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The content of the universe is, up tm{ary, absolutely unknown for
its [argest part. The situation is very DARK” while the
observations are extreme[y goocﬂ
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The Observed Universe Evolution
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Future faws cf the dark energy universe Big Rip
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A ]ofetﬁom of theoretical models!!
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“..there are the ones that invent OCCULT FLUIDS
to understand the Laws of Nature. They will come to
conclusions, but tﬁey now run out into DREAMS

and CHIMERAS neglecting the true constitution of

"tﬁings.....
...however there are those that from the sim]aﬁast

i ®  observation of Nature, they reproduce New Forces (i.e.
ded . "Now Theories)... ”

From the Preface of PRINCIPIA (11 Edition)

1687 by Isaac Newton, written by
"Mr. Roger Cotes




There is a /ﬁmd'amenm[ issue:

Are extragalactic observations and cosmology probing_
~the breakdown of General Relativity at [arge (1R)

scales?




The problem could be reversed
—

- Dark Energy and Dark Matter
as “shortcomings” of GR.
esults of flawed physics?

 The “correct” tﬁeory cf gravi could
be derived Ey matcﬁing the argest




In order to extend General Relativity, we consider two main features:

" the geometry can couple non-minimally to matter and some scalar field;

. ﬁigﬁer than second order derivatives (f the metric may appear into Jynamics

In the first case, we say that we are dealing with scalar-tensor gravity, and in the-
second case with higher-order theories

A. A. Starobinsky, Phys. Lett. Bo1, 99 (1980).

S. Capozziello, t. Jou. Mod. Phys. D 11, 483 (2002) .

A. De Felice, S Tsufikawa, Living Rev.Rel. 13 (2010) 3
S. g\?pozzieﬂb, ‘M. De Laurentis, Phys. Rep. 509, 167 (2011).
S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).



A genem[ class qf ﬁ@ﬁer-ordér-scalhr-tensor theories in ﬁmr dimensions is giver

by the action
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= The simylést extension of GR is achieved assuming F = f (R), in the action

»  The standard Hilbert-Einstein action is recovered fbr f (R) =R
By varying with respect to g,,,, , we get

, f(R) , ,
f (R)R;w - Tg,uv = V,uvvf (R) — g,uvl:’f (R)

and, after some manipulations

1 / /
Gy = 71(R) {V,uvvf (R) — g f (R) + 8uv

[/ (R) — f’(R)R]}
2

where the dgmvitationa[ contribution due to higher-order terms can be-
Teinterpreted as a “curvature” stress-energy tensor related to the form of f(R).

Such a tensor disappears for (R )=R



2

L[
<‘gaﬂ[f (R) = Rf'(R)] + f'(R).ap — 8apOf ’(R)l +

Gap =
"7 f(R)

In the case @C GR, id%nticaﬂ'y vanishes while the-
standard, minimal cou}o[i’ng is recovered ﬁ)r the-
“matter contribution

f'R) T R

is an eﬁfective stress-
energy tensor constructed.
Ey the extra curvature
terms

The peculiar behavior of AR) = R is due to the particular form of the-
Lagrangian itself which, even though it is a second-order Lagrangian, can be-
Ton-covariantly rewritten as the sum of a first-order Lagrangian plus a pure

d'ivergence term.



Tﬁe Wé&lé

We assume, anafyﬂ’c Te ay[br eogpancfaﬁfe f (R) ﬁnctions with respect to a certain value ‘1{)
=R, o

R
’i' D (R-Ro)" = fo+ iR + oR2+ f3R® # ...

f®R)=)

In order to obtain the weak field approximation, one has to insert expansions into field.
equations and eagaand' the system up to the orders 0(0), 0(2) e O(4).

9f we consider the O(2) - order ( 2 2 2
f () firR® =2fig?, +8fRY ~ firgy,, +4frR? =0,

ril;{pproximation,
¢ field equations in vacuum, fArR® -2, +8LRY - firg? . =0,
Tesults to be .
o
o < 2) 2) 2) 2) )
It is evident that the trace- x [fer — N8, —h&rr +4LR + 4f2rR,rr] =0,

equation provides a differential.

rR® +6f, [ZR(Z) +rR% | =0,
;gilaﬁon with respect to the- h J: 2 T
d

4

cci scalar which allows to 2 g +r [2g§§}r ~rR® +2g%) +rg?. ] =0. (33)
solve exact(y the system at 0(2)
- order




