

Results from the O.M. components measurements during tests/integration.

S.Aiello, V.Giordano, E.Leonora

INFN-CT

Collaboration meeting KM3NeT – Italia

Roma, 2013, November 12-13

References:

S.Aiello, et al. (NEMO coll.) Nucl. Instr. Meth. A, 614 (2010) 206-212

S.Aiello et al. (NEMO coll.) 2013 JINST 8 P07001 doi:10.1088/1748-0221/8/07/P07001

R7081 produced by Hamamatsu:

- 10 inch. photocathode
- Standard bialkali photocathode (QE ≈ 25% @ 400nm)
- 10 stages

For NEMO phase-2 a batch of over 70 PMTs has been characterized

Catania

Characteristics of the 72 R7081 Hamamatsu PMTs

	mean values	values required
Voltage at Gain 5E7 [V]	1655	< 2000
Dark Count rate [Hz]	1388*	< 5000
P/V ratio	3.5	> 2
Charge resolution σ %	31.6	< 50
TTS FWHM [ns]	2.8	< 3
Pre-Pulse %	0.02	< 1
Late Pulse %	5.5	< 5
Type 1 after pulse %	1.1	< 1
Type 2 after pulse %	4.4**	< 5

* Excluding one PMT with DC rate of 4093 Hz

** Excluding one PMT with type 2 after pulse fraction of 10.4%.

1700

nominal voltage [V]

1750

1800

Main features:

- Active base
- +5 Volts supply (bipolar voltage supply before modification)
- Cathode-1^dynode and 1^dynode-anode voltages individually controllable
- Anode current max : 100 microAmpere
- Power consumption : 150mW @ 2000 Volts
- Modified on the ouput on NEMO requiremts

Picture of the ISEG base soldered

Modifications on ISEG base

- no ringing in the signal
 - rise time and width increased

KM3Ne1

Good linearity up to 100 p.e. for Gain 5E7

Saturation is correlated with anodic current

Max value 1 nC \rightarrow 120-150 p.e at gain 5*10⁷

Lower gain , higher dynamic range

ICECUBE : gain 1,12*10⁷ ; led with different attenuatuation filters

NEMO: gain 1*10⁷; Laser light source, measured by a bolometer nW

KM3NeT

P6:---

P6:---

Trigger

gain @ 5 E7; acquisition averaged on 1000 pulses

The effect of the PMT saturation

Gain = 5 E7 1 pe \rightarrow 400 pVs

I N F N

Catania

Resume of signal parameters vs. incident light intensity

KM3NeT

NEA

Effects of the Earth's magnetic field and a magnetic shield

13/11/13 Roma

- PMT 360° rotated along its vertical axes
- Three inclinations, with and without a shield: Vertical downwards, Horizontal, 50° vertical downwards

Max Variation % = max – min / max						
	PMT naked	PMT shielded				
Detection Eff.	40	6				
Gain	29	7				
P/V ratio	41	14				
Charge Res	50	20				
TTS	20	2				

emanuele.leonora@ct.infn.it

Scanning of the R7081 photocathode surface

TETA

KM3NeT

324 points uniformly distributed on the photocathode

- 410 nm Laser Source pulsed in s.p.e. condition
- **5**mm light spot diameter, normal to PMT surface

Results complied with them from Dept. of Physics Chiba University on ICECUBE PMT

Det. Eff > 90 % for over the 40% of the photocathode area

KM3NeT

PMT aging

Aging (continuosly)

• LED ON (about 3pe @ 1 MHz)

Measurements of PMT parameters (once a week)

- LED OFF
- Pulsed Laser at s.p.e. condition
- s.p.e. charge spectrum
- s.p.e. Transit Time spectrum
- Spurious pulses

Measurements time : from 28/5/2008 to $8/10/2011 \approx 3$ years of operating time

The measuring time is equivalent to an operating time of about 45 years @ 1 pe @ 200 KHz

Apart the Gain, all the measured parameter were stable

Gain: A first phase of Up-drift with a gain increase of about 20 % followed by a final phase of down-drift with an gain decrease of about the 40% from max value

Waker SilGel 612 two components (A e B) (silicone gel)

4 different mixtures have been tested: 40B/100A, 50B/100A, 60B/100A, 70B/100A

Results are different from ANTARES and finally have been confirmed by NIKHEF

emanuele.leonora@ct.infn.it

Catania

A Simulation of angular acceptance for ANTARES O.M. 17 in. sphere was done as function of two different gel composition

(Geant4 : Taiuti, Heide, Yakovenko : Genoa group)

KM3Ne^{*}

Effects of the glass vessel on the PMT noise signals

	naked	Vitrovex 17"		Vitrovex 13"	
THR [pe]	DC rate [Hz]	DC rate [Hz]	lncr. [Hz]	DC rate [Hz]	lncr. [Hz]
1/3	660	3432	2772	3200	2540
2	52	333	281	222	170
4	16	111	95	96	80

Incr. = $Rate_{glass}$ - $Rate_{naked}$

- the external glass increases the rate of • dark pulses at different amplitudes
- The increment of the DC rate depends • on the area of the photocathode

