QCD Studies at ATLAS

Monika Wielers

RAL – STFC

on behalf of the ATLAS collaboration

Outline

- ATLAS and Run 1 operation
- QCD Physics Results
 - Soft QCD
 - Jets
 - W/Z+jets
 - Photons
- Summary

- Disclaimer: I can only show some select recent examples but not the full wealth of the ATLAS QCD results
- All public results can be found here
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

The ATLAS Detector and Run 1 operation

ATLAS record- 45 pb^{-1} 5.25 fb^{-1} 21.3 fb^{-1} ed int. lumi interactions / ~2 9.1 20.7 44m Muon Spectrometer ($ \eta < 2.7$) Tracking Detector ($ \eta < 2.5$) Electro-magnetic calorimeter ($ \eta < 3.2$) Electro-magnetic calorimeter ($ \eta < 3.2$) Hadronic calorimeter ($ \eta < 4.9$)	Run 1	2010	2011	2012		
ed int. lumi <interactions> / ~2 9.1 20.7 Muon Spectrometer $(\eta < 2.7)$ Tracking Detector $(\eta < 2.5)$ Tracking Detector $(\eta < 3.2)$ Transition radiation fracker Hadronic calorimeter ($\eta < 4.9$)</interactions>	cms energy	7 TeV	7 TeV	8 TeV		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		45 pb ⁻¹	5.25 fb ⁻¹	21.3 fb ⁻¹		
		~2	9.1	20.7	44m	
			•	• • •	,	

La Thuile, Feb. 25, 2014

Monika Wielers (RAL)

Soft QCD

 \bullet Cross section of $\Phi(1020)$ (2010 data)

Cross section of $\Phi(1020)$

- Measure cross section of Φ→K⁺K⁻ in minimum bias events
 - Select tracks with $p_T > 150$ MeV, p < 800 MeV in $|\eta| < 2.0$
 - Identify K's via dE/dx in pixel detector

- Discriminating power among MC models
 - Data best described by Pythia6 tune DW and EPOS-LHC
- More details in
 - https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/ STDM-2011-47/

Jet Physics

- Dijet cross section (2011 data)
- Multijet cross section (2010 data)

Dijet cross section

- Update of 2010 analysis using 4.5 fb⁻¹ (2011 data)
 - ⊕ >100 times the 2010 statistics (Eur. Phys. C71)
 - Better jet energy calibration
 - ⊖ More pileup
 - → Smaller syst uncertainty
- Default jet algorithm: anti-k_T with R=0.4, 0.6
- Measure cross section as a function of dijet mass and y*=|y₁-y₂|/2
- biggest uncertainty from JES

Dijet cross section

Ratio NLO QCD / data

- Agreement with NLO prediction within uncertainties for MSTW 2008, NNPDF2.3 but not for ABM11
- Improved measurement of high mass region can be used to constrain PDF at high momentum fraction

Multi-jet cross sections and α_s

- Select jets with anti-k_T with R=0.6
 - $p_T>40GeV$, |y|<2.8, $p_T^{lead}>60 GeV$
- Measure

$$R_{3/2}(p_{\mathrm{T}}^{\mathrm{lead}}) = \frac{d\sigma_{N_{\mathrm{jet}} \geq 3}/dp_{\mathrm{T}}^{\mathrm{lead}}}{d\sigma_{N_{\mathrm{jet}} \geq 2}/dp_{\mathrm{T}}^{\mathrm{lead}}}$$

$$N_{3/2}(p_{\mathrm{T}}^{(\mathrm{all\ jets})}) = \frac{\sum_{i}^{N_{\mathrm{jet}}} \left(d\sigma_{N_{\mathrm{jet}} \geq 3}/dp_{\mathrm{T},i}\right)}{\sum_{i}^{N_{\mathrm{jet}}} \left(d\sigma_{N_{\mathrm{jet}} \geq 2}/dp_{\mathrm{T},i}\right)}$$

- NLO pQCD description good for p_Tlead>140GeV
- * $R_{3/2}$, $N_{3/2}$ proportional to α_s
 - Extract using N_{3/2} as less sensitive to choice of renormalisation and factorisation scale
 - Use 210 < p_T(all jets) < 800 GeV</p>
 - $\alpha_{\rm S}(M_{\rm Z}) = 0.111 \pm 0.006 \,({\rm exp.})^{+0.016}_{-0.003} \,({\rm th.})$
 - Consistent with world average and renormalisation group equation (RGE)

La Thuile, Feb. 25, 2014

Monika W

ATLAS-CONF-2013-041 Data 2010

Q [GeV]

W/Z + jets Physics

W+charm production (2011 data)

- Sensitive to strange PDF and s/s asymmetry
 - Mixed results from other experiments
- Selection
 - W identified via W \rightarrow e ν , W \rightarrow µ ν
 - Charm tagged by
 - full reconstruction of D(*) decays
 - $D^+ \rightarrow K^- \pi^+ \pi^+$
 - D*+ \rightarrow D⁰ π ⁺ with D⁰ \rightarrow K⁻ π ⁺, D⁰ \rightarrow K⁻ π ⁺ π
 - Soft muon from semileptonic decay inside jet
- Use charge correlation between W and c/D(*)
 - opposite same sign events (OS-SS)

La Thuile, Feb. 25, 2014

Monika Wielers (RAL)

Error ~2x smaller than previous results in conference note

New Result

- Cross section depends on PDF
 - s-quark enhanced PDF are favoured (as in NNPDF2.3coll)
 - Corroborate preference for SU(3) symmetric sea (as in epWZ which includes ATLAS 2010 W and Z cross section data)