. weak

~

In order to match at infinity the

, , . , 2GM  §1(1)e "V
"Minkowskian prescription for the metric, | ds®= [1 - _o1lt)e

]dtz

one can discard the Yukawa growing_ hr 3¢r T
“mode in and then we have: ) _[1+2GM_51(t)(rV_f+1)e ]drz_rde
\_/ fir 3ér ’

R = 51(t)e_r\/__€ .
\ r

In particular, since g, = 1+2 Pgrav = 1+ g(2),. , the gravitational potential of
f (R)-gravity, analytic in the Ricci scalar R, is

GM | S1(t)e "V
fir 6¢r

q)grav ==

This genem[ result means that the standard Newton yotenu’a[ is achieved onfy in the
fyam’cufar case f (R) = R while it is not so for any cmafytic f (R) models

The parameters f, , and tﬁe{ﬂnction 8 , represent the deviations with respect the
standard Newton potentia

S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)



The weak ﬁe[af [imit in E(R)-gmw’ly

We note that the & L A . and can be interpreted also
parameter can be related to by m" =37 = 35 M  asan effective length £

an effective mass being
GM _r
()=~ (14067 <J

The second term is a mocﬁfication cf the gmvity including a scale length.
Tt gives rise to a ﬁn’tﬁer “gmvitationa[ [engtﬁ” [ike the Schwarzschild radius

1f 8 = 0 the Newtonian potential and the standard gravitational coupling are recovered.

s __6GM( 5
Assuming 148 =f1, O is related to 8 1(t ) through 1=" 772 176

Under this assumption, the scale length L could naturally arise and reproduce-
several phenomena that range from Solar System to cosmological scales.
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‘Um{ersmncfing at which scales the mocfiﬁcations to General
M’au’vily are working or what 1is the weight of corrections to
gravitational Joownu’a? is a crucial point thgat could confirm or
Tule out these extended approaches to gravitational interaction.

Od oo
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St'e‘ar strictures‘and ‘Jeans insmﬁmﬂ’

1t is usually assumed that the dynamics of stellar objects is completely determined by the-
“Newton law of gravity

Considering potential corrections in strong field regimes could be another way to check the-
Viability of Extended Theories of Gravity

In particular, stetfa;'jyswms are an ideal laboratory to look for signatures of possible-
“modifications of standard law of gravity

Some observed stellar systems are incompatible with the standard models of stellar
structure : these are peculiar objects, as star in instaﬁil’:’z/ strips, protostars or
anomalous neutron stars (the so-called “magnetars” with masses larger than their expected.

Volkoff mass) that could admit dynamics in agreement with modified gravity and not”
consistent with standard Genera ‘Re(ativity (e.g. PSR 1614-2230).




R( )
2
(0) A R® — R® = XTO)

Field equations at O (2)-order, that is at the-
“Newtonian level, are

FR)F R0 F )4 R,
The energy-momentum tensor for a perfect fluid is
= (e + pluyu, = pguy
The pressure contribution is negﬁgzﬁﬂz in the fw[c( equauons of Newtonian.

cygpr oximation

— f(0) AR® = XT}

R®
AD+— 5 + f7(0) AR® = — Xp

“modified Poisson equation 3F10) A RO + RY = — Xop,
S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)
For f(R) = 0 we have the standard Poisson equation AD = —47Gp
From the Bianchi identity we have ur — 0 20 — _L(, 4 0108

o xk axk
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Stellar structures'and Jeans insmﬁfﬁg_

-

Let us suppose that matter satisfies a polytropic equation p = K YpY

We obtain an integro-differential equation for the gravitational potential , that is

5 5/50 ’ /
d w(z) n 2 dw(z) n w(z)n _ m_&)l/ ds ! {e—mfolz—z | _ o—méolztz |}w(z/)n
0

dz? z dz 8 z
Lané-FEmden equation in f(ﬁ)-gmvity B S AR
i N \'*.
We find the radial profiles of the- "l KN
gravitational potential by solving for some- | B N
s _ s 1 ) \.‘\
Values of n (polytropic index) e | W N
- ) 0N
04F W s
“New solutions are physically relevant” | ‘:;‘\\ ",
P , : YN \
and could explain exotic systems out of” 02f N
L " i\ .
“Main Sequence (magnemrs, variable ; RN \\\\ .
stars, very massive neutron stars). R T S

S. Cc_tpozzie[[o, ‘M. De Laurentis, A. Stabile, S.D. Odintsov, PRD 83, 064004, (2011)



Stellar structuresand Jeans insmﬁmﬂ’

