

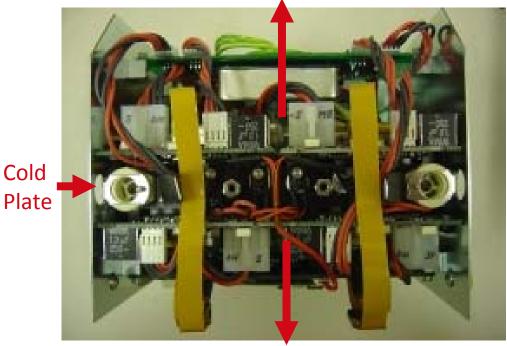


# Status of the LVPS Transformer Problem

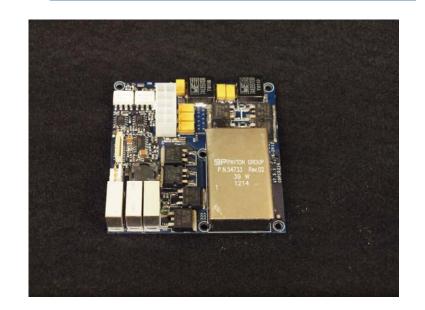
TileCal Maintenance Meeting

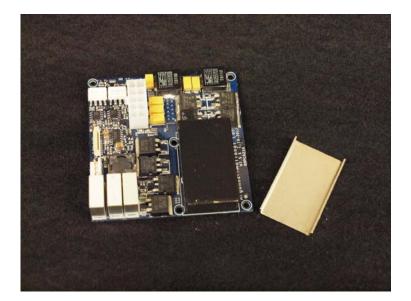
Gary Drake Argonne National Laboratory, USA

CERN
Nov. 7, 2013



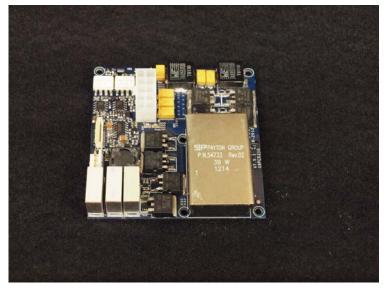

### Summary of the Problem

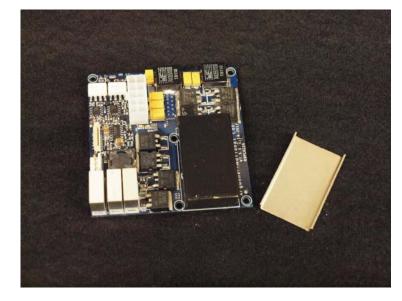

- Covers on the transformers are coming off after installation in the detector
- Since bricks are installed back-to-back on the cold plate inside the LVPS box, loose covers can fall onto live circuitry...
- Boxes also have 360 degree orientation on the detector, so no box is "safe"...


Cold

Transformer covers face up

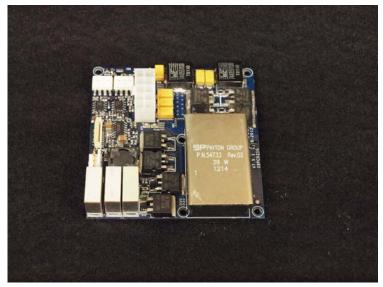


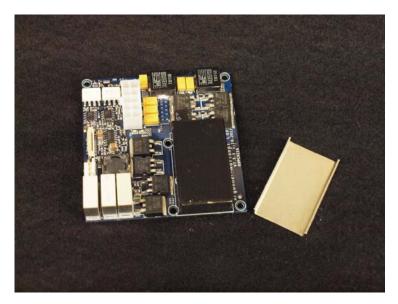




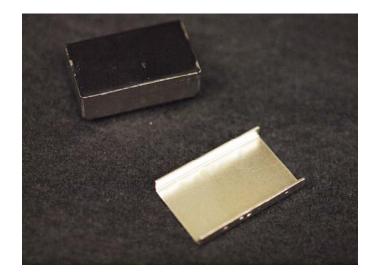

### Summary of the Problem (Cont.)


- What is known from the checkout:
  - "A few" loose covers were noted during checkout at Argonne
    - These were glued back on with RTV
  - "Approximately 10" loose covers were noted during QA at CERN
  - ⇒ No "red flags" raised at the time, but maybe there should have been...
  - Spot check of ~30 bricks currently at Argonne found 0 loose covers
  - ⇒ This is a subtle problem
  - ⇒ Problem not present in all bricks at t=0
  - ⇒ Problem may develop in time...






