Rescuing the hyperons in compact stars [A hypernuclear equation of state for dense matter]

Giuseppe Colucci¹

¹ Institut für Theoretische Physik, Goethe Universität, Frankfurt am Main

LNGS, Dec 5th, 2013

More info \rightarrow PRC 87, 055806 (2013) and A&A 559, A118 (2013)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

outline				
basic concepts	constraints from observations: hyperon puzzle	RMF	unknowns	

- basic concepts: EoS, compact stars and hyperons
- 2 constraints from observations: hyperon puzzle
- relativistic mean-field model

4 results

5 unknowns

basic concepts constraints from observations: hyperon puzzle RMF results unknowns	
---	--

basic concepts

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

results unkno

summary

equation of state (EoS)

EoS

relation between thermodynamical quantities $(P, T, \rho, \epsilon, ...)$ which describes the **state of matter** under a given set of physical conditions

example: PV = nRT (ideal gas)

an EoS yields a phase diagram

◇ロ▼▲韓▼▲田▼▲田▼ ● ◆白◇

equation of state (EoS)

EoS

relation between thermodynamical quantities $(P, T, \rho, \epsilon, ...)$ which describes the **state of matter** under a given set of physical conditions

example: PV = nRT (ideal gas)

an EoS yields a phase diagram

Herráez et al., J. Chem. Educ. (2004), http://biomodel.uah.es/Jmol/plots/phase-diagrams/ = ,

unknov

results

summary

equation of state (EoS)

nuclear matter phase diagram

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

unkno

results

summary

equation of state (EoS)

nuclear matter phase diagram

Net baryon density n/n_B

・ロット (雪) (日) (日)

э

unk

results

summary

equation of state (EoS)

nuclear matter phase diagram

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

compact objects:

- 1. do not burn nuclear fuel
- 2. thermal pressure cannot balance the gravitational collapse (quantum degeneracy pressure)

the "Mario Rossi" compact star:

- \odot mass $M \sim 1.5 \ {\rm M}_{\odot}$
- radius $R \sim 12 \text{ km}$
- density $ho \sim
 ho_0 \equiv 0.16 \ {
 m fm}^{-3}$
- \odot magnetic field up to $B\sim 0.01m_\pi^2\sim 10^{15}~{
 m G}$
- \circ rotation period $P \sim 10^{-3} 1~{
 m s}$
- temperature $T \sim$ few MeV $\sim 10^{10}$ K (cold objects!)

compact star observations: masses

why a nuclear equation of state (EoS)?

GR hydrostatic equilibrium \rightarrow Tolman-Oppenheimer-Volkoff equations (1939)

$$4\pi r^2 dp(r) = -\frac{M(r)dM(r)}{r^2} \left(1 + \frac{p(r)}{\epsilon(r)}\right) \left(1 + \frac{4\pi r^3 p(r)}{M(r)}\right) \left(1 - \frac{2M(r)}{r}\right)^{-1} dM(r) = 4\pi r^2 \epsilon(r) dr$$

EoS generates a unique M vs. R relation! (Lindblom 1992)

note: high mass configuration produced by *stiff* EoS_

why a nuclear equation of state (EoS)?

- GR: R > 2GM
- finite pressure (compressible stellar matter): R > 9GM/4
- causality: $c_s < 1 \rightarrow R \gtrsim 2.9 GM$
- rotation: mass-shedding limit (716 Hz) from fastest rotating pulsar J1748-2446

what is an hyperon

www.rikenresearch.riken.jp

onset of hyperons: $\mu = \sqrt{k_F^2 + M_N^2} \ge M_Y^* - q\mu_e$

consequence (problem...)

At a given density, the presence of hyperons increases the number of Fermi spheres to be occupied leading to a lower pressure!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

onset of hyperons in dense matter

onset of hyperons: $\mu = \sqrt{k_F^2 + M_N^2} \geq M_Y^* - q \mu_e$

consequence (problem...)

