Testing the new physics scale in the B⁰ system @ ATLAS

Cristiano Alpigiani Queen Mary University of London XXVIII Rencontres de Physique de La Vallee d'Aoste Queen Mary - Young Scientists Forum -La Thuile, 28 of February 2014

University of London

Outline

1) Rare B decays for new physics

 $\Leftrightarrow \, \mathbf{B}_{\mathrm{s}} \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

- Analysis strategy
- Continuum background discrimination
- Results on 4.9 fb⁻¹

 $\Leftrightarrow {\rm B_d} \to {\rm K}^* \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

- Angular analysis
- Measurements of A_{FB} and F_L
- Results on 4.9 fb⁻¹

(2) Flavour-tagged time-dependent angular analysis in $B_s \rightarrow J/\psi \phi$

- \diamondsuit Measurements of $\varDelta \varGamma_{\rm s}$ and $\phi_{\rm s}$
 - Angular analysis
 - Flavour tagging
 - Results on 4.9 fb⁻¹
- Conclusions

Cristiano Alpigiani

Rare B decays for new physics

Flavour Changing Neutral Currents (FCNC) are highly suppressed in the SM

➢ Rare decays $\mathbf{B}_{\mathbf{s}}$ → $\mu^+\mu^-$

- ♦ BR ratio expectation for: (3.27 ± 0.27) 10⁻⁹
 [Buras et al., Eur.Phys.J. C72 (2012) 2172]
- ♦ Evidence from CMS and LHCb $(2.9 \pm 0.7) \cdot 10^{-9}$
 - [LHCb: arXiv:1307.5024] and [CMS: arXiv:1307.5025]
- Coupling to non-SM particles may change the branching ratio
- ♦ Powerful method for NP searches
- ♦ Indirect research can reach higher scale w.r.t. direct search
 - \rightarrow orthogonal to direct search for BSM

Semi-leptonic rare decays $B_d \rightarrow K^* \mu^+ \mu^-$

- ♦ Studied through b → s transitions $BR = (1.06 \pm 0.10) \cdot 10^{-6}$
- Angular distribution of the 4 final state particles and decay amplitude sensible to NP for interference with SM diagrams [C. Bobeth et al. arXiv:1105.2659]

3

Search for $B_s \rightarrow \mu^+ \mu^-$

 $B_s \rightarrow \mu^+ \mu^-$ analysis strategy

Relative BR measurement

$$BR(B_s \to \mu^+ \mu^-) = BR(B^+ \to J/\Psi K^+ \to \mu^+ \mu^- K^+) \cdot \frac{f_u}{f_s} \cdot \frac{\epsilon_{J/\Psi K^+} \cdot A_{J/\Psi K^+}}{\epsilon_{\mu\mu} \cdot A_{\mu\mu}} \cdot \frac{N_{\mu\mu}}{N_{J/\Psi K^+}}$$

w.r.t. the reference channel ${
m B}^{\scriptscriptstyle +}
ightarrow {
m J}/\psi \; (
ightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}) \; {
m K}^{\scriptscriptstyle +}$

- B_S and B⁺ selection synchronised in order to minimise the systematic
- Uncertainties on trigger and pre-selection efficiencies partially cancel out in the ratio
- Blind analysis \rightarrow invariant mass region \pm 300 MeV around B_s mass is blinded

Signal extraction

5

- ♦ counting events in the signal region
- subtraction of the background using the interpolation of half of the sidebands (evennumbered events)
- ♦ limit extracted using CL_S method

Background composition

- ♦ Continuum: non resonant bb → $\mu\mu$ X (real muons, smooth shape in di-muon invariant mass)

♦ **Semi-leptonic B decays** in the low mass sidebands ($B_d \rightarrow \pi \mu \nu, B_s \rightarrow K \mu \nu, \Lambda_b \rightarrow p \mu \nu$)

