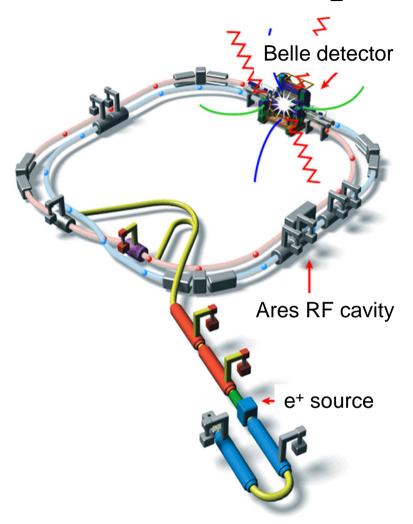
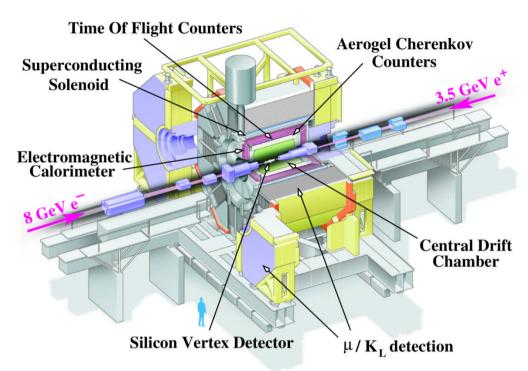
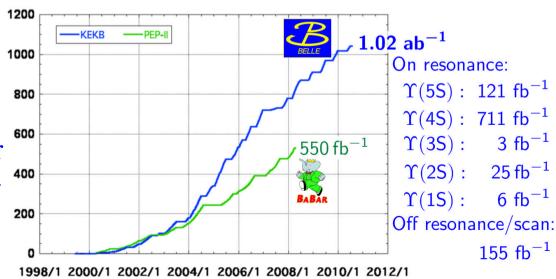
Recent results on hot topics from

Menu card

- Charm mixing in $D \rightarrow K\pi$ decays
- Mixing and CPV in $D \to K_S^0 \pi^+ \pi^-$
- Looking for CPV in $D^0 \to \pi^0 \pi^0$
- Lepton $A_{\rm FB}$ in $B \to X_{\rm S} \ell^+ \ell^-$ decays
- BF and A_{CP} in $B^0 \rightarrow \eta' K^* (892)^0$
- Amplitude analysis of $B \rightarrow J/\psi K\pi$


Gagan Mohanty TIFR, Mumbai


Fifth Workshop on Theory, Phenomenology and Experiments in Flavour Physics - Capri 2014


23-25 May 2014 Villa Orlandi, Anacapri, Capri

Experiment and dataset

- ➤ Multitasking magnetic spectrometer that operated at KEKB asymmetricenergy e⁺e⁻ collider in Japan
- Recorded the data at various $\Upsilon(nS)$ resonances till June 2010

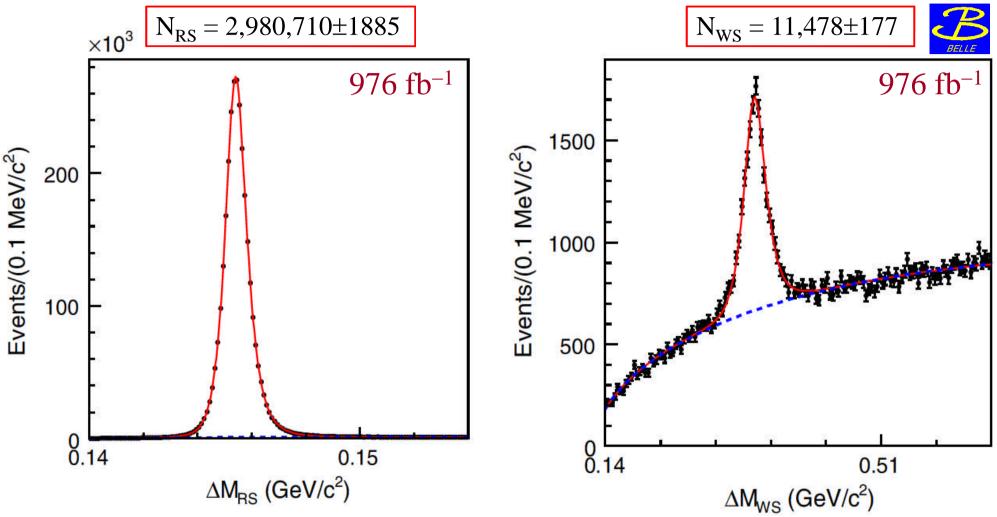
$D^0 \overline{D}{}^0$ mixing in $D \to K\pi$ decays