- Measure ratio W++c/W-+c
 - <1 due to d-valence quarks</p>
- Deviation of predicted value might be due to strange sea asymmetry

Take CT10 prediction (no asymmetry) and get estimate of

sensitivity
$$A_{s\overline{s}} = \frac{\langle s(x,Q^2) \rangle - \langle \overline{s}(x,Q^2) \rangle}{\langle s(x,Q^2) \rangle} \approx R_c^{\pm}(\text{CT10}) - R_c^{\pm}(\text{Data}) = (3\pm 2)\%$$
Thuile, Feb. 25, 2014

Monika Wielers (RAL)

La Thuile, Feb. 25, 2014

- Vary strange quark density in HERA PDF
 - Just one single parameter
- Free fit of strange to down sea content of proton

*
$$r_s \equiv 0.5(s+\overline{s})/\overline{d} = f_s/(1-f_s) = 0.96^{\,+0.16\,\,+0.21}_{\,-0.18\,\,-0.24}$$
 at Q² = 1.9 GeV²

- Light quark sea symmetric over whole x range
- Consistent with ATLAS-epWZ
- More details in
 - https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2012-14/

Photon Physics

- Inclusive isolated prompt photon cross section (2011 data)
- Dynamics of Photon + Jet production (2010 data)

Accepted by PRD arXiv:1311.1440

Incl. isolated prompt photon cross section

- Prompt γ = direct γ + γ from fragmentation
- Analysis updated using 2011 data
 - ⇒ > 100 × 2010 statistics
 - Select events with γ 's with $E_T > 100$ GeV and $E_T^{iso}(R=0.4) < 7 \text{ GeV}$
- Comparison with predictions
 - Good agreement for NLO predictions
 - Data a bit higher for E_T<200 GeV
 </p> but within uncertainties
 - Fragmentation contributes to the shape of $d\sigma/dE_{T}^{\gamma}$ at lower E_{T}
 - LO parton shower MCs
 - # Herwig σ 10-20% lower than data tential to constrain short Potential to constrain shape and uncertainty of gluon PDF in 0.03 < x < 0.3 (ATL-PHYS-PUB-2013-018)

Dynamics of Photon + Jet production

- Good test of pQCD (cleaner environment than jets)
 - Measure cross section as functions of E_T^γ, p_T^j, |y^j|, ΔΦ^{γj}, m^{γj}, cosΘ^{γj}
 - Good agreement with Jetphox NLO predictions

- Excellent probe of dynamics of hard scattering process
 - \circ cos Θ^{γj} = tanh(dy^{γj}/2) sensitive to quark or gluon exchange in 2 → 2 process
 - Quark exchange dominant
 - Good sensitivity to fragmentation contribution

Monika Wielers (RAL)

Summary and Outlook

- Significant ongoing effort to better understand QCD effects
- Results show
 - Data and pQCD predictions in general show good agreement
 - Some MC tunes and PDFs are now disfavoured
 - Lots of new input for PDF tunes from jet, photon and W/Z measurements
 - Better understanding of QCD effects and backgrounds to new physics
- 8 TeV analyses ongoing, so expect new results soon!

Backup

2010 data

Event shapes in underlying event

Motivation

- More accurate phenomenological modeling of soft and semi-hard multi parton interactions
- \checkmark Select min bias events: ≥ 6 ch. particles with p_T>0.5 GeV, |η|<2.5
- Look at thrust and sphericity:
 - $\text{* 1/N_{ev}$ dN_{ev}/dT_{\perp}^{ch}, 1/N_{ev}$ dN_{ev}/dT_{M}^{ch}, 1/N_{ev}$ dN_{ev}/dS_{\perp}^{ch}$ } s^{xy} = \sum_{i} \frac{1}{|\vec{p}_{T,i}|^2} \begin{bmatrix} p_{x,i}^2 & p_{x,i} p_{y,i} \\ p_{x,i} p_{y,i} & p_{y,i}^2 \end{bmatrix}$

PYTHIA6 tune Z1 (tuned to the LHC's UE distributions) closest to data

- Selection
 - W via semileptonic decays
 - Charm tagged by
 - full reconstruction of D(*) decays
 - D⁺→ K⁻ π⁺ π⁺
 - $\bullet D^0 \rightarrow K^-\pi^+, D^0 \rightarrow K^-\pi^+\pi^0, D^0 \rightarrow K^-\pi^+\pi^-\pi^+$
 - $D^{*+} \rightarrow D^0 \pi^+$
- - opp. same sign events (OS-SS)

Sea strange quark asymmetry

Inclusive jet production at \sqrt{s} =7 TeV and 2.76 TeV

- Use cross section ratio at 2.76 and 7TeV (2011/2010 data)
 - Advantage: many correlated systematics cancel!
- Compare with pQCD predictions using NLOjet++
 - Data above predictions in central region
 - Data below predictions in forward region
- Syst. uncert generally smaller than theory uncertainties
 - Means to constrain PDFs

Ratio $\sigma(2.76 \text{ TeV})/\sigma(7\text{TeV})$ divided by NLOjet++ using CT10

Inclusive jet production at √s=7 TeV and 2.76 TeV

HERA data constrains well distributions for x<0.01</p>

- Combined fit using HERA-1 and ATLAS data lead to improved shape constraints
 - Gluon PDF tends to be harder
 - Sea-quark PDF tends to be softer