- — — | w—
e have also compared the behavior with the temperature of the Jeans mass fo
Various types of interstellar molecular clouds

1200 F

~ 6 P
M;=6 M, 1000 F ]
J(?’ +V21)° 800 |

= :
In our model the [imit (in unit of mass) to start” = o

~the collapse of an interstellar cloud is lower b0k

~than the classical one ad%rantaging the structure- 0 bt
, 0 10 20 30 40 50 60

Fformation. T/[K]

S. Cayozzie[fo, M. De Laurentis 1. De Martino, M. Formisano, S.D. Odintsov
‘fﬁysﬂ{ev. D385 (2012) 044022

Subject TE) n(10°m 3) u M; (Mg) M; (My)
Diffuse hydrogen clouds 50 5.0 1 795.13 559.68
Diffuse molecular clouds 30 50 2 82.63 58.16
Giant molecular clouds 15 1.0 2 206.58 14541
Bok globules 10 100 2 11.24 7.91




r?lc{c[ressing stellar systems By this ajo}oroacﬁ could be extremefi
important to test oglfewaﬁona[fy FExtended Theories @C Gravity.
See g Astashenok, Cayozzieﬁo, Odintsov JCAP 1312 (2013) 040, PRD 89
(2014) 103509 where anomalous neutron stars are described By

f(ﬂ%) -gravity.




%xtendédl Theories @"' ravity can also impact on the estimate (f
‘M properties on galactic scales

%c{[iﬁ’ea[ gravity could be a possible way to solve the cusp/core and.
similar problems of the DM scenario without asking for huge-

amounts qf DM




‘Téstmg ) 01

“Yukawa-like corrections are a genem[ ﬁzature, in tﬁe ﬁameworﬁ qf f (‘R) -gravity

o is the stamng point ﬁ)r the-
This equation L D) = — (1 e T ) computation of the rotation.
(1+0)r curve qf an extended system.

Considerin ﬂ a general expression derived for a generic potential giving rise to
a separable force GM,

Fp(p,r)=——fu(@) fr(n)

S

With 4 =M/Mg, N =r /r. and (Mg, r.) the Solar mass and a characteristic
length of the problem

—ning)
In our case, fi =1 and: ‘ :(1+ n)eXp( nmnr
d i n) (1+0)n?

With 0 ; =L/r,



1 ’ | —— _——-__.-. ~ - - = — —_—— ;%n%'* =
] eSfmg .EP VYA X1ES> —
— — —— >

Using cylindrical coordi’a (R,0,z2) and e crres onding dimensionless
Variables (n,0,¢) (with & = z/fs ), the total force 'd{m reads:

Gpors [°

F _
(r) 1+6 Jo

n'dn' f af’ fo fr)pm',0',¢hae’

With "0 = p/P o, O o a reference density, we have

A=[n*+n"*-2nn"cos(©®-0") + ((—(’)2]1/2

For oBtaining axisymmetric systems, one can set 0 ~ =0 “(n,¢&).

S. quozzieﬂb, ‘M. De Laurentis Ann. CPﬁys. 524, 545 (2012)
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Figure 4 Examples of simulated rotation curves with superim-
posed theoretical curves. From left to right, model parameters
are (logM;,log Myir, c, fpm,lognr) = (1115, 12.90, 10.24, 0.47,
0.36),(10.90, 11.76, 14.77, 0.45, —0.92), (10.04, 12.10, 13.76, 0.54, 1.11),
while the simulation parameters are set as discussed in the text.
Note that, depending on how the model parameters are set, it is
possible to get rotation curves which are flat, decreasing or in-
creasing in the outer region.



The modified potential can be tested also for elliptical galaxies checking whether it is

able to jorow’cfe a reasonable match to their kinematics.

ﬁﬂi’y’u’ca[s are very cfﬁ%rent with respect to spirals so acfcfressing both classes cyo
oEjects under the same standard could be a ﬁﬁwfamenmf step versus DM.

One may construct equilibrium models based on the solution of the radial Jeans
equation to interpret the kinematics of planetary nebulae

We use the inner ﬁmg slit data and the extended y[anetary nebulae kinematics jbr'
three gafaxies which have puE(isﬁeJ cfynamicaf cma[yses within DM halo
fmmeworﬁ (see Napolitano, Capozziello, Capaccioli, Romanowski Ap]J 748 (2012) 87).

They are:
"NGC 3379 , (DL +09) , NGC 4494 N +09 , NGC 4374 (N + 11).



