Dark Matter implied by Higgs Boson

A come back of the higgsino Kid

Leszek Roszkowski*

National Centre for Nuclear Research (NCNR/NCBJ) Warsaw, Poland

*On leave of absence from University of Sheffield

Grants for innovation. Project operated within the Foundation for Polish Science "WELCOME" co-financed by the European Regional Development Fund

L. Roszkowski, Capri, 25/5/2014

Outline

♦ Brief Introduction

Implications of mh~126 GeV and direct limits on SUSY:

DM: ~1 TeV higgsino

 \diamond Prospects for detection

 \diamond Issue of fine tuning

♦ Summary

Based on:

- arXiv:1302.5956, Two ultimate tests of constrained supersymmetry, K. Kowalska, L. Roszkowski, E. M. Sessolo JHEP 1306 (2013) 078
- arXiv:1402.1328, Low fine tuning in the MSSM with higgsino dark matter and unification constraints, K. Kowalska, L. Roszkowski, E. M. Sessolo, S. Trojanowski JHEP 1404 (2014) 166
- arXiv:1405.4289, What next for the CMSSM and the NUHM: Improved prospects for superpartner and dark matter detection, L. Roszkowski, E. M. Sessolo, A. J. Williams
 and some earlier papers

Well-motivated candidates for dark matter

- vast ranges of interactions and masses
- different production mechanisms in the early Universe (thermal, non-thermal)
- need to go beyond the Standard Model
- WIMP candidates testable at present/near future
- axino, gravitino EWIMPs/superWIMPs not directly testable, but some hints from LHC

Where is the WIMP?

- Mass range: at least 20 orders of magnitude
- Interaction range: some32 orders of magnitude

Direct Detection AD 2011 - Before LHC

L. Roszkowski, Capri, 25/5/2014 MasterCode, BayesFITS

Direct Detection Nov. 2013

Main news from the LHC so far...

> SM-like Higgs particle at ~126 GeV

No (convincing) deviations from the SM

 $\frac{\text{RR}(B_{*} \to \mu^{+} \mu^{-})_{\text{EMS}}}{\text{BR}(B_{s} \to \mu^{+} \mu^{-})_{\text{CMS}}} = (2.9^{\pm 1.1}_{-1.0}) \times 10^{-9} \times 10^{-9}$

...and from the media...

Is Supersymmetry Dead?

The grand scheme, a stepping-stone to string theory, is still high on physicists' wish lists. But if no solid evidence surfaces soon, it could begin to have a serious PR problem

SCIENTIFIC AMERICAN[™]

April 2012

The 126 GeV SM-Like Higgs Boson

A blessing or a curse for SUSY?

The 126 GeV Higgs Boson and SUSY

A blessing...

Fundamental scalar --> SUSY
 Light and SM-like --> SUSY

Low energy SUSY prediction: Higgs mass up to ~135 GeV

Constrained SUSY prediction: SM-like Higgs with mass up to ~130 GeV

The 126 GeV Higgs Boson and SUSY

If m_h were, say, 116 GeV...

...significant tension with LHC bounds

The 126 GeV SM-Like Higgs Boson

A blessing or a curse for DM?

CMSSM: numerical scans

- Perform random scan over 4 CMSSM +4 SM (nuisance) parameters <u>simultaneously</u>
- Very wide ranges: $100 ext{ GeV} \leq m_0 \leq 20 ext{ TeV}$ $100 ext{ GeV} \leq m_{1/2} \leq 10 ext{ TeV}$ $-20 ext{ TeV} \leq A_0 \leq 20 ext{ TeV}$ $3 \leq ext{tan} eta \leq 62$

 Use Nested Sampling algorithm to evaluate posterior

$\operatorname{sgn}\mu$	Sign of Higgs parameter	+1 or -1	Fixed ^a
Nuisance	Description	Central value \pm std. dev.	Prior Distribution
M_t	Top quark pole mass	$173.5\pm1.0{\rm GeV}$	Gaussian
$m_b(m_b)_{\rm SM}^{\overline{MS}}$	Bottom quark mass	$4.18\pm0.03{\rm GeV}$	Gaussian
$\alpha_s(M_Z)^{\overline{MS}}$	Strong coupling	0.1184 ± 0.0007	Gaussian
$1/\sqrt{3\pi}\sqrt{MS}$	T C 1.	100010 10010	

