KM3NeT

Review of possible trigger algorithms for the 8 Towers DAQ

Tommaso Chiarusi

INFN - Sezione di Bologna

General context: the TriDAS framework

Trigger Levels

L2 = Dedicated Trigger Algorithm

L1 - PRESELECTION

Simple Coincidences ∆T ≤ 20 ns

Simple Coincidences + shooting hits $Q > Q_{th} \& \Delta T \le 60 \text{ ns}^{(*)}$

> Shooting hit Q > Q_{th}

 $v_{\text{out}} = \frac{1}{\Delta T} {n \choose k} p^k (1-p)^{n-k}, \quad p = 1 - e^{-\Delta T v_{\text{bkg}}}$

Sampling Window ΔT n = n. involved PMTs

k = minimum searched hits within ΔT

L2 - Generalities

Summary:

a) T- trigger
b) Simple Causality trigger
c) Sky scan trigger
d) Tracking source trigger
e) Vertex-splitting trigger
f) Follow-up trigger (GRB, supernovae, GW)

The dedicated L2 algorithms process only the hits yielding the L1s but for the tracking source trigger which combines all the hits of a L1 event

pairs is $\geq N_{th}$ within a certain time-window ΔT

Wednesday, November 13, 2013

L2 - Simple causality trigger

1. A minimum n. of **consecutive** $L1s \ge N_{th}$ within a ΔT (at least $n_{PMTs} \ge 5$)

2. 3D-causality filter:
$$|t_i - t_j| \leq |\vec{x}_i - \vec{x}_j| \frac{n}{c}$$

3. The trigger is set if the n. of satisfying hits is $\geq N'_{th}$

L2 - Sky scan trigger

- 1. A minimum n. of **consecutive** $L1s \ge N_{th}$ within a ΔT (at least $n_{PMTs} \ge 5$)
- 2. A homogeneous sky survey is done \rightarrow "**rotation**" procedure: $\mu // z$

 $|(t_i - t_j)c - (z_i - z_j)| \le \tan \theta_c \sqrt{[(x_i - x_j)^2 + (y_i - y_j)^2]} = \tan \theta_c |R_{ij}|$

3. The trigger is set if the n. of satisfying hits is $\geq N'_{th}$

- 1. From **GPS** time of timeslice → **source direction**
- 2. L1 preselected events with even one seed are accepted.
- 3. All hits of each event are tested with the "rotation" procedure (road-width R_{max} restriction w.r.t. direction)
- 4. A cluster is formed when found N_{min} consecutive hits, L1 seed included.
- 5. If **time-overlap** among clusters \rightarrow **clusters are merged** into one only bigger cluster.
- 6. **Small clusters** are treated with a **quick reconstruction** (to avoid accidental clustering of bkg)
- 7. The trigger is set if PMT surface density (w.r.t. the convex hull \perp direction) $\geq \sigma_{th}$

1. Subdividing all the event hits in 2 time splitted groups

2. Vertexes reconstruction + Simple Causality Filter + "Inertia" tensor eigenvalues N

$$I^{k,l} = \sum_{i=1}^{N} A_i (\delta^{k,l} \mathbf{r_i^2} - r_i^k r_i^l), \qquad \mathcal{T} = rac{I_1}{I_1 + I_2 + I_3}.$$

Algorithms serving Physics

Motivation	T-Trigger	Simple Causality Trigger	Sky Scan Trigger	Tracking	Stack- Analysis	Vertex/ Inertia
muon	~	~	~	~	>	~
showers	~					~
slowly moving particles	~					~
sources				~	~	~

L2 - Follow-up trigger

... but who is supposed to be buffering ? ... and who is supposed to apply a stack-analysis through the expected duration of a burst?

First possible answer: BUFFERING in TCPUs

N. machines ? ← constraints from CPU power + MEMORY (3-4 GB RAM/core; 10-16 HEPSPEC/Core).

- Note: 1 TS size: ranging within 180 (realistic 50 kHZ bkg) - 400 (hard 110 kHz bkg) MB/TS.

- Limit to 2 the number of processes / server.
- each process will be **multithreading** → probable strong **parallelism among L2 triggers**

- the computing power scales if the n. processes (or threads) does not exceed the n. of physical cores.

- 32 GB RAM/server could allow us to buffer about 20 secs/process (in the *realistic* case).

If needed more buffer, necessary to do I/O to solid /state memory.