Cristiano Alpigiani

La Thuile 2014

ATLAS-CONF-2013-076

 $B_s \rightarrow \mu^+ \mu^-$ analysis strategy

Relative BR measurement

$$BR(B_s \to \mu^+ \mu^-) = BR(B^+ \to J/\Psi K^+ \to \mu^+ \mu^- K^+) \cdot \frac{f_u}{f_s} + \frac{\epsilon_{J/\Psi K^+} \cdot A_{J/\Psi K^+}}{\epsilon_{\mu\mu} \cdot A_{\mu\mu}} \cdot \frac{N_{\mu\mu}}{N_{J/\Psi K^+}}$$

w.r.t. the reference channel ${
m B}^{\scriptscriptstyle +}
ightarrow {
m J}/\psi \; {
m K}^{\scriptscriptstyle +}$

- B_s and B⁺ selection synchronised in order to minimise the systematic
- Uncertainties on trigger and pre-selection efficiencies partially cancel out in the ratio
- Blind analysis \rightarrow invariant mass region \pm 300 MeV around B_s mass is blinded

Efficiencies and acceptances

♦ Derived from MC (calibrated on data)

 $\mathbf{A} \cdot \boldsymbol{\epsilon} = \mathbf{N}_{\text{reconstructed and selected}} / \mathbf{N}_{\text{generated}}$

- ♦ Reference channel selection: as close as possible to signal selection
- Systematics evaluated on the reference channel using residual discrepancies between data and MC distributions of the discriminating variables and of some kinematic variables

\succ Reference channel BR and f_u / f_s

6

La Thuile 2014

ATLAS-CONF-2013-076

Continuum background discrimination

> Dominated by $bb \rightarrow \mu \mu X$

ATLAS-CONF-2013-076

Background distinguished from signal using 13 discriminating variables used in a Boosted Decision Tree (BDT) trained on MC events y p

04

0.6

Sideband data

MC bb to µµX

0.8

Isolation (I

MC signal

Two of the most powerful discriminating variables

- BDT cut optimised on half of the sidebands (odd-numbered events)
- Subtraction of the background in the signal region by the interpolation of half of the sidebands (even-numbered events)

BDT output for data sidebands and MC signal

Cristiano Alpigiani

Results on 4.9 fb⁻¹ @ 7 TeV

B⁺ signal yield = 15214 ± 1.1% (stat.) ± 2.4% (syst.) (un-binned maximum likelihood fit with per-event mass resolution)

Single event sensitivity

8

$$SES = BR(B^+ \to J/\Psi K^+) \cdot \frac{\epsilon_{J/\Psi K^+} \cdot A_{J/\Psi K^+}}{\epsilon_{\mu\mu} \cdot A_{\mu\mu}} \cdot \frac{f_u}{f_s} \cdot \frac{1}{N_{J/\Psi K^+}} = (2.07)$$

Single event sensitivity systematic = 12.5 % (dominated by reference channel BR and A $\cdot \epsilon$)

In the optimised search windows

- Expected number of background events = 6.75
- Observed number of signal events = 6

ATLAS-CONF-2013-076

 \pm 0.26) · 10⁻⁹

$$BR(B_s \to \mu^+ \mu^-) = SES \cdot N_{\mu\mu}$$

- Expected upper limit: < 1.6 · 10⁻⁸ @ 95 % CL
- Measured upper limit: < 1.5 10⁻⁸ @ 95 % CL

Cristiano Alpigiani

$B_d \rightarrow K^* \mu^+ \mu^- angular$ analysis

Cristiano Alpigiani

$B_d \rightarrow K^* \mu^+ \mu^-$ angular analysis

- Studying 4 kinematic variables:
 - ♦ di-lepton invariant mass squared $q^2 = m^2(\mu^+\mu^-)$ and 3 angles θ_L , θ_K and ϕ
- Two integrated 1D distributions to extract $\cos\theta_{\rm L}$ and $\cos\theta_{\rm K}$ (@ 7 TeV not enough statistic for 3D)

$$\frac{1}{\Gamma} \frac{d^2 \Gamma}{dq^2 d \cos \theta_K} = \frac{3}{2} F_L(q^2) \cos^2 \theta_K + \frac{3}{4} (1 - F_L(q^2))(1 - \cos^2 \theta_K)$$

