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Motivation

Relativistic Heavy Ion Collisions

Traditional path: kinetic description ⇒ hydrodynamics

Discovery of sQGP: hydrodynamics but no kinetic description

i.e QFT ⇒ hydrodynamics.

Strong coupling regime of some SUSY gauge theories can be studied using
AdS/CFT (holographic) correspondence.

i.e., instead of QFT ⇒ kinetic description (Boltzmann) ⇒ hydrodynamics,
QFT ⇒ holographic description ⇒ hydrodynamics

This talk:
Introduction
Hydrodynamics as an effective theory
Calculating kinetic coeff. by matching to AdS/CFT.
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Hydrodynamic modeling of R.H.I.C. and v2
Approach: take an equation of state, initial conditions, and solve hydrodynamic
equations to get particle yields, spectra, etc.

v2 – a measure of elliptic flow is a key observable.

Pressure gradient is large in-plane. This translates
into momentum anisotropy. To do this the plasma
must do work, i.e., pressure×∆V

from Kolb/Heinz review
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v2 is large → 1st conclusion, there is pressure,
and it builds very early.
I.e., plasma thermalizes early (< 1fm/c).

BIG theory question: HOW does it thermalize?
and why so fast/early?

Need to understand initial conditions

Mechanism of thermalization?
Plasma instabilities?
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Small viscosity and sQGP (liquid)
Another surprise: where is the viscosity?

Ideal hydro already agrees with data.

Adding even a small viscous correction makes the
agreement worse →

If the plasma was weakly interacting the viscosity
η

T 3
∼ (coupling)−2 would be large.

Conclusion: the plasma must be strongly coupled
– it is a liquid.
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STAR Data

Can there be an ideal liquid, can η = 0? What if coupling → ∞?
Policastro, Kovtun, Son, Starinets found that in an N = 4 super-Yang-Mills

theory at ∞ coupling η = s/(4π). And so is in a class of theories with infinite
coupling. Special to AdS/CFT, or a universal lower bound?

If
η

s
=

1

4π
is the lowest bound – data suggests RHIC produced an almost

perfect fluid.
Need viscous (3D) hydro simulation to confirm. Second order corrections?
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Scales and hydrodynamics

Hydrodynamics is an effective macroscopic theory, describing transport of
energy, momentum and other conserved quantities.

The domain of validity is large distance and time scales (small k and ω).

If the underlying kinetic description exists, there is a mean free path, ℓmfp. The
scale where hydrodynamics applies is greater than ℓmfp.

In a strongly coupled system (e.g., sQGP at RHIC) kinetic description may not
exist. Then the domain of validity is set by a typical microscopic scale, e.g., T−1.

Hydrodynamics can be described as an expansion in gradients.

To lowest order – ideal hydrodynamics.

The expansion parameter – kℓmicro.
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Hydrodynamic degrees of freedom
Densities of conserved quantities. In any field theory at least energy and

momentum densities T 0µ.

It is convenient to use energy density in a local rest frame (where T 0i = 0) as
one variable, ε, and then use local velocity uµ as another:

T µν ≡ εuµuν + T µν
⊥

T µν
⊥ – has only spatial components in local rest frame (uµT µν

⊥ = 0).

The components of T µν
⊥ are not independent variables, but (local,

instantaneous) functions of ε and uµ.

T µν
⊥ = P (ε)∆µν + terms with gradients

where the symmetric, transverse (⊥) tensor with no derivatives is

∆µν ≡ gµν + uµuν ,

4 variables and 4 equations: ∇µT µν = 0.
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First order order hydrodynamics
Without gradient terms – ideal hydrodynamics.

To first order in gradients:

T µν
⊥ = P (ε)∆µν − η(ε)σµν − ζ(ε)∆µν(∇·u) + higher derivs.

| {z }

viscous stress Πµν

Viscous strain (traceless, or shear):

σµν = 2〈∇µuν〉

〈Aµν〉 def
=

1

2
∆µα∆νβ(Aαβ + Aβα) − 1

d − 1
∆µν∆αβAαβ

In local rest frame u = (1,0) all gradients are spatial.

η and ζ – shear and bulk viscosities.

T ij – rate of momentum transfer (flow), i.e., force/area
ζ(∇·u) – contribution to isotropic pressure due to gradients;
ησµν – drag force due to the gradients of velocity ⊥ to the velocity – shear stress.
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Conformal theories

Why?

QCD at T > 2Tc is almost conformal (but still strongly coupled).

RBC-BI
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Scale invariance and Weyl symmetry

Consider a field theory with no scale, self-similar under dilation x → λx
(accompanied by appropriate rescaling of fields). λ = const here.

Examples: ferromagnet at a critical point, N = 4 SUSY YM.

Instead of coordinate rescaling one can formally do gµν → λ−2gµν . One can
then generalize the theory to curved space in such a way that the action (as a
functional of background metric) is invariant under local Weyl transformations:

gµν → e−2ω(x)gµν .

In particular, since T µν ≡ δS/δgµν

T µ
µ = gµνT µν = −(1/2)δS/δω = 0
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Conformal hydrodynamics (to 1st order)

Tracelessness T µ
µ = 0 constrains the coefficients (∆µ

µ = d − 1).