- □ Measure the time-dependent ratio of the $D^0 \to K^+\pi^-$ (wrong-sign) to $D^0 \to K^-\pi^+$ (right-sign) decay rates
- □ Tag RS and WS decays through the decay chain $D^{*+} \to D^0 \left(K^{\mp} \pi^{\pm}\right) \pi_s^+$ by comparing charge of the pion from the *D* decay with that from the *D** decay

"Wrong-sign" $D^{*+} \to D^0 \pi^+, \, D^0 \to K^+ \pi^-$ interference: mixing, double Cabibbo-suppression (DCS)

$$R(\tilde{t}/\tau) \equiv \frac{\Gamma_{\rm WS}(\tilde{t}/\tau)}{\Gamma_{\rm RS}(\tilde{t}/\tau)} \approx R_D + \sqrt{R_D} \ y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$

$$\text{Mixing} \left\{ \begin{array}{ll} x \equiv \Delta m/\Gamma & x' \equiv x\cos\delta + y\sin\delta \\ y \equiv \Delta\Gamma/2\Gamma & y' \equiv y\cos\delta - x\sin\delta \end{array} \right.$$

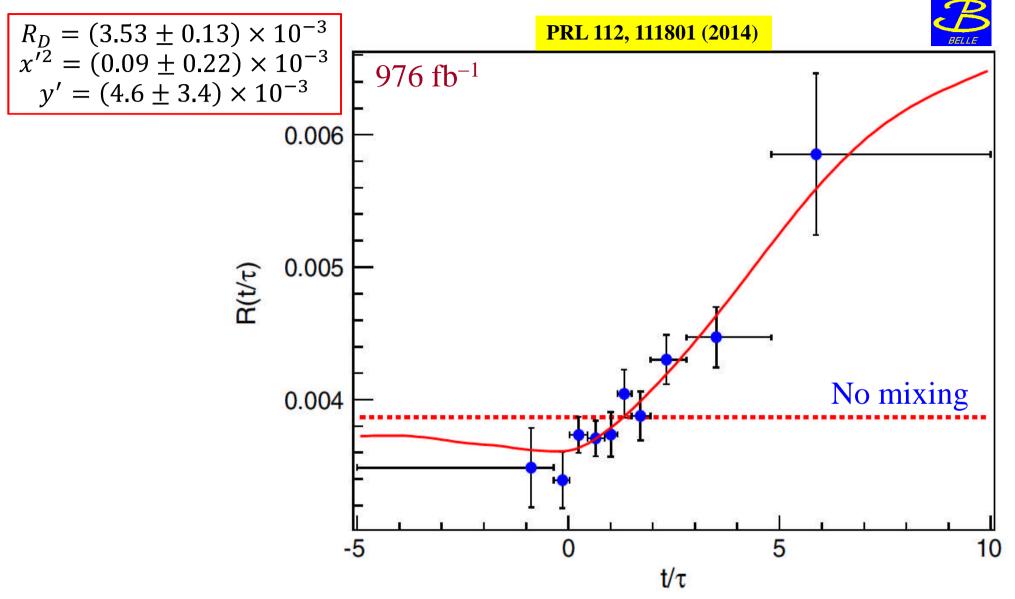

 δ = relative phase

DCS
$$R_D \equiv \Delta\Gamma(DCS)/\Delta\Gamma(CF)$$

☐ Take the resolution effect into account in the measurement of mean decay time of the tagged D's

