 4.6	16750 ± 750	17109	0.002	15.8
0-jet high- $p_{\rm T}^{\tau_{\rm h}}$ 7 TeV	11.1	0.1	0.1	11.3 ± 1.7	1159 ± 62	1191	0.015	14.3
0-jet high- $p_{\rm T}^{\tau_{\rm h}}$ 8 TeV	31.4	0.3	0.3	32.1 ± 4.4	4380 ± 170	4536	0.010	15.4
1-jet low- $p_{\rm T}^{\tau_{\rm h}}$ 7 TeV	3.1	0.6	0.3	4.0 ± 0.6	366 ± 25	385	0.029	19.6
1-jet low- $p_{\rm T}^{\tau_{\rm h}}$ 8 TeV	9.1	1.8	1.0	11.9 ± 1.6	1200 ± 56	1214	0.025	16.5
1-jet high- $p_{\rm T}^{ au_{\rm h}}$ boosted 7 TeV	1.2	0.3	0.2	1.8 ± 0.3	150 ± 9	167	0.089	15.5
1-jet high- $p_{\rm T}^{t_{\rm h}}$ boosted 8 TeV	5.1	1.4	0.9	7.5 ± 1.1	497 ± 27	476	0.11	15.5
VBF tag 7 TeV	0.2	0.7	_	0.9 ± 0.1	14 ± 2	13	0.24	15.9
Loose VBF tag 8 TeV	0.6	1.8	_	2.4 ± 0.2	45 ± 4	40	0.14	16.7
Tight VBF tag 8 TeV	0.3	1.3	-	1.6 ± 0.1	9 ± 2	7	0.51	16.2
$ au_{ m h} au_{ m h}$								
1-jet boosted 8 TeV	7.2	2.1	1.0	10.3 ± 1.7	1133 ± 49	1120	0.054	15.2
1-jet highly-boosted 8 TeV	5.6	1.6	1.2	8.4 ± 1.2	380 ± 23	366	0.14	13.1
VBF tag 8 TeV	0.5	2.4	-	3.0 ± 0.3	29 ± 4	34	0.32	14.3
$e\mu$								
0-jet low- $p_{\rm T}^{-}$ 7 leV	20.8	0.2	0.2	21.1 ± 3.0	11320 ± 260	11283	0.002	24.4
0-jet low- $p_T^{\prime\prime}$ 8 leV	70.3	0.7	0.7	71.7 ± 9.6	40410 ± 830	40381	0.002	23.6
0-jet high- $p_{\rm T}$ 7 TeV	7.5	0.1	0.1	7.8 ± 1.1	1636 ± 55	1676	0.007	22.7
0-jet high- p_{T}^{μ} 8 TeV	24.0	0.2	0.5	24.7 ± 3.3	6000 ± 150	6095	0.006	20.7
1-jet low- p_T^{μ} 7 TeV	9.0	1.6	1.0	11.7 ± 1.5	2475 ± 74	2482	0.009	23.7
1-jet low- $p_{T_{\mu}}^{\mu}$ 8 TeV	40.6	6.5	3.7	50.8 ± 6.1	10910 ± 250	10926	0.007	23.8
1-jet high- p_T^{μ} 7 TeV	4.7	1.0	0.6	6.2 ± 0.8	928 ± 37	901	0.015	23.3
1-jet high- $p_{ m T}^{\mu}$ 8 TeV	18.0	3.4	2.6	23.9 ± 2.9	4040 ± 110	4050	0.014	23.1
Loose VBF tag 7 TeV	0.2	1.0	_	1.2 ± 0.1	19 ± 1	12	0.13	23.0
Loose VBF tag 8 TeV	0.6	2.6	_	3.3 ± 0.3	99 ± 6	112	0.054	23.5
Tight VBF tag 8 TeV	0.2	1.5	-	1.6 ± 0.1	14 ± 1	17	0.31	17.8

Joshua Swanson - Brown University

2/28/14

Yields (2)