P =
ε

d − 1
; ζ = 0.

Weyl invariance:

Since T µν√−g = δS/δgµν ,

T µν → e(d+2)ω T µν ;

and ∇µT µν → e(d+2)ω∇µT µν , i.e., equations are invariant.

T → eωT, uµ → eωuµ

hence from T µν = εuµuν + . . . follows ε = const · T d.

More nontrivially, σµν transforms homogeneously

σµν → e3ωσµν ,

hence η = const · T d−1.
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Second order hydrodynamics
Need to find all possible contributions to Πµν with 2 derivatives, transforming

homogeneously under Weyl transform.
Can use 0-th order:

D ln T = − 1

d − 1
(∇⊥ · u), Duµ = −∇µ

⊥ ln T,

to convert temporal derivatives (D ≡ uµ∇ν ) into spatial (∇µ
⊥ ≡ ∆µα∇α) .

Five such terms:

Oµν
1 = R〈µν〉 − (d − 2)

“

∇〈µ∇ν〉 ln T −∇〈µ ln T ∇ν〉 ln T
”

,

Oµν
2 = R〈µν〉 − (d − 2)uαRα〈µν〉βuβ ,

Oµν
3 = σ〈µ

λσν〉λ , Oµν
4 = σ〈µ

λΩν〉λ , Oµν
5 = Ω〈µ

λΩν〉λ .

Only Oµν
1 contributes in linearized hydrodynamics. Also, Oµν

2 = 0 in flat space.
It is convenient to use this combination Oµν

1 −Oµν
2 − (1/2)Oµν

3 − 2Oµν
5

〈Dσµν〉 +
1

d − 1
σµν(∇·u)
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Second order kinetic coefficients

Πµν = −ησµν

+ ητΠ

»

〈Dσµν〉 +
1

d − 1
σµν(∇·u)

–

+ κ
h

R〈µν〉 − (d − 2)uαRα〈µν〉βuβ

i

+ λ1σ
〈µ

λσν〉λ + λ2σ
〈µ

λΩν〉λ + λ3Ω
〈µ

λΩν〉λ .

The five new coefficients are τΠ, κ, λ1,2,3.

Nonlinear term σµν∇·u has until recently been often omitted. We see it is
necessary for conformal invariance.
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AdS/CFT

The 4d N = 4 SUSY YM theory in strong coupling limit can be represented by a
semiclassical gravitational theory in 5d.

S =
R

d5x
√−g(R − 2Λ)

Recipe for calculating a correlator of, e.g., T µν :

Vary boundary value at z = 0 of gµν , then

〈T µν(x)〉 =
δS

δgµν(x, 0)
.
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Kinetic coefficients from AdS/CFT

Example: match the following correlator in hydrodynamics:

〈T xyT xy〉(ω, k)ret = P − iηω + ητΠω2 − κ

2
[(d − 3)ω2 + k2] .

to gravity calculation and find

P =
π2

8
N2

c T 4, η =
π

8
N2

c T 3, τΠ =
2 − ln 2

2πT
, κ =

η

πT
.

| {z }

new

Nontrivial cross-checks in sound and shear channels.

Using solution to nonlinear equations found by Heller and Janik (asymptotics at
large τ of Bjorken boost-invariant flow):

λ1 =
η

2πT

Bhattacharyya, Hubeny, Minwalla, Rangamani: λ2 =
2η ln 2

πT
; λ3 = 0.
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In kinetic (weakly coupled) theory:

τΠ ∼ η

Ts
≫ 1

T
.

κ = 0(?)
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Müller-Israel-Stewart
Truncate the gradient expansion at second order.
Use Πµν = −ησµν in second order terms.
Resulting equations are hyperbolic (causal) even outside of domain of validity

(large gradients) – good for simulations.
Transverse momentum modes (shear) obey diffusion equation similar to:

∂tρ = −∇j

with
j = −D∇ρ

Which means ∂tρ = D∇
2ρ - parabolic. Disturbance propagates with infinite

speed? Problem even for nonrelativistic case?
Now use instead:

j = −D∇ρ − τ∂tj

This system is hyperbolic, with characteristic velocity:

vdisc =
p

D/τ

The problem is only in the regime (kℓ & 1) where hydrodynamics is
inapplicable. There are no actual modes which propagate with vdisc.
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Summary

Hydrodynamics is an expansion in gradients of hydrodynamic variables.

In conformal theories (e.g., QCD above 2Tc) the form of the equations (stress
tensor) are restricted.

To first order: only one viscosity coefficient η.

To second order: only 5 (in curved space) coefficients.

For N = 4 SUSY YM at strong coupling (and large Nc) the coefficients have
been determined using AdS/CFT.
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Appendix
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Viscosity on the lattice

Difficult problem: need to get large real-time behavior of a correlation function,
from Euclidean (imaginary ) time measurements.

Numerical noise must be very low.

Must assume that extrapolation to large times (low frequencies) is smooth.
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Entropy and the second law
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