At a given density, the presence of hyperons increases the number of Fermi spheres to be occupied leading to a lower pressure!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

results

unknowns

summary

E 990

onset of hyperons in dense matter

Page and Reddy (2006)

- thin lines: free gas
- thick lines: with mean-field NN potential
- horizontal lines are hyperon vacuum masses

Glendenning and Moszkowski (1991)

・ロン ・四 と ・ ヨ と ・ ヨ と

hyperon puzzle

results

unknowns

・ロット (雪) (日) (日)

э

summary

heavy mass compact stars

PSR J1614-2230: $M = 1.97 \pm 0.04 M_{\odot}$ (Shapiro delay)

$$\Delta t = -2M_{\rm WD} \frac{GM_{\rm P}}{R^3} \ln\left[1 - \sin i \sin(\Phi - \Phi_0)\right]$$

(Demorest et al., Nature, 2010)

results

unknowns

heavy mass compact stars

PSR J1903+0327: $M = 2.01 \pm 0.04 M_{\odot}$ (radio timing and spectroscopy of the WD companion)

 $M_{\rm P}/M_{\rm WD} = v_{\rm WD}/v_{\rm P}$

(Antoniadis et al., Science, 2013)

basic concepts	constraints from observations: hyperon puzzle	RMF	unknowns	
hyperon pi	ızzle			

EoS strongly dependent on the parametrization!

goal

determination of limiting cases for hypernuclear matter

basic concepts	constraints from observations: hyperon puzzle	RMF	unknowns	

relativistic mean-field model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

effective models

analytical, first-principle treatment of QCD is currently a cherished dream...

full model

effective model

results

d.o.f.: observable particles (hadrons) instead of quarks and gluons

relativistic mean-field program:

- identify relevant degrees of freedom
- construct a Lagrangian (compatible with symmetries)
- compute the energy-momentum tensor (EoS)

summary

(hyper) nuclear matter

basic assumptions and features for describing nuclear (and hypernuclear) properties:

• nucleons (and hyperons) interact through meson exchange

results

- assume that only low spin, isospin is needed (from OBEP)
- σ -meson: long-range attraction
- ω-meson: repulsive part of the potential
- *p*-meson: isospin asymmetry

RMF

 static uniform matter in its ground state

ヘロト 人間 とくほ とくほ とう

-

constant meson field VEV

interacting theory

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

interacting theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

interacting theory

・ロト ・聞ト ・ヨト ・ヨト

æ

basic concepts

RMF

unknowns

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

summary

relativistic mean-field model

(http://physics.aalto.fi/groups/comp/qd/research/)

unknowns

summary

relativistic mean-field model

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

what do we need all this formalism for?

 \rightarrow

energy-momentum tensor

a model $\mathcal{L}[\phi_i]$

$$T_{\mu\nu} = -g_{\mu\nu}\mathcal{L} + \sum_{i} \frac{\partial \mathcal{L}}{\partial^{\mu}\phi_{i}} \partial_{\nu}\phi_{i}$$

with $T_{\mu\nu} = \text{diag}(\epsilon, p, p, p)$

we get a nuclear EoS!

electrically neutral stellar matter in

 β -equilibrium:

two **conserved charges** and two **Lagrange multipliers**, namely for the particle species *i*:

 \rightarrow

$$\mu_i = B_i \mu_B + Q_i \mu_Q$$

constraints on μ_B and μ_Q

$$\sum_{i} B_{i} \rho_{i} = \rho_{B}, \qquad \sum_{i} Q_{i} \rho_{i} = \rho_{Q} \equiv 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

RMF Lagrangian

full Lagrangian

$$\mathcal{L}_{B} = \sum_{B} \bar{\psi}_{B} [\gamma^{\mu} (i\partial_{\mu} - g_{\omega B}\omega_{\mu} - \frac{1}{2}g_{\rho B}\boldsymbol{\tau} \cdot \boldsymbol{\rho}_{\mu}) - (m_{B} - g_{\sigma B}\sigma)]\psi_{B}$$

$$+ \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} + \frac{1}{2}m_{\omega}^{2}\omega^{\mu}\omega_{\mu} - \frac{1}{4}\boldsymbol{\rho}^{\mu\nu} \cdot \boldsymbol{\rho}_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\boldsymbol{\rho}^{\mu} \cdot \boldsymbol{\rho}_{\mu}$$

$$+ \sum_{e^{-},\mu^{-}} \bar{\psi}_{\lambda}(i\gamma^{\mu}\partial_{\mu} - m_{\lambda})\psi_{\lambda}$$

baryon octet: p, n, Λ, Σ 's and Ξ 's mesons: σ, ω and ρ leptons: e^-, μ^- (and neutrinos at finite-temperature) parameters:

