K_S decays at LHCb

Carla Marin Benito on behalf of the LHCb collaboration

LES RENCONTRES DE PHYSIQUE DE LA VALLEE D'AOSTE

La Thuile, February 2014

Outline

- Introduction.
 - Motivation
 - ▶ LHCb detector for strange decays.
 - ► LHCb trigger for strange decays.
- Published results: $K_s \to \mu\mu$.
- Future prospects:

[All from Rare'n'strange Workshop, CERN, 06/12/13]

•
$$K_s \rightarrow \mu\mu$$

•
$$K_s \rightarrow \pi^0 \mu \mu$$

•
$$K_s \rightarrow 4\ell$$

$$ightharpoonup \Sigma^+ o p\mu\mu$$

Not covered in this talk:

•
$$K_S \rightarrow \pi\pi\mu\mu$$

Motivation

- Strange mesons have played a major role in the history of particle physics.
 - \triangleright K^0 decays motivated the GIM mechanism and prediction of c quark.
 - Charge-parity violation (CPV) first observed in a strange decay.
- They can still teach us many things:
 - Precision measurements of CP violation.
 - Search for new physics (NP) in rare strange decays: lepton-flavour violation (LFV) searches.
- Why strange?
 - Theoretically clean as few final states are allowed.
 - Copious production at LHC.
 - ▶ Large CKM suppression ($V_{ts}V_{td} \sim 10^{-4}$) ⇒ large sensitivity to NP.

LHCb detector for strange decays

LHCb is not optimized for the study of strange mesons: lower m, larger τ .

	m (MeV)	au (10 ⁻¹² s)
B_d	5300	1.5
Ks	500	90
$K_L \ K^\pm$	500	50000
\mathcal{K}^\pm	490	10000
Σ^{\pm}	1190	80

Long tracks (LL): $\sim 10^{13}~\text{K}_{\text{s}}/\text{fb}^{-1}$ decay in LHCb acceptance.

LHCb detector for strange decays

LHCb is not optimized for the study of strange mesons: lower m, larger τ .

	m (MeV)	au (10 ⁻¹² s)
B_d	5300	1.5
Ks	500	90
K_L	500	50000
K^{\pm}	490	10000
Σ^\pm	1190	80

Long tracks (LL): $\sim 10^{13} \text{ K}_s/\text{fb}^{-1}$ decay in LHCb acceptance. Downstream tracks (DD): more statistics but worse p resolution. Charged mothers (K^{\pm} , Σ^{\pm}) leave hits in the VELO \Rightarrow use matching.

LHCb trigger for strange decays

Not designed to select strange decays ($\sim 1\%$ of offline selected $K_S \to \mu\mu$ candidates passed the whole trigger) \Rightarrow selected in the underlying event!

- They have larger τ and lower daughter's p_T .
- In 2011, 1/3 events contain a reconstructible $K_S \to \pi\pi$.

- L0: calorimeters and muon chambers.
- HLT1: adds tracking and vertexing.
- HLT2: performs full event reconstruction.
 - Old $m_{\mu\mu}$ range didn't include m_{K_S} .
 - ▶ Adjusted in 2012 trigger \Rightarrow x3 total efficiency.
- Run2: studying to include an exclusive di- μ line at HLT1.

$K_s \rightarrow \mu\mu$ motivation

- No tree-level contribution in SM. FCNC sensitive to NP.
- 2 contributions to the amplitude: [Isidori and Unterdorfer, JHEP 01 (2004) 009] Long-distance (LD) Short-distance (SD)

- SD component of $K_S \to \mu\mu$ is dominated by CPV part of $s \to d\ell\ell$.
 - Very sensitive to new physics.
 - Poorly constrained so far.
- \rightarrow In SM: BR($K_S \rightarrow \mu \mu$) = $(5.1 \pm 0.2) \cdot 10^{-12}$ [Ecker and Pich, Nucl. Phys. B366 (1991) 189].
- \rightarrow Previous best measurement: BR($K_S \rightarrow \mu\mu$) $< 3.1 \cdot 10^{-7}$ in 1973!! [Phys.Lett. B 44 (1973) 217–220]

$K_s \to \mu \mu$: 1 fb⁻¹ data at 7 TeV [JHEP 01 (2013) 090]

- Reconstruct di-muon pairs.
- Boosted Decision Tree to reject combinatorial and material interaction backgrounds.
- Control channel $K_S \to \pi\pi$ could be a dangerous bkg. It is well separated from the signal.

$K_s \to \mu \mu$: 1 fb⁻¹ data at 7 TeV [JHEP 01 (2013) 090]

- Reconstruct di-muon pairs.
- Boosted Decision Tree to reject combinatorial and material interaction backgrounds.
- Control channel $K_S \to \pi\pi$ could be a dangerous bkg. It is well separated from the signal.