SM Higgs ($m_{\rm H} = 125 {\rm GeV}$)							
Event category	ggH	VBF	VH	Σ signal	Background	Data	
μμ							
0-jet low- $p_{\rm T}^{\mu}$ 7 TeV	8.0	0.1	0.1	8.2 ± 1.2	266200 ± 1400	266365	
0-jet low- $p_{\rm T}^{\mu}$ 8 TeV	25.4	0.3	0.6	26.4 ± 3.8	873200 ± 2600	873709	
0-jet high- $p_{\rm T}^{\mu}$ 7 TeV	5.5	0.1	0.3	5.9 ± 0.8	982900 ± 2100	982442	
0-jet high- $p_{\rm T}^{\mu}$ 8 TeV	30.6	0.4	3.5	34.6 ± 4.6	3775700 ± 3100	3776365	
1-jet low- $p_{\rm T}^{\mu}$ 7 TeV	2.5	0.4	0.3	3.2 ± 0.4	18680 ± 180	18757	
1-jet low- $p_{\rm T}^{\hat{\mu}}$ 8 TeV	7.0	1.0	0.6	8.6 ± 1.1	40900 ± 360	40606	
1-jet high- $p_{\rm T}^{\mu}$ 7 TeV	3.7	1.4	1.9	7.0 ± 0.6	233600 ± 1200	234390	
1-jet high- $p_{\rm T}^{\hat{\mu}}$ 8 TeV	15.1	2.2	4.4	21.7 ± 2.3	646000 ± 2500	646549	
2-jet 7 TeV	1.4	0.2	0.7	2.4 ± 0.3	33260 ± 350	33186	
2-jet 8 TeV	6.3	3.9	2.6	12.8 ± 1.4	164100 ± 1400	164469	
ee							
0-jet low- $p_{\mathrm{T}}^{\mathrm{e}}$ 7 TeV	3.6	_	0.1	3.7 ± 0.5	190900 ± 1000	190890	
0-jet low- $p_{\mathrm{T}}^{\mathrm{e}}$ 8 TeV	14.3	0.2	0.3	14.7 ± 2.2	519440 ± 700	519376	
0-jet high-p ^e _T 7 TeV	4.0	_	0.5	4.5 ± 0.6	819900 ± 1700	820035	
0-jet high- $p_{\rm T}^{\rm e}$ 8 TeV	22.3	0.3	2.5	25.1 ± 3.4	3225000 ± 2000	3225144	
1-jet low- p_T^e 7 TeV	1.5	0.2	0.1	1.8 ± 0.2	10268 ± 97	10300	
1-jet low- $p_{\rm T}^{\rm e}$ 8 TeV	4.6	0.6	0.3	5.5 ± 0.7	26570 ± 180	26604	
1-jet high- $p_{\rm T}^{\rm e}$ 7 TeV	2.4	0.4	0.6	3.4 ± 0.4	144900 ± 740	144945	
1-jet high-p ^e _T 8 TeV	11.7	1.9	3.2	16.9 ± 1.8	560000 ± 1900	560104	
2-jet 7 TeV	1.6	0.6	0.4	2.6 ± 0.4	35800 ± 280	35796	
2-jet 8 TeV	5.0	2.8	1.6	9.4 ± 1.1	140000 ± 1200	140070	

