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The content of the universe is, up today, absolutely unknown for 
its largest part. The situation is very “DARK” while the 
observations are extremely good!	



Dark Matter 25%	



Dark Energy 70%	



Neutrinos 0.3% 	



Stars 0.5%	



Free Hydrogeno and	


 Helio 4%	


	



Heavy elements 0.03%	



Components of the Universe	





          The Observed Universe Evolution	





Big	
  Rip	
  

Big	
  Crunch?	
  

Eternal	
  
	
  Expansion	
  ?	
  

Future fates of the dark energy universe	





A plethora of theoretical models!!	



DARK ENERGY	



Neutrinos	



WIMPs	



Wimpzillas, Axions, the “particle 
forest”.....	



MOND	



MACHOS	



DARK MATTER	



Black Holes	



.....	



Cosmological constant	



Scalar field Quintessence	



Phantom fields	



String-Dilaton scalar field	



Braneworlds	



Unified theories	



.....	





“…there are the ones that invent OCCULT FLUIDS 
to understand the Laws of Nature. They will come to 
conclusions, but they now run out into DREAMS 
and CHIMERAS neglecting the true constitution of 
things…..	


…however there are those that from the simplest 
observation of Nature, they reproduce New Forces (i.e. 
New Theories)… ”	


	


       From the Preface of  PRINCIPIA  (II Edition)           
	

 	

1687 by Isaac Newton, written by	



                                          Mr. Roger Cotes	


	


	


	


	





       There is a fundamental issue:	


Are extragalactic observations and cosmology probing 
the breakdown of General Relativity at large (IR) 
scales?	





Dark Energy and Dark Matter 	


as “shortcomings” of GR.	


Results of flawed physics?	



The “correct” theory of gravity could	


 be derived by matching the largest 	


  number of observations at 	


ALL SCALES!	



We are able to observe  only 	


baryons, radiation, neutrinos	


  and gravity	



Accelerating behaviour (DE) and dynamical phenomena (DM) 
as CURVATURE EFFECTS	



The problem could be reversed	





A. A. Starobinsky, Phys.  Lett. B91, 99 (1980).	


S. Capozziello, Int. Jou. Mod. Phys. D 11, 483 (2002) .	


A. De Felice, S Tsujikawa, Living Rev.Rel. 13 (2010) 3 	


S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011).	


S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).	



 In order to extend General Relativity, we consider two main features:	



§    the geometry can couple non-minimally to matter and some scalar field;	



§   higher than second order derivatives of the metric may appear into dynamics	



 In the first case, we say that we are dealing with  scalar-tensor gravity, and in the 
second case with higher-order theories	



Extending General Relativity	


	





Extending General Relativity	


	



 A general class of higher-order-scalar-tensor theories in four dimensions is given 
by the action	



In the metric approach, the field 
equat ions  are  obtained  by 
varying with respect to gμν	



§   Gμν  is the Einstein tensor	


 and	





Extending General Relativity	


	



§   The simplest extension of GR is achieved assuming F = f (R), in the action	



§   The standard Hilbert–Einstein action is recovered for f (R) = R	


 By varying with respect to gμν , we get	



 where  the  gravitational  contribution  due  to  higher-order  terms  can  be  
reinterpreted as a  “curvature” stress-energy tensor  related to the form of f(R).	



 Such a tensor disappears for f(R )=R	



 and, after some manipulations	





Extending General Relativity	


	



 Considering also the standard perfect-fluid matter contribution, we have	



The peculiar behavior of f(R) = R  is due to the particular form of the 
Lagrangian itself which, even though it is a second-order Lagrangian, can be 
non-covariantly rewritten as the sum of a first-order Lagrangian plus a pure 
divergence term.	



 is  an  effective  stress-
energy  tensor  constructed 
by  the  extra  curvature 
terms	



 In the case of GR,   identically vanishes while the 
standard, minimal coupling is recovered for the 
matter contribution	





The weak field limit in f(R)-gravity	



We assume, analytic Taylor expandable f (R) functions with respect to a certain value R 
=R0:	



In order to obtain the weak field approximation, one has to insert expansions  into field 
equations and expand the system up to the orders O(0), O(2) e O(4).	