Use 4 000 live points

Use Bayesian approach (posterior)

Hide and seek with SUSY

ΔM_{B_s}	17.77	$\begin{vmatrix} 0.12 \\ 0 \end{vmatrix} = \begin{vmatrix} 2.40 \\ 1.407 \end{vmatrix}$	Gaussian 47	
[Measurement	Mean or Range	Error: (Exp., Th.)	Distribution
	Combination of:			
	CMS razor 4.4/fb , $\sqrt{s}=7{\rm TeV}$	See text	See text	Poisson
	CMS $\alpha_T \ 11.7/\text{fb}$, $\sqrt{s} = 8 \text{ TeV}$	See text	See text	Poisson
?→	m_h by CMS	$125.8{ m GeV}$	$0.6{ m GeV}, 3{ m GeV}$	Gaussian
	$\Omega_{\chi}h^2$	0.1120	0.0056,10%	Gaussian
	$\delta \left(g-2 ight)^{ m SUSY}_{\mu} \! imes \! 10^{10}$	28.7	8.0, 1.0	Gaussian
	$\mathrm{BR}\left(\overline{B} \to X_s \gamma\right) \times 10^4$	3.43	0.22,0.21	Gaussian
	${\rm BR}\left(B_u \to \tau \nu\right) \times 10^4$	1.66	0.33, 0.38	Gaussian
	ΔM_{B_s}	$17.719{\rm ps}^{-1}$	$0.043 \mathrm{ps^{-1}}, \ 2.400 \mathrm{ps^{-1}}$	Gaussian
	$\sin^2 heta_{ m eff}$	0.23116	0.00012, 0.00015	Gaussian
	M_W	80.385	0.015, 0.015	Gaussian
	$BR(B_s \to \mu^+ \mu^-)_{current} \times 10^9$	3.2	+1.5 - 1.2, 10% (0.32)	Gaussian
	BR $(B_s \to \mu^+ \mu^-)^{\text{current}}_{\text{proj}} \times 10^9$	$3.5(3.2^*)$	$0.18~(0.16^*),5\%~[0.18~(0.16^*)]$	Gaussian

SM value: $\simeq 3.5 \times 10^{-9}$

10 dof

CMSSM

Global scan, Bayesian total posterior probability regions

Kowalska, LR, Sessolo, arXiv:1302.5956

CMSSM: these are the <u>only</u> DM-favored regions

~1 TeV higgsino-like WIMP: implied by ~126 GeV Higgs

CMSSM and DM searches

Focus point region ruled out by LUX (tension with X100)

~1TeV higgsino DM: exiting prospects for LUX, X100 and 1t detectors

~1 TeV higgsino DM

Robust, present in many SUSY models (both GUT-based and not)

Condition: heavy enough gauginos

 $\begin{array}{l} \mbox{When} \ m_{\tilde{B}} \gtrsim 1 \, \mbox{TeV:} \\ \mbox{easiest to achieve} \ \Omega_{\chi} h^2 \simeq 0.1 \\ \mbox{when} \ m_{\tilde{H}} \simeq 1 \, \mbox{TeV} \end{array}$

\diamond Implied by ~126 GeV Higgs mass

and relic density

- **♦ Most natural**
- Smoking gun of SUSY!?

No need to employ special mechanisms (A-funnel or coannihilation) to obtain correct relic density

... generic

e.g., Next-to-MSSM (extra singlet Higgs)

Kaminska, Ross, Schmidt-Hoberg, 1308.4168

Fall and rise of higgsino DM

NUHM: even at low m_0, CMSSM?srm_0kiofafew5/few14

Bayesian vs chi-square analysis (updated to include 3loop Higgs mass corrs)

Unified vs pheno SUSY

MSSM:

- much bigger ranges allowed
- ~1 TeV higgsino DM: prospects for detection similar to unified SUSY
- new LUX limit: started to exclude mixed (bino-higgsino) neutralino

CTA – New guy in DM hunt race

diffuse gamma radiation from WIMP pair annihilation

CTA and Unified SUSY DM

1405.4289

- CTA to probe large WIMP masses
- ~1 TeV higgsino DM: to be almost fully covered CTA

Unified SUSY: ~1 TeV higgsino DM favored:

- > ~126 GeV Higgs mass
- Lower bounds on MSUSY
- Most natural solution

No need to employ special mechanisms (A-funnel or coannihilation) to obtain correct relic density

But what about fine-tuning!?