Yields 3

Event category	Signal	Background	Data	$\frac{S}{S+B}$
$\ell\ell + LL'$	0	0		<u> </u>
$\mu\mu + \mu\tau_{\rm h}$ 7 TeV	0.111 ± 0.005	2.4 ± 0.3	2	0.103
$\mu\mu + \mu\tau_{\rm h} 8 {\rm TeV}$	0.427 ± 0.021	10.5 ± 0.6	12	0.092
$ee + \mu \tau_h 7 \text{ TeV}$	0.087 ± 0.004	1.5 ± 0.1	2	0.135
$ee + \mu \tau_h 8 \text{ TeV}$	0.385 ± 0.018	7.6 ± 0.4	11	0.149
$\mu\mu + e\tau_h$ 7 TeV	0.078 ± 0.004	2.2 ± 0.1	1	0.092
$\mu\mu + e\tau_h 8 \text{ TeV}$	0.293 ± 0.014	12.2 ± 0.6	8	0.081
$ee + e\tau_h$ 7 TeV	0.075 ± 0.004	2.2 ± 0.1	4	0.077
$ee + e\tau_h 8 \text{ TeV}$	0.279 ± 0.013	10.2 ± 0.5	13	0.063
$\mu\mu + \tau_{\rm h}\tau_{\rm h}$ 7 TeV	0.073 ± 0.006	0.8 ± 0.1	0	0.195
$\mu\mu + \tau_{\rm h}\tau_{\rm h}$ 8 TeV	0.285 ± 0.022	5.8 ± 0.4	4	0.150
$ee + \tau_h \tau_h 7 \text{ TeV}$	0.061 ± 0.004	1.1 ± 0.1	1	0.127
$ee + \tau_h \tau_h 8 \text{ TeV}$	0.260 ± 0.020	4.8 ± 0.4	9	0.148
$\mu\mu + e\mu$ 7 TeV	0.051 ± 0.002	1.0 ± 0.1	3	0.100
$\mu\mu + e\mu 8 \text{ TeV}$	0.202 ± 0.008	5.1 ± 0.3	9	0.105
$ee + e\mu$ 7 TeV	0.045 ± 0.002	1.0 ± 0.0	1	0.077
$ee + e\mu 8 \text{ TeV}$	0.185 ± 0.007	4.0 ± 0.2	4	0.082
$\ell + \tau_{\rm h} \tau_{\rm h}$				
$\mu + \tau_{\rm h} \tau_{\rm h}$ 7 TeV	0.35 ± 0.03	4.1 ± 0.4	2	0.098
$\mu + \tau_{\rm h} \tau_{\rm h} 8 {\rm TeV}$	1.57 ± 0.12	35.2 ± 2.1	38	0.054
$e + \tau_h \tau_h$ 7 TeV	0.23 ± 0.02	2.7 ± 0.2	0	0.101
$e + \tau_h \tau_h 8 \text{ TeV}$	0.87 ± 0.08	16.5 ± 1.1	15	0.062
$\ell + \ell' \tau_h$				
$\mu + \mu \tau_{\rm h}$ 7 TeV	0.33 ± 0.02	3.2 ± 0.4	2	0.090
$\mu + \mu \tau_{\rm h} \log L_{\rm T} 8 {\rm TeV}$	0.72 ± 0.03	20.7 ± 2.2	19	0.046
$\mu + \mu \tau_{\rm h}$ high $L_{\rm T}$ 8 TeV	0.72 ± 0.02	8.4 ± 1.3	7	0.102
$e + \mu \tau_h / \mu + e \tau_h$ 7 TeV	0.47 ± 0.03	6.2 ± 1.0	6	0.074
$e + \mu \tau_h / \mu + e \tau_h \text{ low } L_T 8 \text{ TeV}$	0.92 ± 0.03	24.6 ± 3.2	30	0.041
$\mathrm{e} + \mu \tau_{\mathrm{h}} / \mu + \mathrm{e} \tau_{\mathrm{h}} \mathrm{high} L_{\mathrm{T}} 8 \mathrm{TeV}$	1.15 ± 0.04	13.9 ± 2.0	11	0.109

Hadronic T reconstruction

- Tau reconstruction: hadron+strip Particleflow based algorithm to reconstruct different hadronic tau decay modes
- τ_h identification: efficiency ~ 60% for jet fake rate ~ 1%
- The τ_h mass distribution used to control the tau energy-scale within 3%

Joshua Swanson - Brown Univeristy

$H \rightarrow \tau \tau$: mass reconstruction

- Di-tau mass estimation uses visible decay products & missing E_T in a maximum likelihood fit
- The mass resolution is $\sim 10-20\%$ depending on channel/category