It is shown the circular ve(ocity cf the modi:ﬁ’e{{powmiaﬂ
asa ﬁmction @C the potential parameters Land 6 fbr

"NGC 4494 and NGC 4374.

From a theoretical point qf view, 0 isa ﬁee parameter
~that can assume positive and negative values.
Comparing resuﬁ}'as or spirals and e[ﬁ’})’a’cafs, it is clear
that the mmyﬁolbgy of these two classes (f systems
sm’ct[y déyend& on the sign and the value of & .
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Figure 6 Circular velocity produced by the modified potential for
the two galaxies N4494 (top) and N4374 (bottom). In both cases
the M/, has been fixed to some fiducial value (as expected
from stellar population models and Kroupa 2001 IMF): M /%, =
4.3Y ; g forNGC 4494 and M/ ¥£, =5.5Y 5 y for NGC 4374. The
potential parameters adopted are: L = 250" and §-=0, -0.65, -0.8,

-0.9 (lighter to darker solid lines) and L = 180" and §=-0.8 (dashed

lines). The dotted line is a case with positive coefficient of the
Yukawa-like term and L = 5000" which illustrates that positive
o cannot produce flat circular velocity curves. Finally some refer-
ence Navarro-Frenk-White (NFW) models are shown as dot-dashed
lines [108].



The overall match qf the model curves with data is remarﬁaﬁ[y goocf and it is comyamﬁ[@z with
models obtained with DM modé[ing (gmy [ines)
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Figure 7 Dispersion in kms (top) and kurtosis (bottom) fit of
the galaxy sample for the different f(R) parameter sets: the
anisotropic solution (solid lines) is compared with the isotropic
case (dashed line — for NGC 4374 and NGC 4494 this is almost

Radius [arcsec]

Radius [arcsec]

indistinguishable from the anisotropic case). From the left, NGC
4494, NGC 3379 and NGC 4374 are shown with DM models as gray
lines from N+09, DL+09 (no kurtosis is provided), and N+11 respec-
tively [108].



, "Modeling clusters of galaxies

A ﬁmd'amenta( issue is related to clusters and su,percﬂtsters (f ga(axies.

Such structures, essenﬁ:zwﬂ'ﬂ, rule the large scale structure, and are the intermediate
step between galaxies and cosmology.

As the galaxies, tﬁe{y appear DM dominated but the distribution of DM
component seems ¢ ustered and orgcmized' ina ve?/ di:ﬁc(arent way with respect”
to galaxies. It seems that DM is ruled by the scale and also its fundamental.
nature could depend on the scale

Our goa( is to reconstruct the mass prqﬁ&z qf clusters without DM ad'qpting the-

same strategy as above where DM effects are figured out by corrections to the-
“Newton potential

w  — “



“Modeling % iusters ot ﬂa[axies f

Standard Cluster Model: spherical mass distribution in hydrostatic equilibrium

- Boltzmann equation: _d® _ KI(r) | dlnpgas(r) | dInT(r)
dr  pmpr dinr dinr
1 GM
o(r)=——
- Newton classical approach: < ’
Pel EC'(:T) = Pdark + pgas(‘r) I Pgal ( ‘) -+ pC'Dgal('r)
.
4 ,
¢ (7) - 4(1-11‘ (1 §€ )

- f(R) approach: <

- Regrranging the Boltzmann equation:
.

. 3G M ey _kT(r) [dInpges(r) dInT(r) B da; ,dPec
on(r) =— dasr Miaran(r) = 3 [ lt??lpG? dlnr i dlnr 3G’ dr r)
. <
o GMeE A
dolr) = — da; r Mpar.obs(T) = Mgas(r) + Mgai(r) + Mcpgar(r)
\




“Modeling clusters of galaxies

EE———
Fitting mass Profile with data:

- Sample: 12 clusters from Chandra (Vikhlinin 2005, 2006)

- ‘l'émyemture yrqﬁ(e from spectroscopy
- Qas dénSity: mOd"L:ﬁed‘ Eeta-modé( NN = n_g " (r/re)”® 1 '”g-z

e § = T NEET
(1 + 7,2/7,5)33—0'/2 (1 4 rY /,rs! )E/“,’ (1 + 7,2/7.32)3;32

- ga’(axy dénSity: poetr) = - [1 . (Rc;‘% - - PCDgal = ( )2120“]