RGE focussing

EWSB at large $\tan \beta$

Focus Point mechanism:

Chan, Chattopadhay, Nath '98 Feng, Matchev, Moroi '99

 $\frac{M_Z^2}{2} \approx -\mu^2 - m_{H_u}^2 - \Sigma_u^u + \mathcal{O}(m_{H_d}^2/\tan^2\beta)$

 $m_{H_u}^2$ at M_{SUSY} stable wrt variations of GUT initial conditions

Dependence on inputs at GUT scale:

Integrate 2-loop RGEs:

$$\begin{split} m_{H_{u}}^{2}(M_{\mathrm{SUSY}}) &= \underbrace{0.645m_{H_{u}}^{2}}_{H_{u}} + 0.028m_{H_{d}}^{2} - 0.024m_{\tilde{Q}_{1}}^{2} - 0.024m_{\tilde{Q}_{2}}^{2} - \underbrace{0.328m_{\tilde{Q}_{3}}^{2}}_{L_{3}} \\ &+ 0.049m_{\tilde{u}_{1}}^{2} + 0.049m_{\tilde{u}_{2}}^{2} - \underbrace{0.251m_{\tilde{u}_{3}}^{2}}_{L_{3}} - 0.024m_{\tilde{d}_{1}}^{2} - 0.024m_{\tilde{d}_{2}}^{2} - 0.019m_{\tilde{d}_{3}}^{2} \\ &+ 0.024m_{\tilde{L}_{1}}^{2} + 0.024m_{\tilde{L}_{2}}^{2} + 0.024m_{\tilde{L}_{3}}^{2} - 0.025m_{\tilde{e}_{1}}^{2} - 0.025m_{\tilde{e}_{2}}^{2} - 0.025m_{\tilde{e}_{3}}^{2} \\ &+ 0.014M_{1}^{2} + \underbrace{0.210M_{2}^{2} - 1.097M_{3}^{2}}_{L_{3}} + 0.001M_{1}M_{2} - 0.047M_{1}M_{3} - 0.089M_{2}M_{3} \\ &- 0.113A_{t}^{2} + 0.010A_{b}^{2} + 0.006A_{\tau}^{2} + 0.008A_{t}A_{b} + 0.005A_{t}A_{\tau} + 0.004A_{b}A_{\tau} \\ &+ M_{1}(0.007A_{t} - 0.005A_{b} - 0.004A_{\tau}) + M_{2}(0.062A_{t} - 0.009A_{b} + 0.005A_{\tau}) \\ &+ M_{3}(0.295A_{t} + 0.024A_{b} + 0.030A_{\tau}) \end{split}$$

Some contributions can correlate.

$$m_{H_U}^2, m_{\tilde{Q}_3}^2, m_{\tilde{u}_3}^2$$
 almost cancel if all $= m_0^2$
 $m_{H_U}^2 (M_{\rm SUSV}) = 0.074 m_0^2 - 1.008 m_{1/2}^2 - 0.080 A_0^2 + 0.406 m_{1/2} A_0$
L. Roszkowski, Capri, 25/5/2014 29

Reduce FT in higgsino region

 \succ Relate mu to scalars $\mu = c_H m_0$

e.g, Giudice-Masiero

otherwise $\Delta_{\mu} \simeq 250$ since $\mu \simeq 1 \, {
m TeV}$

Reduce FT in higgsino region

Great thanks go to Giulia and all the organizers!!!

...don't forget to do it again!

Are we done with the LHC?

111611

• IHC - only stay coannihilation

33

To take home:

- DM: jury is still out, discovery claims come and go, ...but
- ➢ Higgs of 126 GeV → ~1TeV (higgsino) DM robust prediction of unified (and pheno) SUSY:
 - To be probed by 1-tonne DM detectors
 - Big bite by LUX already in 2014
 - Independent probe by CTA
 - Far beyond direct LHC reach

Smoking gun of SUSY!?

Fine-tuning can be reduced down to 1 in 20

SUSY may be too heavy for the LHC DM searches may hopefully come to the rescue