Event yields in RS and WS decays

PRL 112, 111801 (2014)

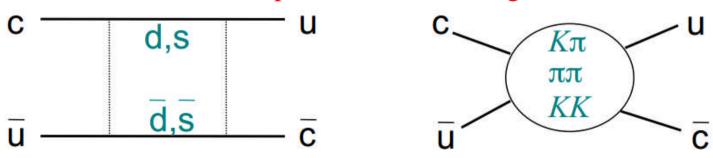


Signal: A sum of a Gaussian and a Johnson distribution of common mean

Biometrika 36, 149 (1949)

rightharpoonup Background: An empirical threshold function $(x - m_{\pi})^{\alpha} e^{-\beta(x - m_{\pi})}$

Observation of D^0 - \overline{D}^0 mixing


- \square No mixing hypothesis is ruled out at the 5.1 standard deviation (σ) level
- \square Constitutes the first observation of D^0 - \overline{D}^0 mixing in e^+e^- collisions

CP violation in charm decays

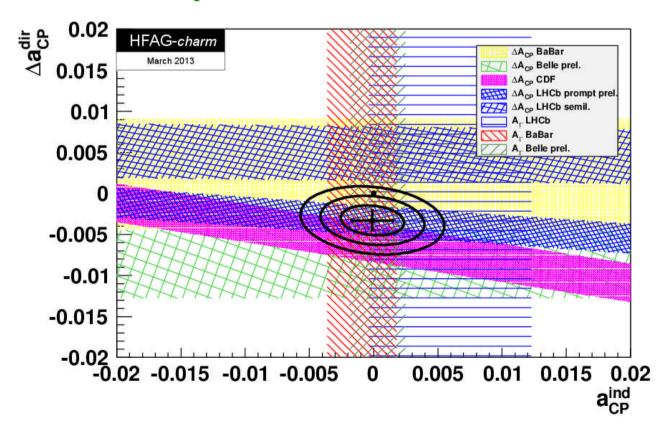
- ☐ Provides an interesting test bed for new physics as the standard model (SM) predicts a very small asymmetry, owing to
 - ➤ Large GIM/CKM suppression
 - Lack of a large hierarchy in the down-type quark masses
- □ Typical SM value of the order of 10⁻³ ⇒ most promising candidates to study are singly Cabibbo-suppressed (SCS) decays

 Grossman, Kagan and Nir PRD 75, 036008 (2007)
- ☐ While talking about a percentage effect, we need a good control on the SM predictions, something that is in general lacking in this sector due to long-distance effects

An example of "short vs. long"

☐ Further, with D^0 - \overline{D}^0 mixing being firmly established, what about CP violation (CPV) in the mixing or due to interference between mixing and decay?

Current expectation for direct CP violation

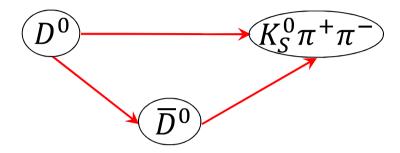

$$A_{\Gamma}^f \equiv rac{ au(\overline{D}^0 o f) - au(D^0 o f)}{ au(\overline{D}^0 o f) + au(D^0 o f)} pprox -a_{CP}^{
m ind}$$

$$A_{CP}^f \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$

JPG 39, 045005 (2012)

$$\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = \left(1 + y\cos\phi\frac{\langle t\rangle}{\tau}\right)\Delta a_{CP}^{\text{dir}} + \left(\frac{\Delta\langle t\rangle}{\tau}\right)a_{CP}^{\text{ind}}$$

 $x \equiv \Delta m/\Gamma$, $y \equiv \Delta \Gamma/\Gamma$ and $\phi \equiv \arg(q/p)$, where Δm and $\Delta \Gamma$ are the mass and width difference between two D mass eigenstates, Γ is their average width and (p,q) are the two complex coefficients that relate mass to flavor eigenstates


$$a_{CP}^{\mathrm{ind}} = (+0.015 \pm 0.052)\%$$

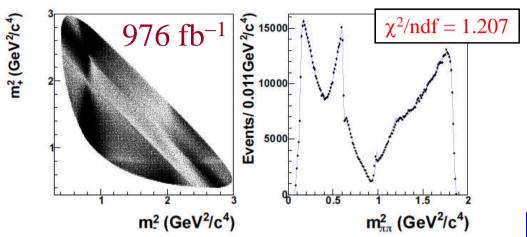
$$\Delta a_{CP}^{\text{dir}} = (-0.333 \pm 0.120)\%$$