Pgal,2 * [1 + (RLC ro> He

re

Table 1. Column 1: Cluster name. Column2: Richness. Column 2: cluster total mass. Column 3: gas mass.
Column 4: galaxy mass. Column 5: cD-galaxy mass. All mass values are estimated at r = ryq.. Column 6:
ratio of total galaxy mass to gas mass. Column 7: minimum radius. Column 8: maximum radius.

name R M.~ Mgas Mgar M:pgai ;’Zi Tmin  Tmaz
(Mg) (Mg) (Mg) (Mg) (kpe)  (kpe)

A133 0 4.35874-10%  2.73866 - 1013 5.20269-10'2 1.10568-10'2 0.23 86 1060
A262 0 4.45081-10'3 2.76659 - 1012  1.71305-10'! 5.16382-10'2 0.25 61 316
A383 2 2.79785-10% 282467103 5.88048 -10'2  1.09217-10'2 0.25 52 751
A478 2 8.51832-.1014 1.05583-10'4 2.15567-10'% 1.67513-10'2 0.22 59 1580
A907 1  4.87657-10'% 6.38070- 103  1.34129.10'3 1.66533.10'2 0.24 563 1226
A1413 3 1.09598 - 1015  0.32466 - 1013 2.30728 - 10'3  1.67345-10'2 0.26 57 1506
A1795 2 1.24313-10%  1.00530- 1013  4.23211-10'2 1.93957-10'2 0.11 79 1151
A1991 1 1.24313-10'%  1.00530-10%3  1.24608-10'2 1.08241-10'2 0.23 55 618
A2029 2 8.92392-10%  1.24129-1014 3.21543-10'3 1.11921-10'2 0.27 62 1771
A2390 1 2.09710-10%%  2.15726-10' 4.91580-10'3 1.12141-10'2 0.23 83 1984
MKW4 - 4.69503-1013  2.83207-10'2 1.71153-10'! 5.20855.10!1 0.25 60 434
RXJ1159 -  8.97997-10%3  4.33256-10'2  7.34414-10'' 5.38799.10'! 0.29 64 568
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’Mocfeﬁl%g clusters of galaxies
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- Differences between theoretical and observed fit less than 5%
- Typical scale in [100; 150] kpc range where is a turning-point:

+ Break in the ﬁyd'rostatic equiﬁ’ﬁm’um

+ Limits in the expansion series of ﬂ‘R): R— Ro << 2L inthe range [19;200] @pc

a2

Proper gmvitationa( scale (as jbr ga(axies, see Capozziello et al MNRAS 2007)

s Similar issues in Metric-SEew-‘Ténsor-@mvﬁy (Brownstein, 2006): we have better

and more detailed a}gproacﬁ



“Modeling clusters of galaxies
TR A

Results

[a1 — 1o, ay + 14] as [az — 1o, az + 14] L [L — 1o, L + 1]
(kpe?) (kpe?) (kpe) (kpe)

A133 | 0.085 [0.078, 0.091] —4.98.10% [-2.38.10%, —1.38.10%] 591.78  [323.34, 1259.50]
A262 | 0.065 [0.061, 0.071] —10.63 [—57.65, —3.17] 31.40 [17.28, 71.10]
A383 | 0.099 [0.093, 0.108] —9.01-102 [-4.10-10%, —3.14-10%] 234.13 [142.10, 478.06]
A478 | 0117 [0.114, 0.122] —4.61-10* [-1.01-10% —2.51.10%]  484.83 [363.29, 707.73]
A907 | 0.129 [0.125, 0.136] -5.77-10° [-1.54.10% —2.83.10%] 517.30 [368.84, 825.00]
Al1413 | 0.115 [0.110, 0.119)] —9.45.10%  [—4.26-10%, —3.46-10%] 2224.57  [1365.40, 4681.21]
A1795 | 0.093 [0.084, 0.103)] —1.54-10° [-1.01-10%, —2.49.10%] 315.44 [133.31, 769.17)
A1991 | 0.074 [0.072, 0.081] —50.69 [-3.42- 102, —13] 64.00 [32.63, 159.40]
A2029 | 0.129 [0.123, 0.134] —2.10-10%  [-7.95-10%, —8.44.10%] 988.85  [637.71, 1890.07]
A2390 | 0.149 [0.146, 0.152] —1.40-10°% [-5.71-10°, —4.46.10%] 7490.80 [4245.74, 15715.60]
MKW4 | 0.054 [0.049, 0.060] —23.63 [-1.15 102, —8.13 51.31 [30.44, 110.68]
RXJ1159| 0.048 [0.047, 0.052] —18.33 [—1.35-10%, —4.18) 47.72 [22.86, 125.96]




name

A133
A262
A383
A4T8
A907
Al413
A1795
A1991
A2029
A2390
MKW4
RXJ1159

ai

0.085
0.065
0.099
0.117
0.129
0.115
0.093
0.074
0.129
0.149
0.054
0.048

[a1 — 1o, ay + 1]