ATLAS-CONF-2013-038

$$\mu^+$$
 θ_L
 B_d^0
 θ_K
 π^-

7

$$\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}q^2 \,\mathrm{d}\cos\theta_L} = \frac{3}{4} F_L(q^2) (1 - \cos^2\theta_L) + \frac{3}{8} (1 - F_L(q^2)) (1 + \cos^2\theta_L) + A_{FB}(q^2) \cos\theta_L$$

- ✓ F_L → fraction of longitudinal polarisation
- ✓ A_{FB} → muons forward-backward asymmetry
- Measurements performed using un-binned maximum likelihood fit in different q² bins
- Two different background contributions
 - ♦ Combinatorial background from bb → $\mu\mu$ X with small contributions from cc → $\mu\mu$ X and Drell-Yan
 - ♦ Resonant background from exclusive decay channels ($B_d \rightarrow K^* J/\psi$ and $B_d \rightarrow K^* \psi(2S)$)

Measurements of A_{FB} and F_L

ATLAS-CONF-2013-038

- A_{FB} and F_L measured in **8** q^2 **bins** defined as for the Belle experiment.
- Un-binned maximum likelihood for mass fit
 - ♦ Gaussian with per-event error to model the signal
 - ♦ Exponential to model the background
 - ♦ J/ ψ and ψ (2S) regions excluded
 - ♦ Radiative charmonium decay and tails from J/ ψ and ψ (2S) reconstruction removed by the cut

 $|(m(B_d^0)_{rec} - m(B_d^0)_{PDG}) - (m(\mu^+\mu^-)_{rec} - m(J/\psi)_{PDG})| < 130 \text{ MeV}$

- Un-binned maximum likelihood for angular fit
 - \diamond Used the mass to separate signal and background

bin $4.30 < q^2 < 8.68 \text{ GeV}^2$

Cristiano Alpigiani

Results on 4.9 fb⁻¹ @ 7 TeV

ATLAS-CONF-2013-038

Cristiano Alpigiani

Flavour-tagged time-dependent angular analysis of $B_s \rightarrow J/\psi \phi$

Cristiano Alpigiani

Measurements of $\Delta \Gamma_{\rm s}$ and $\phi_{\rm s}$ from ${\rm B_s} \rightarrow {\rm J}/\psi \, \phi$

CP violation in B decays may be altered by new phenomena beyond the SM

The time evolution of B_s meson mixing is characterized by

- ♦ the mass difference Δm_s of the heavy (B_H) and light (B_L) mass eigenstates
- \diamondsuit the CP-violating mixing phase $\phi_{\rm s}$
- ♦ the width difference $\Delta \Gamma_{\rm s} = \Gamma_{\rm L} \Gamma_{\rm H}$

direct decay

decay with mixing

♦ Indirect determination via global fits to experimental data $\rightarrow \phi_s$ = -0.0364 ± 0.0016 rad

♦ Small uncertainty makes direct measurement interesting since NP could modify ϕ_s and the ratio $\Delta \Gamma_s / \Delta m_s$ if new particles contributes to B_s /anti- B_s box diagrams.