## Summary of the Problem (Cont.)

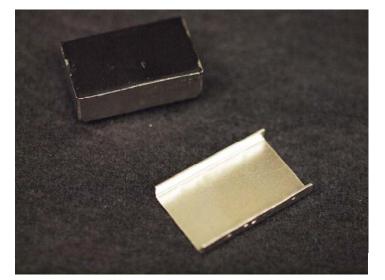

- What is known from the experiment:
  - First occurrence of loose covers occurred only recently
    - 3 boxes failed to start after planned power outage
    - Inspection after removal from detector found covers that had fallen off (See Stan's talk)
    - These boxes have been on the detector for a while...
  - (As far as I know) No loose covers were observed in the (5) V7.3 boxes that have been operating on the detector for ~2 years
  - (As far as I know) No loose covers were observed in the (40) V7.5 boxes that have been operating on the detector for ~1 year
- ⇒ Conclusion: Problem likely to be batch-dependent
- ⇒ Indications of dependence on thermal cycling....

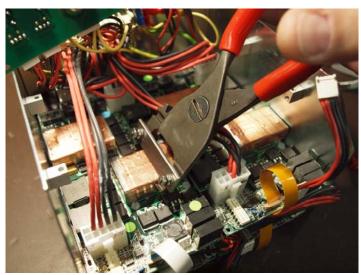




# Summary of the Problem (Cont.)

- What is known from the vendor:
  - The transformers were ordered in 3 batches:
    - 20 first prototypes
    - 400 for 40-box production
    - 2200 for 260-box production
  - "It is likely" that the large quantity was manufactured at a different time than the smaller quantities (vendor still checking)
  - The transformers for the large production were potted with a silicone compound (not sure about the small production – still checking)
  - Intended method for holding the covers on was the adhesive properties of the silicone
  - Method requires covers to be cleaned before gluing to ensure good adhesion
  - Vendor is now going through production records to try to find answers

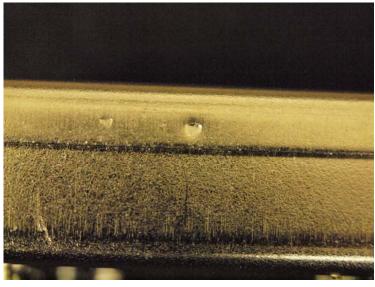




- Theories being investigated:
  - Large production batch was done differently
  - Covers not cleaned properly
  - Thermal-cycling may be loosening adhesion of silicone
  - Covers manufactured with looser tolerance in large production
- ⇒ While cause is interesting, effect is devastating, and a solution is needed...



#### Solution being Pursued

- Since number of potentially loose covers is not known, it is prudent to apply a fix to <u>ALL</u> bricks
  - ~150 boxes in Bldg. 175 currently
    - These are the "easy" ones
  - ~150 boxes currently installed on the detector,
     which would have to be removed.
- Investigations & discussions at CERN & ANL have converged on the following fix:
  - Open the boxes & remove the ELMB and the fuse board, and the flat cables to the bricks
  - Apply a crimp to the transformer covers to provide more friction to hold them in place
  - Apply high-heat aluminum tape to the sides of the covers, to hold them onto the body of the transformer
  - Reassemble
  - Perform "quick" QA check
  - ⇒ Work can be done without removing bricks from box
  - ⇒ Fix is "easy"; Hard part is disassembly and re-assembly of cables and top & bottom boards






# Solution being Pursued (Cont.)

- Two-pronged solution:
  - Crimp transformer covers
  - Use high-heat tape
  - ⇒ Intend for 0 chance of recurrence
- For crimping, we have built a tool that applies a dimple crimp to the cover
  - Applies just the right amount of pressure
  - Works great
  - Crimp adds dimple to cover, but does not deform transformer case
  - We have made two tools that we will bring to CERN
- Logistics
  - Work will be performed in Bldg. 175
    - QA stand is there
    - Bench space is there
  - Can work on first 150 boxes now
  - As boxes are repaired, swap them in with the ones on the detector
  - My estimate: 0.5 hrs. per box for repair (goal)





#### Remediation Plan

- ANL will send 1 person to CERN beginning Nov. 11 for 2 weeks
   (I will be there for the 1<sup>st</sup> week)
- With help from Anna, try to complete remediation on 150 boxes currently in Bldg. 175
- Stan's team: perform QA & bookkeeping
- Irakli's team: Swap repaired boxes into the detector as they become available
  - ⇒ Goal: Repair 1<sup>st</sup> 150 boxes in November before Thanksgiving
- ANL will send another person to CERN for 2-3 more weeks after Thanksgiving

  - ⇒ Main Goal: Fix this problem before the end of the calendar year 2013
  - $\Rightarrow$  As bad as this is, we have two things in our favor:
    - ⇒ The fix is "easy" (no soldering, no parts replacement, no design changes)
    - ⇒ Problem was discovered early, and we have the time to get the repairs done