- $g_{iN} \equiv g_{iN}(\rho)$ [DD-ME2, Niksic et al., 2008] (symmetric and asymmetric nuclear matter, binding energies, charge and neutron radii of spherical nuclei)
- g_{iY} to be fixed

basic concepts	constraints from observations: hyperon puzzle	RMF	unknowns	
how to fix g_i	Y			

fit to hypernuclear-potential (U_Y) data

$$U_Y = g_{\sigma Y} \sigma^{eq} + g_{\omega Y} \omega^{eq}$$

1) vector octet

VDM: universal coupling of ρ

$$g_{\Xi\Xi\rho} = g_{NN\rho} = \frac{1}{2}g_{\Sigma\Sigma\rho}, \quad g_{\Lambda\Lambda\rho} = 0$$

quark model and ideal mixing: mesons

$$\begin{aligned} \omega &\sim \quad \frac{1}{\sqrt{2}} \left(\bar{u}u + \bar{d}d \right) \\ \phi &\sim \quad \bar{s}s \end{aligned}$$

simple strangeness-content counting

$$g_{\Sigma\Sigma\omega} = g_{\Lambda\Lambda\omega} = 2g_{\Xi\Xi\omega} = \frac{2}{3}g_{NN\omega}$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

how to fix q_{ij}	7			
basic concepts	constraints from observations: hyperon puzzle	RMF	unknowns	

unknown hypernuclear potentials!

 $\Sigma^+ p \rightarrow \Sigma^+ p$

2) scalar octet:

$$2(g_{N\sigma} + g_{\Xi\sigma}) = 3g_{\Lambda\sigma} + g_{\Sigma\sigma}$$

parameter study:

- fix one of the couplings to NSC89
- vary $g_{\sigma\Lambda}$ (or $g_{\sigma\Sigma}$) such that

$$0 < g_{\sigma Y} < g_{\sigma N}$$

basic concepts	constraints from observations: hyperon puzzle	RMF	results	unknowns	
----------------	---	-----	---------	----------	--

results

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

results

results for zero-temperature

hyperon coupling constants fixed by NSC89

where $x_{\Lambda\sigma} = g_{\Lambda\sigma}/g_{N\sigma}$

results

again: hyperon puzzle

EoS strongly dependent on the parametrization!

goal

determination of limiting cases for hypernuclear matter

nerierier e 1990

mass-radius relation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

no hyperons

- charge neutrality
- β-equilibrium

(Lopes, 2012)

particle fractions: zero temperature

- deleptonization due to negative hyperon onset
- shift of hyperon onset in case of small *attractive* couplings (g_{Yσ})

neutrinos in proto-neutron stars

results

non-zero temperature and neutrino trapping

new dof (neutrinos) \rightarrow new constraint: fixed lepton fraction

(T = 30 MeV)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

particle fractions: non-zero temperature

- no deleptonization due to fixed lepton fraction
- positive charged hyperons favored due to the presence of electrons
- inversion of charged hyperon onset

unknowns

black widow pulsar PSR B1957+20

```
extremely low mass companion M_{\rm WD} \sim 0.03 M_{\odot}
```

eclipsed for 10% of its orbit $\rightarrow R_{WD} \sim 0.3 R_{\odot}!$

explanation pulsar irradiates and heats up the WD leading to its evaporation!

Uncertainties on plasma cloud $\rightarrow 1.7 < \frac{M_{\rm NS}}{M_{\odot}} < 3.2$

most recent estimation $M_{\rm NS} = 2.4 \pm 0.4 M_{\odot}!$

what about rotation?

what about strong magnetic fields?

what about inhomogeneous phases at high densities?

what about GR at 10 times ρ_0 ?

what about dark matter?

summary

summary

take-home message

- S NS are weird, therefore interesting for physicists!
- $_{\odot}$ high mass NS ($M\sim 2M_{\odot}$) constraints on EoS
- uncertainties on hyperon parameters allow for their onset
- need for constraints (IQCD or experiments)

future

- rotation and magnetic field contributions to the EoS
- constraints from other observations (cooling, radii)
- merger simulations \rightarrow possible signatures from GW
- hybrid models (hadrons + quarks)

summary

take-home message

- S NS are weird, therefore interesting for physicists!
- $_{\odot}$ high mass NS ($M\sim 2M_{\odot}$) constraints on EoS
- uncertainties on hyperon parameters allow for their onset
- need for constraints (IQCD or experiments)

future

- rotation and magnetic field contributions to the EoS
- constraints from other observations (cooling, radii)
- merger simulations \rightarrow possible signatures from GW
- hybrid models (hadrons + quarks)

Thanks for your attention!

	basic concepts	constraints from observations: hyperon puzzle	RMF		unknowns	
--	----------------	---	-----	--	----------	--

backup

summary

International Hypernuclear Network