Cristiano Alpigiani

Un-binned maximum likelihood fit to extract the signal

trigger inefficiency (~ 1 %) $\ln \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_s \cdot \mathcal{F}_s(m_i, t_i, \Omega_i) + f_s \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \Omega_i) + (1 - f_s \cdot (1 + f_{B^0})) \cdot \mathcal{F}_{bkg}(m_i, t_i, \Omega_i) \} + \ln P(\delta_{\perp})$

prompt and non-prompt combinatorial background described with empirical angular distribution (no K- π discrimination)

background from $B^0 \rightarrow J/\psi \ K^{*0}$ and $B^0 \rightarrow J/\psi \ K \ \pi$ with amplitude f_B

 $B_s \rightarrow J/\psi \phi$: flavour tagging

Initial flavour of neutral B-mesons can be determined using information from the other B-meson that is typically produced from the other *b* quark in the event

Muon tagger

- Muon charge identified through semi-leptonic decay of B
- Evaluate muon cone charge Q_{μ}

ATLAS-CONF-2013-039

Charge jet tagger

- Tracks associated to the jet from the same PV of signal decay
- Evaluate jet cone charge Q_{jet}
- > Two method combined according to the hierarchy of performance
- ▶ Probability that signal decay contains b-bar as a function of Q_{μ} and Q_{jet} calibrated using B⁺ → J/ ψ K⁺ sample
- Un-binned maximum likelihood fit performed considering probability distribution and per-candidate probability (P=0.5 if no tagging information is available)

Cristiano Alpigiani

La Thuile 2014

16

$B_s \rightarrow J/\psi \phi$: fit results

ATLAS-CONF-2013-039

17

Cristiano Alpigiani

ATLAS-CONF-2013-039

$B_s \rightarrow J/\psi \phi$: results

Tagging removes a constraint on the fit

- ♦ Statistical error on ϕ_s reduced by 40 % compared to untagged analysis
- $\Delta \Gamma_{\rm s}$ central value and uncertainty unchanged

 \diamond Measurement of the strong phase $\delta_{\rm T}$

- \blacktriangleright Results on 4.9 fb⁻¹ @ 7 TeV

 $\begin{array}{ll} \Leftrightarrow \ \phi_{s} &= 0.12 \pm 0.25 \ (\text{stat.}) \pm 0.11 \ (\text{syst.}) \ \text{rad} \\ \Rightarrow \ \Delta \Gamma_{s} &= 0.053 \pm 0.021 \ (\text{stat.}) \ 0 \pm 0.009 \ (\text{syst.}) \ \text{ps}^{-1} \\ \Rightarrow \ \Gamma_{s} &= 0.677 \pm 0.007 \ (\text{stat.}) \pm 0.003 \ (\text{syst.}) \ \text{ps}^{-1} \\ \Rightarrow \ |A_{0}(0)|^{2} &= 0.529 \pm 0.006 \ (\text{stat.}) \pm 0.011 \ (\text{syst.}) \\ \Rightarrow \ |A_{||}(0)|^{2} &= 0.220 \pm 0.008 \ (\text{stat.}) \pm 0.009 \ (\text{syst.}) \\ \Rightarrow \ \delta_{T} &= 3.89 \pm 0.46 \ (\text{stat.}) \pm 0.13 \ (\text{syst.}) \ \text{rad} \end{array}$

Likelihood profile in the ϕ_s - $\Delta\Gamma_s$

Cristiano Alpigiani

18

$B_s \rightarrow J/\psi \phi$: results

- Tagging removes a constraint on the fit
 - ♦ Statistical error on ϕ_s reduced by 40 % compared to untagged analysis
 - $\Delta \Gamma_{\rm s}$ central value and uncertainty unchanged
 - \diamond Measurement of the strong phase δ_{T}
- Comparison with the other experiments

19

ATLAS-CONF-2013-039

Likelihood profile in the ϕ_s - $\varDelta \Gamma_{\rm s}$

Cristiano Alpigiani

$B_s \rightarrow J/\psi \phi$: results

Tagging removes a constraint on the fit

- ♦ Statistical error on ϕ_s reduced by 40 % compared to untagged analysis
- $\Delta \Gamma_{\rm s}$ central value and uncertainty unchanged
- \diamond Measurement of the strong phase δ_{T}
- - $\rightarrow \Delta \Gamma_{\rm s} \, {\rm vs} \, 1/\Gamma_{\rm s}$