If we consider the O(2) - order 
approximation,	


the field equations in vacuum, 
results to be	



It is evident that the trace 
equation  provides a differential 
equation with respect to the 
Ricci scalar which allows to 
solve exactly the system at O(2) 
- order	





The weak field limit in f(R)-gravity	



In  order  to  match  at  infinity  the 
Minkowskian prescription for the metric, 
one  can  discard  the  Yukawa  growing 
mode in  and then we have:	



In particular, since gtt = 1+2Φgrav = 1+ g(2)tt , the gravitational potential of	


f (R)-gravity, analytic in the Ricci scalar R, is	



This general result means that the standard Newton potential is achieved only in the 
particular case f (R) = R while it is not so for any analytic f (R) models	


The parameters f1,2 and the function δ1 represent the deviations with respect the	


standard Newton potential	



S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)	





The weak field limit in f(R)-gravity	



We note that the ξ 
parameter can be related to 
an effective mass being	



and can be interpreted also 
as an effective length L	



 The second term is a modification of the gravity including a scale length.	


It gives rise to a further “gravitational length” like the Schwarzschild radius	



If δ = 0 the Newtonian potential and the standard gravitational coupling are recovered.	



Assuming  1+δ = f1, δ is related to δ1(t ) through	



Under this assumption, the scale length L could naturally arise and reproduce 
several phenomena that range from Solar System to cosmological scales.	





Understanding  at  which  scales  the  modifications  to  General 
Relativity  are  working  or  what  is  the  weight  of  corrections  to 
gravitational  potential is  a crucial  point that could confirm or 
rule out these extended approaches to gravitational interaction.	





Stellar structures and Jeans instability	


It is usually assumed that the dynamics of stellar objects is completely determined by the 
Newton law of gravity	



Considering potential corrections in strong field regimes could be another way to check the 
viability of Extended Theories of Gravity	



In particular, stellar systems are an ideal laboratory to look for signatures of possible 
modifications of standard law of gravity	



Some observed stellar systems are incompatible with the standard models of stellar 
structure : these are peculiar objects, as star in instability strips, protostars or	


anomalous neutron stars (the so-called “magnetars” with masses larger than their expected 
Volkoff mass) that could admit dynamics in agreement with modified gravity and not 
consistent with standard General Relativity (e.g. PSRJ 1614-2230).	





Field equations  at O (2)-order, that is at the 
Newtonian level, are	



The energy-momentum tensor for a perfect fluid is	



modified Poisson equation	



The pressure contribution is negligible in the field equations of Newtonian 
approximation	



For f’’(R) = 0 we have the standard Poisson equation	



From the Bianchi identity we have	



S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)	



fn(R)=fn(R(2)+O(4))=fn(0)+fn+1(0)R(2)+…	



Stellar structures and Jeans instability	





Stellar structures and Jeans instability	


Let us suppose that matter  satisfies a polytropic equation p = K γργ	



we obtain an integro-differential equation for the gravitational potential , that is	



Lané-Emden equation in f(R)-gravity	



S. Capozziello, M. De Laurentis, A. Stabile, S.D. Odintsov, PRD 83, 064004, (2011)	



We find the radial profiles of the 
gravitational potential by solving for some 
values of n (polytropic index)	



New solutions are  physically relevant 
and could explain exotic systems out of 
Main Sequence (magnetars, variable  
stars, very massive neutron stars).	





Stellar structures and Jeans instability	


We have also compared the behavior with the temperature of the Jeans mass for 
various types of interstellar molecular clouds	



S. Capozziello, M. De Laurentis  I. De Martino, M. Formisano, S.D. Odintsov   	


Phys.Rev. D85 (2012) 044022 	



In our model the limit (in unit of mass) to start 
the collapse of an interstellar cloud is lower 
than the classical one advantaging the structure 
formation.	





Addressing stellar systems by this approach could be extremely 
important to test observationally  Extended Theories of Gravity. 	


See e.g. Astashenok, Capozziello, Odintsov  JCAP 1312 (2013) 040, PRD 89 
(2014) 103509  where anomalous neutron stars are described by 	


f(R)-gravity.	





Extended Theories of Gravity can also impact on the estimate of 
DM properties on galactic scales	



Modified gravity could be a possible way to solve the cusp/core and 
similar problems of the DM scenario without asking for huge 
amounts of DM	





Testing spiral galaxies	


Yukawa-like corrections  are a general feature, in the framework of f (R)-gravity	



is the starting point for the 
computation of the rotation 
curve of an extended system.	



This equation	



Considering a general expression derived for a generic potential giving rise to 
a separable force	



with μ=M/M¤, η =r /rs and (M¤, rs) the Solar mass and a characteristic 
length of the problem	



In our case,  fμ = 1 and:	



with ηL =L/rs	





Testing spiral galaxies	


Using cylindrical coordinates (R,θ, z) and the corresponding dimensionless 
variables (η,θ,ζ) (with ζ = z/rs ), the total force then reads:	



with ˜ρ = ρ/ρ0, ρ0 a reference density, we have 	



For obtaining axisymmetric systems, one can set ρ˜ =ρ˜(η,ζ).	