Second possible answer: BUFFERING in HMs

- With 32 GB/HM \rightarrow buffer for 40 secs
- On one alert :
 - a) each HM dumps proper ΔT data window (around the alert)
 - b) the HMs transfer the data windows on an external machine (e.g. fuCPU)
 - c) the external machine

Wednesday, November 13, 2013

L₁ and L₂ Trigger algorithms

Hostname: wn-204-03-25-02-b.cr.cnaf.infn.it					
		allo			
OS: Scientific Linux re	elease 6.4 (Carbon)	Tim			
Kernel: 2.6.32-358.18.1	.el6.x86 64	1 11 11			
		- T _c			
CPU type: Intel(R) Xeon	n(R) CPU E5520 @ 2.2/GHz	- 0			
Cores: 8 x 2 (2 CPU	-> 4 Core/CPU)	- T _s			
CPU MHz: 2268.000		- TI			
Cache size: 8192 KB	BENCHMARKED WORKER-NODE	- T⊧			
Memory: 24 GB		- 1			
HEPSPEC version: hs06 s	s16-32bit (hyperthreading on)				

 $T_p + T_{ma}$: parsing data from the TimeSlice file and allocating the necessary memory to host all the hits in a TimeSlice;

- T_{cal} : calibrating the hits ;

 $-T_{sort}$: **time-sorting** all the the hits of each TimeSlice;

- T_{L_1} and T_{L_2} : applying the L₁ and L₂ trigger level;

 $-T_{HM} = 175 \,\mathrm{ms}$

 $T_{tot} = T_{HM} + T_{ma} + T_{ca} + T_{sort} + T_{L1} + T_{L2}$

+ Realistic	approach	T _P + T _{ma} (ms)	T _{ca} (ms)	T_{sort} (ms)	TLI (ms)	T L2 (ms)
Hardly Realistic	А	11280 ± 123	61 ± 1	1176 ± 12	596 ± 7	171 ± 2
▲ Condensed	В	11251 ± 118	57 ± 1	1167 ± 12	588 ± 7	174 ± 2
× Heavy Bkg	С	11318 ± 111	57 ± 1	1146 ± 11	579 ± 6	400 ± 4
* Heavy Bkg + Hard. Real	D	24792 ± 227	134 ± 2	2626 ± 24	1693 ± 18	5526 ± 49
N. processes = N. of physical cores	Е	24904 ± 212	139 ± 2	2624 ± 21	1685 ± 17	5529 ± 46

HEPSPEC-06 = HEPSPEC-06_{SCORE} × T_{tot} × $(\Delta T_{TS})^{-1}$

approach	T_{tot} (ms)	HEPSPEC-06	N. TCPU processes
А	3880 ± 23	2483 ± 15	20
В	3862 ± 22	2472 ± 14	20
С	4058 ± 21	2597 ± 13	21
D	12064 ± 60	7721 ± 38	61
Е	12062 ± 56	7720 ± 36	61

HEPSPEC score: 128.12

12000 -----

10000

Conservative "extrapolation": serial L2s / process

 $T_{L2} = T_{T-trig} + T_{slow} + T_{Simp \ Caus} + T_{SkyScan} + T_{Tracking} + T_{showers} + T_{Follow-Up}$

	T-trigger	Slow	Simple Causality	Tracking	showers	Follow- Up
Talgo : TskyScan	1:1	1:1	1:1	4:1	1:1	negligible

	N. TCPU processes	T_{tot} (ms)	approach
	27	5246	А
	27	5250	В
IF this scenario,	37	7260	С
mandatory to go	282	56276	D
Darallel	282	56291	E

TCPU

Template server: I 28 HEPSPEC/server (8 core, 32 GB RAM)					
TCPU input throughput (Gbps)	TCPU output throughput (Mbps)				
≤ 10	<2				

conservative: >30 TCPUs (2 processes)

Conclusions

- Plenty of trigger to implement...
- ... ready to develope new ones (see Bachir's talk)
- Required a solid MonteCarlo study for determining the Figures Of Merit (~ efficiency, purity, effective areas/volumes)
- MANPOWER, please: Bo + Pi + CNAF + MORE...

In some cases it is possible to refer to the ANTRES FOMs

(B. Bakker Ph.D. thesis, 2011

available on KM3NeT Portal)

Figure 10: Effective volumes for Antares. a) The effective volume for the trigger2T (red) and trigger3T (green). b) The effective volume divided by the reference trigger based on four L1-hits. c) The effective volume for trigger1D (red), trigger3D (green), trigger3N (blue) and triggerMX (light blue).