ATLAS-CONF-2013-039

Likelihood profile in the ϕ_s - $\Delta \Gamma_{\rm s}$

La Thuile 2014

Cristiano Alpigiani

20

Conclusions

> ATLAS can provide high quality measurements in the B⁰ system

 $\Leftrightarrow B_d \rightarrow K^* \mu^+ \mu^-$ angular analysis

ATLAS-CONF-2013-038

 $\Leftrightarrow \ \mathbf{B}_{\mathbf{s}} \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \, \mathrm{search}$

ATLAS-CONF-2013-076

↔ B_s → J/ψ φ measurements of CP violating phase φ_s and decay width difference ΔΓ_s (to be published very soon)

ATLAS-CONF-2013-039

- Results consistent with SM predictions
- Measurements performed on 4.9 fb⁻¹ of data (2011) are statistically limited
- Analyses on ~ 20 fb⁻¹ of data collected in the 2012 ongoing -> plenty of possibilities for improvements

Cristiano Alpigiani

Backup

ATLAS performance

For good S/B separation
 need good mass resolution

For lifetime measurements
 need good impact parameter resolution

> K/ π separation possible, but limited to $p_T < 1$ GeV/c

Cristiano Alpigiani

ATLAS performance

Vertex resolution important to have very precise measurements
 rare decays, CP violation, lifetime

 $B_d \rightarrow K^* \mu^+ \mu^- : q^2$ binning

Used the same binning adopted by Belle experiment:

- 0.04 < q² < 2.00 GeV² (low statistic, no angular analysis)
- 2.00 $< q^2 < 4.30 \text{ GeV}^2$
- 4.30 $< q^2 < 8.68 \text{ GeV}^2$
- 8.68 < q^2 < 10.09 GeV² (J/ ψ mass region, **not considered**)
- $10.09 < q^2 < 12.86 \text{ GeV}^2$
- 12.86 < q² < 14.18 GeV² (ψ (2S) mass region, **not considered**)
- 14.18 < q² < 16.00 GeV²
- $16.00 < q^2 < 19.00 \text{ GeV}^2$
- $1.00 < q^2 < 6.00 \text{ GeV}^2$ (wider bin)

$$B_d \rightarrow K^* \mu^+ \mu^-$$
: mass fit

Extended maximum likelihood fit in each q² bin Sequential fit:

- 1) fit m(K $\pi\mu\mu$) distribution
- 2) fit the angular distributions with mass term parameters fixed
- Checked that sequential fit gives same results as single-step fit → OK apart from lowest q² bin (included in the systematic)

Mass fit:

$$\mathcal{L} = \prod_{i=1}^{N} \left[N_{\text{sig}} \cdot \mathcal{M}_{\text{sig}}(m_i, \delta_{m_i}) + N_{\text{bckg}} \cdot \mathcal{M}_{\text{bckg}}(m_i) \right]$$

Gaussian with per-candidate error for the signal:

$$\mathcal{M}_{\text{sig}}(m_i, \delta_{m_i}) = \frac{1}{\sqrt{2\pi} s_m \delta_{m_i}} \exp\left(\frac{-(m_i - m_{B_d^0})^2}{2(s_m \delta_{m_i})^2}\right)$$

Exponential for the background:

$$\mathcal{M}_{\mathrm{bckg}}(m_i) = e^{-\lambda \cdot m_i}$$

Cristiano Alpigiani

La Thuile 2014

26

$$B_d \rightarrow K^* \mu^+ \mu^-$$
: angular analysis

A7

Angular fit likelihood:

>

27

$$\mathcal{L} = \prod_{i=1}^{N} [N_{\text{sig}}^{fix} \cdot \mathcal{M}_{\text{sig}}(m_i, \delta_{m_i} | \text{fixed}) \cdot \mathcal{M}_{L,\text{sig}}(\cos \theta_{L,i}) \cdot \mathcal{M}_{K,\text{sig}}(\cos \theta_{K,i}) + N_{\text{bckg}}^{fix} \cdot \mathcal{M}_{\text{bckg}}(m_i | \text{fixed}) \cdot \mathcal{M}_{L,\text{bckg}}(\cos \theta_{L,i}) \cdot \mathcal{M}_{K,\text{bckg}}(\cos \theta_{K,i})]$$