[0.078, 0.091]
[0.061, 0.071]
[0.093, 0.108]
[0.114, 0.122]
[0.125, 0.136]
[0.110, 0.119]
[0.084, 0.103]
[0.072, 0.081]
[0.123, 0.134]
[0.146, 0.152]
[0.049, 0.060]
[0.047, 0.052]

[az — 1a, ag + 1a]

(kpc?)

[—2.38 - 104, —1.38 . 103]

[-57.65, —3.17]
[~4.10-10%, —3.14 - 102
[-1.01-10%, —2.51 - 10%]
[-1.54-10%, —2.83 . 10%]
[—4.26 - 105, —3.46 - 104
[-1.01-10%, —2.49.10?]
[-3.42 - 102, —13]
[-7.95 - 10%, —8.44 . 103]
[-5.71-10°%, —4.46 - 107]
[-1.15 102, —8.13]
[-1.35-10%, —4.18)

591.78
31.40
234.13
484.83
517.30

2224.57

315.44
64.00
988.85
7490.80
51.31
47.72

(L — 1o, L + 10]
(kpe)

[323.34, 1259.50]
[17.28, 71.10]
[142.10, 478.06]
[363.29, 707.73]
[368.84, 825.00]
[1365.40, 4681.21]
[133.31, 769.17]
[32.63, 159.40]
[637.71, 1890.07]
[4245.74, 15715.60]
[30.44, 110.68]
[22.86, 125.96]




| “Modeling clusters of galaxies
S— U2 TOTR - 4.

- Gravitadonal enghi 1= 10,0y = (~22)"* - Svong charactercation of
Gravitational yotenu’a[
318 kpe < a2 >p= —3.40 - 10"

2738 kpc < ag >m= —4.15- 10°

.t %@39«
- Strong(y related to virial mass [ -
(-the same for gas mass): } {Azon

ca [ AGTE {Nm

- Strongly related to average g
temperature: st oo

83 A133
it o g
a ’ o

1551

o1 F oMKWA

< L >p

-"Mean length:

™_500
) o

1 1 1 1 1 1 L1 1 1 1 PR
4.0 50 B.0leD2 20 4.0 0 80lel 2.0 40 0 80104
L



Q’R Eased' modé[s Vs f(R) gmwty

| >~ How canwe discriminate?
2
Agreement with Data...

_/

- No a priori dynamical model = Model Independent Approach;
- Robertson - Walker metric;

- Expansion series qf the scale factor with respect to cosmic time:

o) = 14 Hy(t—19)— Hz(t to)?+ J°H3(t to) +—H4(t to)’ +Z—DH§’(t—t0)5+O[(t—t0)6
a(to) 3! 5!
1d%a 1 1ad s il 1d°a 1
a dt2 H? a dt3 H3 adt* H adt® H
Deceleration TJerk Snap Lerk

ervor on d (z) less than 10% up toz = 1

Fxpansion up to fifth order : <

_erroron U (z) less than 3% uptoz=2



- Definition: lda . 1d% 1 | dBa 1 {d% 1 1d°a 1

H(t) = ——, q(t) = —— T 3 jt) = T EE s(t) = et l(t)=—

- Derivatives of H(t): \___> H=—-H*(1+q)

H = H*j+3q+2)
d®H/dt® = H*[s — 45 — 3q(q +4) — 6]

d*H/dt* = H® [l — 55+ 10(q + 2)j + 30(q + 2)q + 24]

\

£, 7 A —_— 2 —
- Derivatives qf scalar curvature: . o= —0Hs(1—q)
Ry = —6H3(jo — g0 — 2)
R= —6(H + 2H?) i
Ro = -—G.HE,1 (So + qg . 8(10 + G)

d’Ro/dt® = —6H, [lo — so + 2(go + 4)jo — 6(3g0 + 8)go — 24]



H%)QM _}_f(.Ro) - Rof'(Ro) 6”0R0f"(R()

- 1% ] .2 H: = —
15 Friedmann eq 0 = FIR) 67'(R)