S. Capozziello, M. De Laurentis Ann. Phys. 524, 545 (2012)	





Testing spiral galaxies	





The modified potential can be tested also for elliptical galaxies checking whether it is 
able to provide a reasonable match to their kinematics.	



Testing elliptical galaxies	



Ellipticals  are very different with respect to spirals so addressing both classes of 
objects under the same standard could be a fundamental step versus DM.	



One may construct equilibrium models based on the solution of the radial Jeans 
equation to interpret the kinematics of planetary nebulae  	



We use the inner long slit data and the extended planetary nebulae kinematics for 
three galaxies which have published dynamical analyses within DM halo 
framework  (see Napolitano, Capozziello, Capaccioli, Romanowski ApJ 748 (2012) 87).	



They are:	


NGC 3379 , (DL +09) , NGC 4494 N +09 , NGC 4374 (N + 11).	





Testing elliptical galaxies	



It is shown the circular velocity of the modified potential 
as a function of the potential parameters L and δ for 
NGC 4494 and NGC 4374.	



From a theoretical point of view, δ is a free parameter 
that can assume positive and negative values. 
Comparing results for spirals and ellipticals, it is clear 
that the morphology of these two classes of systems 
strictly depends on the sign and the value of δ.	





Testing elliptical galaxies	



The overall match of the model curves with data is remarkably good and it is comparable with 
models obtained with DM modeling (gray lines)	





Modeling clusters of galaxies	



A fundamental issue is related to clusters and superclusters of galaxies. 	



Such structures, essentially, rule the large scale structure, and are the intermediate 
step between galaxies and cosmology. 	



As the galaxies, they appear DM dominated but the distribution of DM 
component seems clustered and organized in a very different way with respect 
to galaxies. It seems that DM is ruled by the scale and also its fundamental 
nature could depend on the scale	



Our goal is to reconstruct the mass profile of clusters without DM adopting the 
same strategy as above where DM effects are figured out by corrections to the 
Newton potential	





Modeling clusters of galaxies	


Standard Cluster Model:  spherical mass distribution in hydrostatic equilibrium	



- Newton classical approach:	



- f(R) approach:	



- Boltzmann equation:	



- Rearranging the Boltzmann equation:	





Modeling clusters of galaxies	



-  Sample: 12 clusters from Chandra (Vikhlinin 2005, 2006)	


-  Temperature profile from spectroscopy	


-  Gas density: modified beta-model	



- Galaxy density:	



Fitting mass Profile with data:	





Modeling clusters of galaxies	



- Differences between theoretical and observed fit less than 5%	


- Typical scale in [100; 150] kpc range where is a turning-point:	



•  Break in the  hydrostatic equilibrium	


•  Limits in the expansion series of f(R):                              in the range [19;200] kpc	


  Proper gravitational scale (as for galaxies, see Capozziello et al MNRAS 2007)	



•  Similar issues in Metric-Skew-Tensor-Gravity (Brownstein, 2006): we have better 
and more detailed approach	





Modeling clusters of galaxies	



Results	





Modeling clusters of galaxies	





Modeling clusters of galaxies	


- Gravitational length:	

 Strong characterization of	



Gravitational potential	



-  Strongly related   to virial mass   
(the same for gas mass):	



- Mean length:	



-  Strongly related  to average 
temperature:	





Cosmography	



-  No a priori dynamical model = Model Independent Approach;	


-  Robertson – Walker metric;	


-  Expansion series of the scale factor with respect to cosmic time:	



Deceleration	

 Jerk	

 Snap	

 Lerk	



  Expansion up to fifth order : 	

 error on dL(z)  less than 10% up to z = 1	



error on  μ(z)  less than   3% up to z = 2	



GR based models  vs  f(R) gravity	



Agreement with Data… 	


How  can we  discriminate?	





Cosmography with f( R)- gravity	


- Definition:	



-  Derivatives of H(t):	



- Derivatives of scalar curvature:	





Cosmography with f( R)-gravity	



- Derivative of 2nd  Friedmann eq. :	



- Constraint from gravitational constant:	



- 1st  Friedmann eq. :	



- 2nd  Friedmann eq. :	





Cosmography with f( R)-gravity	



-  ΩΩM   is model dependent:	



-  Linear equations in f(R) and derivatives	



- Final solutions:	



- Taylor expansion  f(R) in series of R up to third order (higher  not necessary)	





f(R) derivatives and CPL models	



CPL approach:	


(Chevallier, Polarski, Linder)	



Cosmographic	


parameters:	



Cosmographic parameters	

 Dark energy parameters = equivalent f(R)	



“Precision cosmology”	

 Values of cosmographic parameters? 	