PDFs for the signal:

$$\mathcal{M}_{L,\text{sig}}(\cos\theta_{L,i}) = \left(\frac{3}{4}F_L\left(1 - (\cos\theta_{L,i})^2\right) + \frac{3}{8}(1 - F_L)\left(1 + (\cos\theta_{L,i})^2\right) + \tilde{A}_{FB}\cos\theta_{L,i}\right) \cdot f(\cos\theta_{L,i})$$
$$\mathcal{M}_{K,\text{sig}}(\cos\theta_{K,i}) = \frac{3}{2}F_L(\cos\theta_{K,i})^2 + \frac{3}{4}\left(1 - F_L\right)\left(1 - (\cos\theta_{K,i})^2\right) \cdot f(\cos\theta_{K,i})$$

PDF for the background:

$$\mathcal{M}_{L(K),\text{bkg}} = 1 + p_{1\,L(K)}\cos\theta_{L(K),i} + p_{2\,L(K)}(2\,\cos^2\theta_{L(K),i}\,-\,1)$$

linear combination of Chebyshev polynomials up to 2nd order

Acceptance functions (detector and selection effect on the angular shape)

 $lpha_L(\cos heta_{L,i}) \; , \; lpha_K(\cos heta_{K,i})$

Cristiano Alpigiani

$B_d \rightarrow K^* \mu^+ \mu^-$ systematic uncertainties

- Mass fit region ranges
 - Differ in q^2 bins due to ΔM cut effect
- Angular background shapes
 - 2nd and 3rd Chebyshev polynomials
 - Contribution of $B^{\pm} \rightarrow \mu^{+}\mu^{-} K^{\pm}$ events
 - Estimated by removing potential $B^{\pm} \rightarrow \mu^{+}\mu^{-} K^{\pm}$ candidates
 - Angular acceptance effects
 - Mainly from limited MC statistics
 - Various signal angular shapes tested
 - Sequential fitting approach
 - Non-negligible effect only in $2.00 < q^2 < 4.30$ GeV² bin due to low statistics
 - Other negligible sources
 - Contribution from S-wave ($B^0_d \rightarrow \mu^+ \mu^- K^+ \pi^-$ decays)
 - Contribution from $B_s \rightarrow \phi (\rightarrow K^+K^-) \mu^+\mu^-$ events
 - Background mass shape
 - Possible bias due to angular fit approach (neglecting correlation)

La Thuile 2014

28

$B_s \rightarrow \mu^+ \mu^-$: background discrimination

Discriminating variables to separate signal from background events

- 13 discriminating variables used in a Boosted Decision Tree (BDT)
 - not correlated with invariant mass
 - ✓ highest discriminating power
 - ✓ excluded variables with high correlation
- Exploit

•

- ✓ PV-SV separation \rightarrow L_{xy}, proper time significance.
- ✓ Symmetry of the final state → $|\alpha_{2D}|$, d_o ...
- ✓ Full reconstruction → $|\alpha|_{2D}|$, d_o, DCA, ZCA ...
- ✓ B hadronisation features \rightarrow p_T, Isolation ...