- 2" Friedmann eq. : 3HE,, N R2f"(Ry) + (Ry — HoRy) f"(R,)

21" (Rp) 2f'(Ry)
- Dertvative qf 2nd Friedmann eq. :

— 1.'10 —

R2f"(R) + (j? - HB’) f"(R) + 3H2Q a3 R3fV(R) + (3}?}? - HR‘Z) f"(R)
2 [Rf(R)] " [F(R)F _ B
(d3R /dt3 — HR + HR) f"(R) — OH2Q ) Ha™3
2f'(R)
- Constraint ﬁom gmvitationa( constant:

H? = SEG [ p f(R)] ‘ G 0) =G R 1.
3f’(R) O m pc,ur\ \—/ Jeff(\ = J - f( ()) —

H =




- Final solutions: ~ f( L) Polqo, jo. s0,1lo) 2 + Qolqo. jo. 5o, lo)

GH(% ’R'(q(J?jO?SOSZO)
F(Rs)=1
f"(Ro) _ _,PQ((IO.sta so) 0 + Q2(q0, Jo, So)
(6H2)™ R(q0, Jo, S0, lo)
f"(Rp) _ _'PB(QUsJ'osSO_- o)1 + Q3(q0. Jo, So, lo)
(6H2)* (Jo — g0 — 2)RA(q0, Jo, S0, ln)

- Taylor expansion f{R) in series of Rup to third order (higher not necessary)

- Linear equations in f(R) and derivatives

(l.l = (.041

- Oy is model dependent:
(2‘ f: = (.250.



“Precision cosmo(ogy | / > Values qf cosmogrqpﬁic parameters?

.. Dark energy parameters = equivalent f(R)

Cosmographic parameters
CPL Wroa(:ﬁ: w=wy+w,(l —a)=wy,+w,z(l+2""
(Chevallier, Polarski, Linder)

1

%o =73 5(1 — (ap Jwy

3
jo=1+ 3(1—”\1 ) [Bwo(1 4 wo) + w,)

ﬁ' 7 33 _ 9
Cosmogrcyo 1C by = T(I — Oy )w, — 1(1 — Q) [9 4+ (T — Qar)wa) wo +

. 9 . 2T . 5
’jﬂaramewrs. - (l — Qg )(16 — 32y Jwg — T(l — ) (3 — Qg )wy

35 1—(
: el 213 4 (7 — Qg )wa] w, + 1~ ) [489 + 9(82 — 211 Jw,] wy +

2

O~

0 3
+ 3(1—QM) 67—‘31$?,m1+3(‘23—119,«1) o| Wh + 4(1—‘7n1)(4' 240w +

81 . 2
8 T(l - )3 - 232;\!)“'(4»



Y -4 5,

DM model; (wo, w,)

A

|
—
I
=
S |

13 . 9 27
0o=5—5; Jo=1 so=1-30 lb=1+30u+ TQiI

f(Ro) = Ro + 2A, f"(R()) = f”’(Ro) = (),

N CDM fits well many data ey cosmographic values strictly depend on Q

64 — 67 (920 + 8) o B

. 20 = To7 T 02 A

go = ‘]{)\ e (1 A8 Sq ). j() — Ji‘)\ X (1 + 81), [3(99” + 74)9,&! == 556] QAI + 16 27

S0 = S‘(;\ X (1 + &), Iy = lz‘)\ X (1+ &), . 6 (8192 — 110)Qps + 40] Q2 + 16 i £
B30 = T390 + 74)Qr — 556] B, + 16 . 24305,

2o = f"(Ro)/ f(Ro)x Hy

o

< { mo = 0.15 x ¢ for Qp = 0.041

20 = —0.12 X for Qj\.{ = (.250

3o = f”’(RD)/f(Ro)XHg { a0 =4 X & for €2y =0.041
\

nag =~ —0.18 X for Q= 0.250

oy



3 (-k“‘- —

_——

modéﬁ' ; y Cosmogfr

(1. Estimate (q(o), ](o) s(o) ((0)) oEservauona[Ty
2. Compute f(Ro), f (Ro), f “ (Ro), f ”(Ro)

- Procedure: <
3. Solve for f(R) parameters from derivatives
__ 4. Constraint fIR) models
- e,g. Double Power-Law: f(R) = R(1 + aR" + BR™™)
| | a= 1301 —L9RS"
rf(R()) = R()(] + Q’Rs + ﬁR(;m) } \l‘/ ] 3
f(Rg) =1+ aln + 1)RE — B(m — 1)R;™ B =y L (LD RG,

f"(Ry) = an(n + ])R(';”l + Bm{m — 1)R(')*(l+m)