CPL Cosmography and f(R): the ΛCDM Model	


 ΛCDM model:	



ΛCDM fits well many data	

 cosmographic values strictly depend on ΩΩM	





Constraining f(R) models by Cosmography	



- e.g. Double Power-Law:	



1.  Estimate ( q(0), j(0), s(0), l(0) ) observationally 	


2.  Compute f(R0), f ’(R0), f “ (R0), f ’”(R0)	


3.  Solve for f(R) parameters from derivatives	


4.  Constraint f(R) models	



- Procedure:	





Constraining f(R) models by Cosmography	


-  Cosmographic parameters from SNeIa:	



- Estimating error on g:	



- Fisher information matrix  method:	



- FM ingredients :	



 What  we have to expect from data	





σ1 = 0.38 	


σ2 = 5.4 	


σ3 = 28.1	


σ4 = 74.0	



σ20 = 0.04	


	


σ30 = 0.04	



- Snap like survey:	


 σM/ΩΩM = 1% ; σsys = 0.15	


 NSNeIa = 2000 ; σm = 0.02	


 zmax = 1.7	



σ1 = 0.08 	


σ2 = 1.0 	


σ3 = 4.8	


σ4 = 13.7	



σ20 = 0.007	


	


σ30 = 0.008	



 - Ideal PanSTARRS survey:	


 σM/ΩΩM = 0.1% ; σsys = 0.15	


 NSNeIa = 60000 ; σm = 0.02	


 zmax = 1.7	



σ1 = 0.02 	


σ2 = 0.2 	


σ3 = 0.9	


σ4 = 2.7	



σ20 = 0.0015	


	


σ30 = 0.0016	



- Survey: Davis (2007)	


 σM/ΩΩM = 10% ; σsys = 0.15	


 NSNeIa = 2000 ; σm = 0.33	


 zmax = 1.7	





Conclusions (DE)	


•   Extended  Gravity seems  a viable approach to describe the Dark Side of the 
Universe. It is based on a straightforward generalization of Einstein Gravity 
and does not account for exotic fluids.	



•  Following Starobinsky, R can be  considered    a “geometric” scalar field!).	


§  Comfortable results are obtained by  matching  the theory with data (SNeIa, 
Radio-galaxies, Age of the Universe, CMBR).	



§   Transient  dust-like Friedman solutions   evolving in   de Sitter- like expansion 
(DE) at late times are particularly interesting (debated issue).	



§  Generic quintessential and DE  models can be easily “mimicked” by f(R) 
through an inverse scattering procedure. Cosmography. 	



§  A comprehensive cosmological model from early to late epochs should be  achieved 
by f(R). LSS issues have to be carefully addressed.	



	





Conclusions (DM)	


§  Rotation  curves  of  galaxies  can  be  naturally reproduced,   without  huge 

amounts of DM, thanks to  the corrections to the Newton potential, which 
come out in the low energy limit. 	



§  The  baryonic  Tully-  Fisher  relation has  a  natural  explanation in  the 
framework of f(R) theories.	



§  Effective  haloes  of   elliptical   galaxies  are  reproduced  by  the  same 
mechanism..	



§  Good evidences also for galaxy clusters	


Furthermore…..	


§  Orbital period for PSR 1913 + 16 and other binary systems in agreement 
with f(R)-gravity (probe for massive GWs?).	



§   Exotic stellar structures could be  compatible with f(R)..	


§   Search for EXPERIMENTUM CRUCIS	





DE & DM as curvature effects	



Ø  Matching other DE models	


Ø Jordan Frame and Einstein Frame 	


Ø  Systematic studies of rotation curves for other galaxies 	


Ø  Galaxy cluster dynamics (virial theorem, SZE, etc.) 	


Ø Luminosity profiles of galaxies in f(R). 	


Ø Faber-Jackson & Tully-Fisher, Bullet Cluster	



Ø  Systematic studies of PPN formalism 	


Ø  Relativistic Experimental Tests in f(R)	


Ø  Gravitational waves and lensing	


Ø  Birkhoff ‘s Theorem in f (R)-gravity 	


Ø   f(R) with torsion	



Weak Fields, GW,	


Further results	



Perspectives:	



        WORK in PROGRESS!       (suggestions are welcome!)	