No CPV (0,0) point: $\Delta \chi^2 = 7.8$, CL = 2% (excluded at 2σ)

Study of mixing and CPV in $D^0 \to K_S^0 \pi^+ \pi^-$

Determine $D^0 - \overline{D}{}^0$ mixing and CPV effects by studying the time-dependent decay rate of self-conjugated $D^0 \to K_S^0 \pi^+ \pi^-$ decays

Expressing A_f (\bar{A}_f), amplitude of the D^0 (\bar{D}^0) decay into $f \equiv K_S^0 \pi^+ \pi^-$, as a function of the Dalitz plot variables ($m_{K_S^0 \pi^+}^2$, $m_{K_S^0 \pi^-}^2$), the corresponding time-dependent decay rates are:


$$|\mathcal{M}(f,t)|^{2} = \frac{e^{-\Gamma t}}{2} \{ (|\mathcal{A}_{f}|^{2} + |\frac{q}{p}|^{2} |\mathcal{A}_{\bar{f}}|^{2}) \cosh(\Gamma yt) + (|\mathcal{A}_{f}|^{2} - |\frac{q}{p}|^{2} |\mathcal{A}_{\bar{f}}|^{2}) \cos(\Gamma xt) + 2\Re(\frac{q}{p} \mathcal{A}_{\bar{f}} \mathcal{A}_{f}^{*}) \sinh(\Gamma yt) - 2\Im(\frac{q}{p} \mathcal{A}_{\bar{f}} \mathcal{A}_{f}^{*}) \sin(\Gamma xt) \}$$

$$|\overline{\mathcal{M}}(f,t)|^{2} = \frac{e^{-\Gamma t}}{2} \{ (|\mathcal{A}_{\bar{f}}|^{2} + |\frac{p}{q}|^{2} |\mathcal{A}_{f}|^{2}) \cosh(\Gamma yt) + (|\mathcal{A}_{\bar{f}}|^{2} - |\frac{p}{q}|^{2} |\mathcal{A}_{f}|^{2}) \cos(\Gamma xt) + 2\Re(\frac{p}{q}\mathcal{A}_{f}\mathcal{A}_{\bar{f}}^{*}) \sinh(\Gamma yt) - 2\Im(\frac{p}{q}\mathcal{A}_{f}\mathcal{A}_{\bar{f}}^{*}) \sin(\Gamma xt) \}$$

- $ightharpoonup \Gamma$ is the mean decay width of the two mass eigenstates: $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$
- \triangleright x and y are the D^0 - \overline{D}^0 mixing parameters, defined earlier
- > p and q are complex coefficients that satisfy $|p|^2 + |q|^2 = 1$ in case of no CP violation, whereas possible CPV can lead to $q/p \neq 1$

Mixing and CPV results from $D^0 \to K_S^0 \pi^+ \pi^-$

☐ Time-dependent fit to the Dalitz plot (shown below together with one of its projections)

Events/100fs			me of D ⁰ .3±0.4 fs
Events	#		- - - - -
10 ³		1	* A A A A A A A A A A A A A A A A A A A
10 ²	++++		
o + + + + + + + + + + + + + + + + + + +	_┡ ╇ ╒ ╇ ╒ ╇ ╒ ╇ ╒ ╇ ╒ ╇ ╒ ╋ ╒ ╋ ╒ ╋ ╒ ╋ ╒ ╋ ╒ ╋ ╒ ╋ ╒ ╋	_{╙╊╃┸┪} ┿╇╇╇	+++++++
-5 -2000	0	2000 Proper tim	4000 e (fs)