A

_ @R 14 m+ (ds/dr)R,)

f’"(R()) = an(n + 1)n — 1)R8~2

}"\{ B nl(n+ 1)(n+m)
’3 —

\

>l

_/

; — Bm(m + )(m — DR, ™. $2RI[1=n+(cbs/ by )Ro)
mll=m)n+m)
-
nin+ 11 —m(1-do/Ry) _ m= —[1—=n+(¢d3/d>)R,]
DR\ 1 +m+ (b3 /hs)R, | |
min+1)(m=1)(1-dbo/Ro) _ 1 ey r <
daRol1—n+(dhs/d2)Rg ] ' n= 5[1 + ERO =

VN (b, ba, P3) ]
daRy(1 + o/ Ry)



_—— e 4 - — ‘
— 2 Ny l !

“—=z- (t_‘

mod’ 1? : Cosm

e — —

- Cosmogrqpﬁw yammeters from S’Né‘.la go = —0.90+ 0.65,  j,=27+67,
What we have to expect from data So =365%529, I, = 1427 + 320.
A ok F < as )
- Fisher information matrix method. L e
F f "’ d0;00 ;
(

\ 2
Nsnera | Hobs (:z) = ,U-th.(zn.o HO:\ p)
R e e

- FM ingredients : { dr(z) =D1z+ D 22+ D3 2°+ D} 2* + D 2°

y i 2 Lo o 2
o(z) = J()‘m + (.. ) (0
<max

\.

g dg'
0', Z’
> % d p; dp

- Tstimating error on g: op =



[T — <

, ~ -

- Survey: Davis (2007) o, =038
O /02, =10%; O p=015 | : O,=54
WNonirs = 2000; T, = 0,33 o, =281
Z o = 1.74 > - 0'4 =74.0

- Snap like survey: 0 o, =008
T 3/ M2 =1%; 0, =015 0 ) 9220
Nopors = 2000; T, = 0.02 0,=48
Zmax =17 % ¢ o 4 13.7

- Ideal PanSTARRS survey: (o, =002
O 382y = 0.1%; O =015 y : o,=02

[ — ”

Nongzs = 60000; T, = 0,02 0,=09

Zwax = L7 A C 0-4 =27

/

-

0 ,,=0.04

0, =0.04

0,,=0.007

g ,, = 0.008

0 ,,=0.0015

0 ,, = 0.0016



Conclusions (DE)

Extended Gravity seems a viable approach to describe the Dark Side of the-
Universe. 1t is based on a straightforward generalization of Einstein Gravity
and does not account for exotic fluids.

»  Following Starobinsky, R can be considered a “geometric” scalar field]).

" Comfortable results are obtained by matching the theory with data (SNefa,
%cfio-gafaxies, Age of the Universe, CMBR).

Transient dust-like Friedman solutions evolving in de Sitter- [ike expansion
(DE) at late times are particularly interesting (debated issue).

" Generic quintessential and DE models can be easily “mimicked” by AR)
"tﬁrougﬁ an inverse scattering yrocedure. Cosmogrcyoﬁy.

= A comprehensive cosmological model from early to [ate epochs should be achieved
by AR). LSS issues have to be carefully addressed.



Conclusions (D'M)

= Rotation curves of galaxies can be naturally reproduced, without huge
amounts of DM, thanks to the corrections to the Newton potential, which
come out in the low energy [imit.

= The baryonic Tully- Fisher relation has a natural explanation in the
framework of f{R) theories.

= Effective haloes of elliptical galaxies are reproduced by the same
“mechanism..

= Good evidences also for galaxy clusters

Furthermore.....

= Orbital period for PSR 1913 + 16 and other binary systems in agreement”
With f(R)-gravity (probe for massive GWs?).

= Exotic stellar structures could be compatible with f(R).

= Search for EXPERIMENT UM CRUCIS



Ferpecivess | | DE& DMas curvature effects

> ‘.Matcﬁing other DE models

> Jordan Frame and Einstein Frame
> Systematic studies of rotation curves for other ga[axies
> ga[axy cluster dynamics (virial theorem, SZE, etc.)

» Luminosity Ipnﬁz;/of [ﬁa[axies in f(CR)
> Faber-Jackson & Tu }_/-Tisﬁer, Bullet Cluster

U

.
> Syswmau’c studies of PPN forma[ism




