SUMA Meeting

WP 4 – Updates

November 8th, 2013

People involved in this work project

- Roberto Ammendola
- Giovanni La Penna
- Velia Minicozzi
- Silvia Morante
- Gian Carlo Rossi
- Gaetano Salina
- Francesco Stellato
- ...

3 Levels of Simulations

- Quantum-mechanical simulations
 - QuantumESPRESSO
- Semi-quantistic (tight binding) simulations
 - DFTB+
- Classical mechanics simulations
 - GROMACS

Benchmarks

A properly-sized test system is needed for the benchmarks

Catch two birds with one stone

A system which is also appealing from the scientific point of view

Benchmark System

A short portion of the $A\beta$ peptide, involved in the pathogenesis of Alzheimer's disease, is used. A metal ion is bound.

Ni²⁺ -[Glu-Val-His-His]

380 Atoms
521 Electrons

Benchmark - System

- 1 Peptide aggregation propensity Classical molecular dynamics
- 2 Effect of metal binding on aggregation *Tight-binding methods*
- 3 Effect of metal binding on protein folding Fully quantum-mechanical treatment

Benchmark - First Results

Program: DFTB+ 1.2.2

Most time-consuming step: large, sparse matrix

diagonalization

Using OMP DFTB+

on Eurora

(problems with multiple CPUs)

Benchmark - First Results

Program: QuantumESPRESSO 5.0.3, CP module Most time consuming steps: linear algebra, FFT

Due to memory limitations a smaller system is used Cu[(CH₃COO)₂]₂ + 105 H₂O

345 atoms

Side-Project 1 Experiment related simulations X-ray Absorption Spectroscopy

Use Plane Wave (PW) methods to calculate
 X-ray Absorption cross sections

XSPECTRA package within QuantumESPRESSO

- A useful tool for phenomenology
- For ensemble statistics and analysis of large systems good computing power is required

Side-Project 2 Experiment related calculations Serial Crystallography

- New protocols for protein crystallography require the analysis of up to 106 diffraction patterns
- Easy to parallelize
- Potentially interesting for an increasingly large community of physicists, chemists and biologists

Available Machines

Eurora

@ Cineca

CPUs and GPUs

QUonG

@ Roma1

CPUs and GPUs

TheoPhys

@ Pisa

Drum

@ Roma2

Few nodes, but fully connected

The Story So Far

- 1 GROMACS up and running on Eurora on CPUs and GPUs
- 2 QuantumESPRESSO up and running on Eurora CPUs
- 3- DFTB+ running on Eurora MPI not yet working properly
- 4- First benchmark systems being tested

Short-Term Plans

- Compile and debug the MPI version of DFTB+ on Eurora
- Install QuantumEspresso on QUonG/CPUs and test it with infiniband and APEnet+
- Benchmark...
- Benchmark...
- Benchmark...
- Benchmark...
- Benchmark...

Mid-Term Plans

Algorithm optimization

- Optimized FFT on different architechtures
- Multi-dimensional FFT
- Find a good test program
 (e.g. QuantumESPRESSO FFTs)
 and use it to test various FFT implementations

Thanks!