Fit type	Parameter	Fit result
No CPV	x(%)	$0.56 \pm 0.19^{+0.03}_{-0.09}{}^{+0.06}_{-0.09}$
	y(%)	$0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.06}$
CPV	x(%)	$0.56 \pm 0.19^{+0.04}_{-0.08}{}^{+0.06}_{-0.08}$
	y(%)	$0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.07}$
	q/p	$0.90^{+0.16}_{-0.15}^{+0.05}_{-0.04}^{+0.06}_{-0.05}$

arXiv:1404.2412, to appear in PRD(R)

Assume no direct CP violation \Rightarrow $A_f = \bar{A}_f$ for the $K_S^0 \pi^+ \pi^-$ mode

 \geq 2.5 σ away from the no-mixing hypothesis

 $-6 \pm 11 \pm 3^{+3}_{-4}$

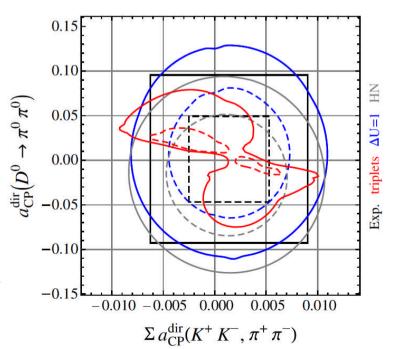
No evidence for indirect CP violation

 $arg(q/p)(^{\circ})$

Why worry about CPV in $D^0 \to \pi^0 \pi^0$?

☐ Large CP asymmetries expected in the decay for new physics scenarios having large penguin contributions as well as large chromomagnetic dipole operators

Decay mode	Large penguins	Large c.d.o.	Cheng and Chiang, PRD 86, 014014 (2012)
$D^0 o \pi^+ \pi^-$	3.96 (4.40)	5.18 (3.70)	, , ,
$D^0 ightarrow \pi^0 \pi^0$	0.93 (1.01)	8.63 (6.19) ×	10.2
• • •	•••	••• X	$[0^{-3}]$


□ Large penguin contribution is predicted for $D^0 \rightarrow \pi^0 \pi^0$

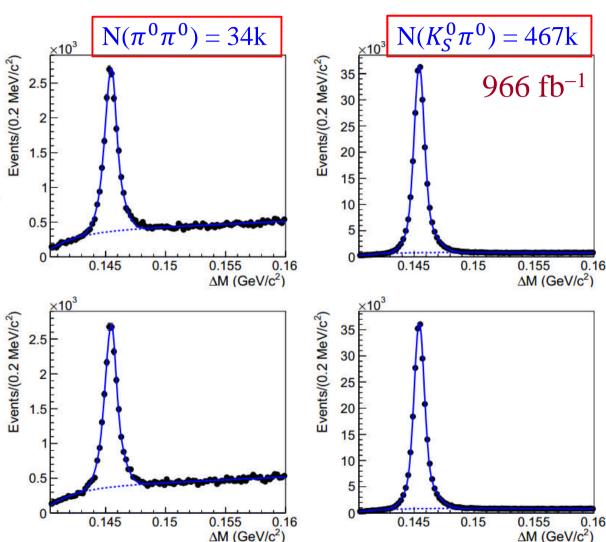
Bhattacharya, Gronau and Rosner, PRD 85, 014014 (2012)

Some NP models e.g., triplet model, predict a sizeable CP asymmetry in $D^0 \rightarrow \pi^0 \pi^0$

Hiller, Jung and Schacht, PRD 87, 014024 (2013)