Results compatible with background only hypothesis. Set limit on BR:

BR
$$(K_s \rightarrow \mu\mu) < 9(11) \cdot 10^{-9}$$
 at 90(95)% CL

30 times better than previous best!!

$K_s \rightarrow \mu\mu$ prospects

- Most interesting region is below 10^{-10} .
- Only 1/3 of the available data (1 fb⁻¹) has been analyzed so far!

Expected sensitivity: the range takes into account the background estimation uncertainty.

From last analysis With trigger improvement

- Can go below 10⁻¹⁰ after the LHCb upgrade!
- Can have an extra gain using downstream tracks.

$K_S \to \pi^0 \mu \mu$ prospects

- Motivation
 - $K_S \to \pi^0 \mu \mu$ measures the indirect CPV contribution of $K_L \to \pi^0 \mu \mu \Rightarrow$ extract the direct CPV component which is sensitive to CKM.
 - Study structure of $K \to \pi \gamma^*$ form factor.
- Previous measurement from NA48 [Phys. Lett. B 599: 197-211, 2004]: BF($K_S \to \pi^0 \mu \mu$) = $(2.9^{+1.5}_{-1.2} \pm 0.2) \cdot 10^{-9}$ $\sim 50\%$ uncertainty!
- \bullet π^0 reconstruction is challenging. Different options studied with MC:

	BR	Efficiency	Advantage	Problems
$\pi^0 ightarrow \gamma \gamma \ \pi^0 ightarrow ee \gamma \ { m No} \ \pi^0$	$\sim 99\%$ $\sim 1\%$ -	low very low high	Allows vertexing	Combinatorial γ 's Too low efficiency Mass not peaking

- Most feasible is $\pi^0 \to \gamma \gamma$:
 - few events expected in 3 fb^{-1} .
 - may be observed after LS1 but surely after the upgrade.

$K_S \rightarrow 4\ell$ prospects

- Recent publication of SM and NP contributions to $K_{L,S} \to 4\ell$. [D'Ambrosio, Greynat and Vulvert, arXiv:1309.5736v3]
 - BRs in SM are up to: $K_s \to eeee \sim 10^{-10}$ $K_s \to ee\mu\mu \sim 10^{-11}$ $K_s \to \mu\mu\mu\mu \sim 10^{-14}$
- No experimental results so far ⇒ worth looking at it!

$K_S \rightarrow 4\ell$ prospects

- Recent publication of SM and NP contributions to $K_{L,S} \to 4\ell$.
 - [D'Ambrosio, Greynat and Vulvert, arXiv:1309.5736v3]
 - BRs in SM are up to: $K_s
 ightarrow eeee \sim 10^{-10}$ $K_s
 ightarrow ee\mu \mu \sim 10^{-11}$ $K_s
 ightarrow \mu\mu\mu\mu \sim 10^{-14}$
- No experimental results so far \Rightarrow worth looking at it!
- LHCb prospects for $K_S \to 4\ell$ with electrons:
 - e reconstruction is also challenging. From MC studies:

	Mass resolution	Single event sensitivity $(3fb^{-1})$
$egin{aligned} {\sf K_s} & ightarrow {\sf eeee} \ {\sf K_s} & ightarrow {\sf ee}\mu\mu \end{aligned}$	\sim 20 MeV \sim 10 MeV	$\sim 10^{-6} \ \sim 10^{-7}$

- ▶ Mass peak displacement due to *e* energy loss.
- ▶ Both safe from main background: $K_S \rightarrow \pi \pi ee$.
- Ongoing work with $K_S \to \mu\mu\mu\mu$.

K^+ mass prospects

Disagreement between most precise K^+ mass measurements:

• $K^+ \to \pi\pi\pi$ could give a competitive result.

LHCb approach:

[J. Beringer et al. (PDG)]

► Use long tracks but also downstream. It cleans a lot matching to hits in the VELO from the K⁺.

K^+ mass prospects

Disagreement between most precise K^+ mass measurements:

• $K^+ \to \pi\pi\pi$ could give a competitive result.

LHCb approach:

[J. Beringer et al. (PDG)]

► Use long tracks but also downstream. It cleans a lot matching to hits in the VELO from the K⁺.

$\Sigma^+ o p \mu \mu$ prospects

HyperCP (Tevatron) results [PRL 94 021801]:

- ▶ 3 signal events observed with 0 background.
- ► BR($\Sigma^+ \to p\mu\mu$) = $(8.6^{+6.6}_{-5.4} \pm 5.5) \cdot 10^{-8}$
- ▶ All 3 events have $m_{\mu\mu} \sim 214 \text{ MeV} \Rightarrow \Sigma^+ \to p X^0 (\to \mu\mu)$ with new X^0 state??

