

Higgs boson into fermions at ATLAS

Dimitris Varouchas on behalf of the ATLAS Collaboration

La Thuile 2014 conference, Friday 28th February 2014

Higgs boson discovery

• Summer 2012: Historic observation of Higgs boson particle with a mass of m_H~125.5 GeV from ATLAS and CMS

• Autumn 2013: The Nobel Prize in Physics 2013

Photo: A. Mahmoud François Englert

Photo: A. Mahmouc Peter W. Higgs

What did we discover exactly?

• Observation via ZZ*, WW* and $\gamma\gamma$ decay modes

• **Results** strongly favour **J**^P=**0**⁺ quantum numbers, **consistent** with **Standard Model** theory

See Magda's and Jean-Baptiste's talk in a while

• Is the discovered Higgs boson coupling to fermions?

quarks? Most likely yes, because of the quark loop in gg-fusion/photon decay.
 <u>Nevertheless a direct measurement to quarks is necessary: H→bb</u>

leptons? <u>This is the question that the</u> $H \rightarrow \mu \mu$ and $H \rightarrow \tau \tau$ analyses are <u>addressing</u>

Outline

• ATLAS results covered in this talk

- ◆ Search for SM H→bb with full 2011 & 2012 (7 & 8 TeV) dataset
 - * ATLAS-CONF-2013-079
- ← Search for SM $H \rightarrow \mu\mu$ with full 2012 (8 TeV) dataset
 - ✤ ATLAS-CONF-2013-010
- Search for **SM** $H \rightarrow \tau \tau$ with full 2012 (8 TeV) dataset
 - ✤ ATLAS-CONF-2013-108

- Not covered here
 ttH (See Magda's talk in a while)
 - ♦ BSM searches for $H \rightarrow ff$

Higgs phenomenology in LHC

Probing fermionic couplings

• Decays

◆ SM VH→bb with full 2011 & 2012 (7 & 8 TeV) dataset

* ATLAS-CONF-2013-079

+ SM H

* ATLAS-CONF-2013-010

+ SM H

* ATLAS-CONF-2013-108

H→bb: Exploit unique production mode VH

- Production in association with a leptonically decaying W/Z
- Main challenges are **triggering** and **large backgrounds** over very small expected signals
 - Trigger using leptonic W/Z decays or MET
 - Boost of W/Z to control backgrounds
- Cut-based analysis in **3 final states** according to the number of leptons from W or Z decay
 - ► **ZH→II+bb**: **2** opposite-sign leptons, 2 b-tagged jets
 - Backgrounds: Z+heavy flavour
 - ► **ZH→vv+bb**: large MET, 2 b-tagged jets, **0 leptons**
 - Backgrounds: top, Z/W+heavy flavour
 - WH→lv+bb: 1 lepton, MET, 2 b-tagged jets
 - Backgrounds: top, W+heavy flavour
- To maximise sensitivity split into bins of N_{jets}, p^V
- Search for peak in di-jet m_{bb} invariant mass

Background modelling

- Multijet: Data driven method
- Non multijet backgrounds: **Shape** from **MC**, **normalisation** from **Data** control regions (CR) included in the fit

		2 jets 1 b-tag	3 jets 1 b-tag	2 jets 2 b-tags	3 jets 2 b-tags	Top CR еµ events
3 p _T (V) bins	0-leptons	CR	CR	SR	SR	
5 p _T (V) bins	1-lepton	CR	CR	SR	SR	
5 p _T (V) bins	2-leptons	CR	CR	SR	SR	CR

- Simultaneous fit in 26 signal regions (SR), 26 1b-tag CR's and 5 top CR's
- **Common nuisance parameters** (reflecting the systematic uncertainties) across SR's and CR's and channels/categories

H→bb: Cross-check with VZ(bb)

- VZ(bb) similar signature with 5 times larger cross section than VH(bb)
- Measure VZ(bb): a direct test of the analysis procedure
- The obs. (exp.) significance of VZ is
 4.8 (5.1) σ
- $\mu_{VZ} = \sigma_{meas}(VZ)/\sigma_{SM}(VZ) = 0.9 \pm 0.2$

H→bb: Measured signal strength

Probing fermionic couplings

Decays

- + SM VH
 - ATLAS-CONF-2013-079

→ SM $H \rightarrow \mu\mu$ with full 2012 (8 TeV) dataset

* ATLAS-CONF-2013-010

+ SM H

* ATLAS-CONF-2013-108

$H \rightarrow \mu \mu$: Analysis overview

 $\sigma \times BR (H \rightarrow \mu \mu)$ very small $\sim 2 \times 10^{-4}$ pb

- Very good di-muon, m_{µµ}, mass resolution
 - Two categories based on muon resolution
 - ♦ a) Central: |η| < 1.0 b) Non-central: rest

Two isolated, opposite-charge muons: p_T(µ₁)>25 GeV, p_T(µ₂)>15 GeV

$H \rightarrow \mu \mu$: Analysis overview

$H \rightarrow \mu \mu$: Results

ATLAS results with 20.7 fb-1 at 8TeV

- No significant deviations observed
- Current sensitivity **not sufficient** for **conclusive statement**
- 95% CL limit @ 125 GeV: **observed(expected)** 9.8(8.2)×σ_{SM}