2/28/14

$H \rightarrow \tau \tau$: background estimation

All normalizations are data-driven

Ζ→ττ:

embedded samples <u>No MET/JES scale</u> <u>uncertainties</u> Shape estimation and correction for selection efficiencies

W+jets:

- Normalization from high m_T control region
- Shape from MC

ttbar:

- Normalization from eµ b-tag control region
- Shape from MC

Z→ee/µµ

- Normalization scale factor from tag-and-probe in data
- Shape from MC

QCD:

- Normalization from ratio of same-sign(SS) to opposite-sign (OS) data events
- Shape from SS data events

$H \rightarrow \tau \tau$: Event categorization

Systematics

- Summary of systematic uncertainties
- τ_h E-Scale <
 - Shape Uncertainty
- Background
 Normalization
 - Vary by category/ channel
- Theory Uncertainties,
- Bin-By-Bin Stat uncertainties

	Uncertainty	Affected Processes	Change in acceptance
	Tau energy scale	signal & sim. backgrounds	shape
	e misidentified as $ au$	$Z \rightarrow ee$	20-74%
	μ misidentified as $ au$	$Z ightarrow \mu \mu$	30%
	Jet misidentified as $ au$	Z+jets	20-80%
	Electron ID & trigger	signal & sim. backgrounds	2-6%
	Muon ID & trigger	signal & sim. backgrounds	2-4%
	Electron energy scale	signal & sim. backgrounds	shape
	Jet energy scale	signal & sim. backgrounds	0-20%
	MET scale	signal & sim. backgrounds	1-12%
	Eff. b-jets	signal & sim. backgrounds	0-8%
	Eff. light-flavoured jets	signal & sim. backgrounds	1-3%
	Norm. Z production	Ζ	3%
	Z ightarrow au au category	$Z \to \tau \tau$	2-14%
	Norm. W+jets	W+jets	10-100%
-	Norm. $t\overline{t}$	$t\overline{t}$	8-35%
	Norm. di-boson	di-boson	15%-45%
	Norm. QCD multijet	QCD multijet	6-70%
	Shape QCD multijet	QCD multijet	shape
	Luminosity 7 TeV (8 TeV)	signal & sim. backgrounds	2.2% (2.6%)
	PDF (qq)	signal & sim. backgrounds	4%
A	PDF (gg)	signal & sim. backgrounds	10%
	Scale variation	signal	3-41%
	Underlying event & parton shower	signal	2-10%
4	Limited number of events	all	shape bin-by-bin

MET and control of W+Jets Background

- $E_{\rm T}^{\rm miss}$: significant improvement in resolution and dependence on pileup
- Crucial for H→ττ analysis: m_{ττ} reconstruction and separation of signal from W+jets background using m_T(μ,E_T^{miss}) selections

$T_e T_e / T_\mu T_\mu$ Channels

Expected Sensitivity

- $\tau_{\rm u} \tau_{\rm h}$ is the most sensitive channel
- VBF/Boost highest sensitivity categories
 - Good Mass Resolution and smaller backgrounds

Significance Weighted

 Inset shows difference between observed data and expected background – compared to SM H (125) expectation

Best Fit

- Overall best fit $\mu = 0.78 \pm 0.27$
- Standard model like couplings

Best Fit Breakdown

Significance

- Excess of 3.2 σ observed compared (M_H = 125 GeV) to 3.7 σ expected
 - Slightly larger in the case VH is excluded $(3.4 \sigma \text{ observed})$
- 0.07% chance of background only hypothesis •

Couplings

• Couplings are compatible with SM expectation

Vector and fermion couplings grouped $\kappa_V: \kappa_W = \kappa_Z \quad \kappa_F: \kappa_t = \kappa_b = \kappa_\tau = \kappa_g$

Joshua Swanson - Brown Univeristy