LHCb approach:

- Find evidence of the decay and study $m_{\mu\mu}$.
- Use long tracks but also downstream.
- MC studies: very good mass resolution.
- ▶ Single event sensitivity (3 fb⁻¹): $\sim 5 \cdot 10^{-9}$

Summary of rare strange prospects at LHCb

- LHCb is not designed for strange physics but can contribute a lot in this field.
- Published result: BR($K_S \to \mu\mu$) $< 9.0 \cdot 10^{-9}$, 30 times better than previous world best!
- Strange physics is a new area of interest for LHCb.

Summary of rare strange prospects at LHCb

- LHCb is not designed for strange physics but can contribute a lot in this field.
- Published result: BR($K_S \to \mu\mu$) $< 9.0 \cdot 10^{-9}$, 30 times better than previous world best!
- Strange physics is a new area of interest for LHCb.

Stay tuned!!

THANK YOU!

BACK-UP

K^0 motivation for GIM mechanism and c quark

LHCb detector

Luminosity

- Low to ease secondary vertex reconstruction.
- Current data:
 - ▶ 2011: 1 fb⁻¹ data.
 - ▶ 2012: 2 fb⁻¹ data.

Detector shape

- b quarks are produced very boosted.
- Single arm forward spectrometer:

LHCb detector for strange decays

	m (MeV)	< d > (m)
		at 100 GeV
B_d	5300	0.01
K_{S}	500	5
K_S K_L K^\pm Σ^\pm	500	3000
\mathcal{K}^\pm	490	600
$\Sigma \mp$	1100	2

$K_s \rightarrow \mu\mu$ results

- No signal observed over background expectation.
- CLs method used to set a limit on the BR.

BR
$$(K_s \to \mu\mu) < 11(9) \cdot 10^{-9}$$
 at 95(90)% CL

$K_S \rightarrow \pi^0 \mu \mu$ backgrounds

- Combinatorial similar to $K_S \to \mu\mu \Rightarrow$ reasonably low.
 - ▶ Requiring 2 very detached muons, cleans a lot!
- $K_S \to \pi\pi$ with $\pi \to \mu$ misidentification $+ \pi^0$ from underlying event.
 - $\pi \to \mu$ moves the peak to the left.
 - Adding π^0 could move it back to the right!

$$BR(K_S \to \pi\pi) \times \epsilon(\pi \to \mu)^2 \sim 0.69 \times 0.01^2 \sim 7 \cdot 10^{-4}$$

- Similar for $K_S \to \pi \mu \nu$. $BR(K_S \to \pi \mu \nu_\mu) \times \epsilon(\pi \to \mu) \sim 4.7 \cdot 10^{-4} \times 0.01 \sim 5 \cdot 10^{-6}$
- Selection should be tightened to fight them.
- This could diminish the signal efficiency.

$K_S \rightarrow 4\ell$: possible contamination

	$K_S ightarrow \pi \pi e e$ separation
$K_s ightarrow eeee \ K_s ightarrow ee\mu \mu$	\sim 300 MeV \sim 70 MeV

$K_S \rightarrow 4\ell$: expected sensitivity

Normalization channel: $K_s \rightarrow e^+e^-\pi^+\pi^-$

Definition of single event sensitivity:

$$\alpha = \frac{\epsilon_{\mathsf{norm}}^{\mathsf{accep}}}{\epsilon_{\mathsf{phys}}^{\mathsf{accep}}} \cdot \frac{\epsilon_{\mathsf{norm}}^{\mathsf{reco|accep}}}{\epsilon_{\mathsf{phys}}^{\mathsf{reco|accep}}} \cdot \frac{\epsilon_{\mathsf{norm}}^{\mathsf{sel/reco}}}{\epsilon_{\mathsf{phys}}^{\mathsf{sel/reco}}} \cdot \frac{1}{(\epsilon^{\mathit{PID}})^2} \cdot \frac{\epsilon_{\mathsf{norm}}^{\mathsf{trig|sel}}}{\epsilon_{\mathsf{phys}}^{\mathsf{trig|sel}}} \cdot \frac{\mathsf{BR}_{\mathsf{norm}}}{\mathsf{N}_{\mathsf{norm}}}$$

- ϵ^{accep} very similar for both channels.
- Assume $e^{sel|reco}$ and $e^{trig|sel}$ are the same.
- ullet $\epsilon_e^{reco|accep}pprox 9\%$, $\epsilon_\mu^{reco|accep}pprox 20\%$ and $\epsilon_\pi^{reco|accep}pprox 6-9\%$.
- $\epsilon_e^{PID} \approx 50\%$ and $\epsilon_\mu^{PID} \approx 90\%$ (from $B \to e\mu$ and $K_s \to \mu^+\mu^-$ analysis).
- BR($K_s \to e^+ e^- \pi^+ \pi^-$) = 4.79 · 10⁻⁵ from PDG.