BVtx

$B_s \rightarrow \mu^+ \mu^-$: background discrimination

Variable	Description				
α_{2D}	(pointing angle) angle in the transverse plane between $\Delta \vec{x}$ and \vec{p}^B				
ΔR	angle $\sqrt{\Delta \phi^2 + \Delta \eta^2}$ between $\Delta \vec{x}$ and \vec{p}^B				
L_{xy}	Scalar product in the transverse plane of $\Delta \vec{x} \cdot \vec{p}^B / \vec{p_T}^B $				
ct significance	Proper decay length $ct = L_{xy} \times m_B / p_T^B$				
χ^2_{xy},χ^2_z	vertex separation significance between PV and SV in x-y plane and z respectively				
$I_{0.7}$ (isolation)	ratio of $ p_T^B $ to the sum of $ \vec{p}_T^B $ and the transverse momenta of all tracks with $p_T > 0.5$ GeV within a cone $\Delta R < 0.7$ from the B direction, excluding the B decay products				
$ d_0^{min} , d_0^{max} $	Absolute values of the minimum and ma- ximum impact parameter in the transverse plane of the B decay products relative to the primary vertex				
DCA, ZCA	Values of the minimum distance of closest approach in the $x - y$ plane (or along z) of tracks in the event to the B vertex				
p_L^{min}	Minimum momentum of the two muon candidates along the B direction				
p_T^B	B transverse momentum				

Cristiano Alpigiani

$B_s \rightarrow J/\psi \phi$: flavour tagging

- Identifying the charge of a muon through the semi-leptonic decay of the B meson provides strong power of separation
- ➤ The $b \rightarrow \mu$ transitions are diluted through neutral *B* meson oscillations, as well as by cascade decays $b \rightarrow c \rightarrow \mu$ which can alter the sign of the muon relative to the one coming from direct semi-leptonic decays $b \rightarrow \mu$.
 - The separation power of tag muons can be enhanced by
 - considering a weighted sum of the charge of the tracks in a cone around the muon

$$Q_{\mu} = \frac{\sum_{i}^{N \text{ tracks}} q^{i} \cdot (p_{T}^{i})^{k}}{\sum_{i}^{N \text{ tracks}} (p_{T}^{i})^{k}}$$

• considering a weighted sum of charged tracks associated to the opposite side B meson

$$Q_{\text{jet}} = \frac{\sum_{i}^{N \text{ tracks}} q^{i} \cdot (p_{T}^{i})^{k}}{\sum_{i}^{N \text{ tracks}} (p_{T}^{i})^{k}}$$

Probability to tag a signal event as b-bar

$$P(B|Q) = \frac{P(Q|B^+)}{P(Q|B^+) + P(Q|B^-)}$$

$$P(\bar{B}|Q) = 1 - P(Q|B)$$

Cristiano Alpigiani

$B_s \rightarrow J/\psi \phi$: systematic uncertainties

- ➤ Inner Detector alignment → residual misalignment affect the impact parameter w.r.t. PV (estimated using simulated events)
- ➤ Angular acceptance method → estimated the size of the systematic uncertainty introduced from the choice of the binning
- Trigger efficiencies
- Defaults fit method
- Signal and background mass model, resolution model, background lifetime and background angles model
 > variations of the model tested in pseudo-experiments to estimate the size of the systematic uncertainties caused by the assumption of the fit model.

➢ B_d contribution

Tagging → systematic errors of the fit parameters due to uncertainty in tagging are estimated by comparing the default fit with the fits using alternate tag probabilities

Systematic	$\phi_s(rad)$	$\Delta \Gamma_s (ps^{-1})$	$\Gamma_s(\mathrm{ps}^{-1})$	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$
Inner Detector alignment	0.04	< 0.001	0.001	< 0.001	< 0.001	< 0.01
Trigger efficiency	< 0.01	< 0.001	0.002	< 0.001	< 0.001	< 0.01
Signal mass model	0.02	0.002	< 0.001	< 0.001	< 0.001	< 0.01
Background mass model	0.03	0.001	< 0.001	0.001	< 0.001	< 0.01
Resolution model	0.05	< 0.001	0.001	< 0.001	< 0.001	< 0.01
Background lifetime model	0.02	0.002	< 0.001	< 0.001	< 0.001	< 0.01
Background angles model	0.05	0.007	0.003	0.007	0.008	0.02
B^0 contribution	0.05	< 0.001	< 0.001	< 0.001	0.005	< 0.01
Totals	0.10	0.008	0.004	0.007	0.009	0.02