Probing fermionic couplings

Decays

- + SM VH
 - * ATLAS-CONF-2013-079
- ♦ SM H
 - * ATLAS-CONF-2013-010

← SM H→TT with full 2012 (8 TeV) dataset

* ATLAS-CONF-2013-108

H→TT search: Analysis concept

- Question that this analysis attempts to address
 - Does the Higgs boson with $m_{H} \approx 125.5$ GeV decay to a pair of τ -leptons?
- Analysis strategy
 - Achieve maximum sensitivity by performing a multivariate analysis: Boosted Decision Trees (BDT)

- And in 2 categories per channel
 - VBF: 2 jets with leading(sub-leading) $p_T > 50(30)$ GeV, $\Delta \eta(jj) > 3$
 - → **Boosted:** $p_T(H) > 100 \text{ GeV}$, $p_T(H)$: MET + $p_T(\tau_1) + p_T(\tau_2)$
- Different **BDT** per channel and per category: **6** BDT's
 - Keep simple selection and let the BDT separate signal and background
 - Final discriminant: BDT score

Input variables to BDT

- Probe resonance properties
 - $m_{\tau\tau}$, ΔR(ττ)
 - **m**_{ττ}: Missing Mass Calculator (MMC) Precise di-tau mass estimator based on a kinematics likelihood, $\sigma_{m_{\tau\tau}}$ ~16%
- Explore event topology
 - MET, m_T, object centralities
- **VBF** specific, for the 2 VBF jets

 $m_{\tau\tau}$ the most important discriminating variable

 $\Delta \eta (j_1, j_2)$

Careful validation of BDT input variables and BDT output score distribution in dedicated background enriched control regions

Estimating the backgrounds

• Dominant Z→TT

 Embedded samples: Except for tau decays, all event properties are taken from data Z→µµ events

• Others -

- Di-boson, Z→ee/µµ, top
- + H→WW for LepLep channel
- Shape from simulation, normalisation from data

• Fake **T**

- Multijet, W+jets
- Data-driven methods

 $m_{\tau\tau}^{\rm MMC}$ [GeV]

Signal extraction

	VBF Category			Boosted Category	Rest Category*
	SR	CR	SR	CR	CR
$H \rightarrow \tau_{lep} \tau_{lep}$	~	✓ Z→II (1 bin) & Top (1 bin)	~	✓ Z→II (1 bin) & Top (1 bin)	×
$H \rightarrow \tau_{lep} \tau_{had}$	~	✓ Z→II (1 bin) & Top (1 bin)	~	✓ Z→II (1 bin) & Top (1 bin)	×
$H \rightarrow \tau_{had} \tau_{had}$	~	×	~	×	Δη(τ1,τ2) (shape)

• We fit the **Background** + μ × **Signal** model to the data using the BDT score distributions

• 6 Signal Regions (SR) & 9 Control Regions (CR) used in the fit

$$\mu = \frac{\sigma_{measured}}{\sigma_{SM}}$$

*Rest category: Events failing VBF & Boosted selection

Signal extraction

	VBF Category		Boosted Category		Rest Category*
	SR	CR	SR	CR	CR
H→τ _{lep} τ _{lep}	~	✓ Z→II (I bin) & Top (I bin)	~	✓ Z→II (I bin) & Top (I bin)	*
H→T _{lep} T _{had}	~	✓ Z→II (I bin) & Top (I bin)	>	✓ Z→II (1 bin) & Top (1 bin)	*
$H \rightarrow \tau_{had} \tau_{had}$	~	×	~	×	Δη(τ1,τ2) (shape)

• We fit the **Background** + μ × **Signal** model to the data using the BDT score distributions

• 6 Signal Regions (SR) & 9 Control Regions (CR) used in the fit

Signal Strength µ

Measured signal strength

+ $\mu = 1.4^{+0.5}-0.4$

- ✤ Boosted category: µ = 1.2 +0.8-0.6
- ♦ VBF category: µ = 1.6 +0.6 -0.5

Consistent with SM Higgs boson predictions !

- Leading uncertainty due to limited statistics in the high BDT score bins that drive the best fit value
- Theory uncertainty ranked high
- Leading experimental uncertainties come from the background normalisation

H→TT significant excess observed

- ATLAS observes significant excess of data events in high S/B region
 - **+ Expected** significance @ m_H=125 GeV : **3.2σ** (Probability: **6.6×10⁻⁴**)
 - **Observed** significance @ m_H=125 GeV : **4.1σ** (Probability: **2×10⁻⁵**)
 - Excess observed in all three channels
 - **Observed signal compatible with m_H=125 GeV**

• Direct evidence of 4.1 σ that the Higgs boson couples to leptons ₂₂

Conclusions

- Fermionic sector: an exciting and active constituent of the Higgs boson physics programme in ATLAS
- Presented the ATLAS results
 - VH(bb): µ=0.2±0.7 compatible both with signal+background and background-only hypothesis
 - μμ: 95% CL limit: <10×σ_{SM}
 - **TT:** Strong evidence of **4.1** σ , signal strength $\mu = 1.4^{+0.5}$ -0.4

• Stay tuned, preliminary results will be updated by papers

VBF H→TT event

- LepLep event from May 2012

- MU PT=53 GeV - el PT=34 GeV - ET^{MISS}=102 GeV

- mπ=127 GeV - BDT=0.99