Assuming $N_{K_s \to e^+e^-\pi^+\pi^-} \sim 50$ (very conservative!)

$$K_s \to e^+ e^- e^+ e^-$$
: $\alpha \sim 10^{-6}$
 $K_s \to e^+ e^- \mu^+ \mu^-$: $\alpha \sim 10^{-7}$

$K_S \rightarrow 4\ell$: expected $N_{K_s \rightarrow e^+e^-\pi^+\pi^-}$

$$\textit{N}_{\textit{K}_s \rightarrow e^+e^-\pi^+\pi^-}^{TIS} = \textit{N}_{\textit{K}_s \rightarrow \pi^+\pi^-, 1fb^{-1}}^{TIS} \cdot \textit{N}_{fb^{-1}} \cdot \frac{\textit{BR}(\textit{K}_s \rightarrow e^+e^-\pi^+\pi^-)}{\textit{BR}(\textit{K}_s \rightarrow \pi^+\pi^-)} \cdot \frac{\epsilon_{\textit{K}_s \rightarrow e^+e^-\pi^+\pi^-}}{\epsilon_{\textit{K}_s \rightarrow \pi^+\pi^-}}$$

where:

- $N_{K_s \to \pi^+\pi^-}^{\sf TIS} \sim 10^8$ from $K_s \to \mu\mu$ analysis.
- We have in tape $N_{\rm fb^{-1}}=3$.
- BR($K_s \to e^+e^-\pi^+\pi^-$) = 4.79 · 10⁻⁵ and BR($K_s \to \pi^+\pi^-$) = 6.9 · 10⁻¹, from PDG.
- $\frac{\epsilon_{K_S \to e^+e^-\pi^+\pi^-}}{\epsilon_{K_S \to \pi^+\pi^-}} \sim \frac{\epsilon_{PlDe}^2 \cdot \epsilon_{\text{reco }\pi}^2 \cdot \epsilon_{\text{reco }e}^2}{\epsilon_{\text{reco }\pi}^2}$ is the ratio of efficiencies, computed with the values given in previous slide.

K^+ : expected mass precision

- Very rough estimate for systematic uncertainty: $\sim 0.02~\text{MeV}/c^2$.
 - Could be improved with some effort.
- ullet To have a similar statistical error \sim 200K events are needed.
 - ▶ In 1 fb⁻¹ we observe \sim 2K events.
 - ▶ Dedicated selection $\sim \times 10$ statistics.
 - Dedicated trigger line could have a similar result, but only available from Run2.

$\Sigma^+ \to p \mu \mu$: expected sensitivity

Normalization channel: $\Sigma^+ \to p\pi^0 (\to e^+e^-\gamma)$

Definition of single event sensitivity:

$$\alpha = \frac{\epsilon_{\mathsf{norm}}}{\epsilon_{\mathsf{phys}}} \cdot \frac{\mathsf{BR}_{\mathsf{norm}}}{\mathsf{N}_{\mathsf{norm}}}$$

- Assuming same trigger effciency.
- The ratio of $\epsilon_{reco,selec}$ is \sim 0.04 due to the diffcult reconstruction of very soft electrons.
- BR($\Sigma^+ \to p\pi^0 (\to e^+e^-\gamma)$) = 51.57% × 1.174% $\sim 6 \cdot 10^{-3}$ from PDG.
- Without optimisation of final selection.

With $N_{\Sigma^+ \to p\pi^0(\to e^+e^-\gamma)} = 45$ K observed in 3 fb⁻¹:

$$\alpha_{\Sigma^+ \to p\pi^0(\to e^+e^-\gamma)}$$
: $\sim 5 \cdot 10^{-9}$

$K_S \rightarrow \pi \pi \mu \mu$ prospects

- Could allow precise measurement of K^0 mass.
 - ► Low Q: $m_{K_S} (2 \cdot m_{\pi} + 2 \cdot m_{\mu}) \sim 10 \text{ MeV}/c^2$.
 - Minimize systematics due to momentum scale uncertainty.
- SM prediction:
 - BR($K_S \to \pi \pi \mu \mu$) = 4 · 10⁻¹⁴.
 - Good probe for NP.
- Starting preliminary studies at LHCb.

K_L prospects

• K_L and K_S distinguishable by the decay time. But in LHCb acceptance:

The decay distributions will look like:

$$\begin{array}{ll} \epsilon(t) \sim e^{-\beta t} & \text{KS} & \mathrm{p}(t) \sim e^{-(\beta + \Gamma_S)t} = e^{-\Gamma_{S,eff}t} \\ & \text{KL} & \mathrm{p}(t) \sim e^{-(\beta + \Gamma_L)t} = e^{-\Gamma_{L,eff}t} \end{array}$$

Using DD tracks, $\sim 50\%$ separation can be reached.

ullet The overall reconstruction efficiency is \sim 1000 times smaller than for the corresponding K_S decay.