Need a precise measurement that can be only done at the e^+e^- flavor factories

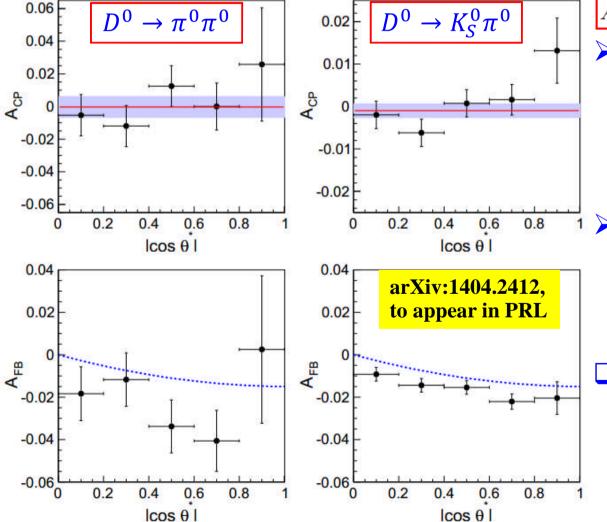
How do we measure CPV in $D^0 \to \pi^0 \pi^0$?


 \Box Charge of the accompanying "slow" pion in the decay process $D^{*+} \to D^0 \pi_s^+$ determines flavor of the neutral charm meson (whether a D^0 or a \overline{D}^0)

arXiv:1404.2412, to appear in PRL

Measure
$$A_{\text{rec}} = \frac{N_{\text{rec}}^{D^{*+} \to D^{0} \pi_{s}^{+}} - N_{\text{rec}}^{D^{*-} \to \overline{D}^{0} \pi_{s}^{-}}}{N_{\text{rec}}^{D^{*+} \to D^{0} \pi_{s}^{+}} + N_{\text{rec}}^{D^{*-} \to \overline{D}^{0} \pi_{s}^{-}}}$$
in $D^{0} \to \pi^{0} \pi^{0}$ and $D^{0} \to K_{S}^{0} \pi^{0}$ (control) decay modes

☐ Has three contributions: a) underlying A_{CP} , b) forwardbackward asymmetry (A_{FB}) , and c) detection asymmetry between π_s^+ and $\pi_s^ (A_s^{\pi_s})$



 \square $A_{\varepsilon}^{\pi_S}$ is determined subtracting A_{rec} of the "untagged" $D^0 \to K^-\pi^+$ decay from that of the "tagged" $D^{*+} \rightarrow D^0 \pi_s^+$; $D^0 \rightarrow K^- \pi^+$ decay

CPV results for $D^0 \to \pi^0 \pi^0$ and $K_S^0 \pi^0$

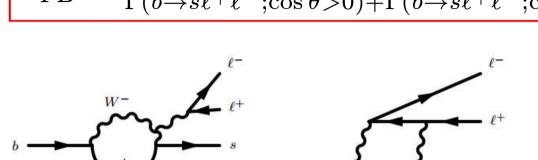
- \square $A_{\rm FB}$ is an odd function of $\cos \theta^*$, θ^* being the D^* polar angle in the center of mass frame: $A_{\rm FB} = \frac{1}{2} \left[A_{\rm rec}^{\rm cor}(\cos \theta^*) A_{\rm rec}^{\rm cor}(-\cos \theta^*) \right]$
- \Box A_{CP} is independent of kinematics \rightarrow $A_{CP} = \frac{1}{2} [A_{\text{rec}}^{\text{cor}}(\cos \theta^*) + A_{\text{rec}}^{\text{cor}}(-\cos \theta^*)],$ where $A_{\text{rec}}^{\text{cor}}$ is already corrected for $A_{\varepsilon}^{\pi_s} [O(0.1\%)]$

$$A_{CP}(D^0 \to \pi^0 \pi^0) = (-0.03 \pm 0.64 \pm 0.10)\%$$

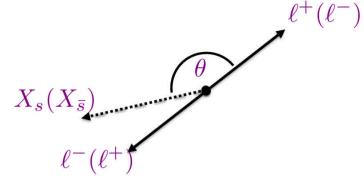
Measured CP asymmetry is an order-of-magnitude improvement over the previous result of CLEO

PRD 63, 071101 (2001)

$$A_{CP}(D^0 \to K_S^0 \pi^0) = (-0.21 \pm 0.16 \pm 0.07)\%$$
 supersedes our earlier result


PRL 106, 211801 (2011)

Dashed blue curves represent leading-order predictions for $A_{FB}(e^+e^- \rightarrow c\bar{c})$


ZPC 30, 125 (1986)

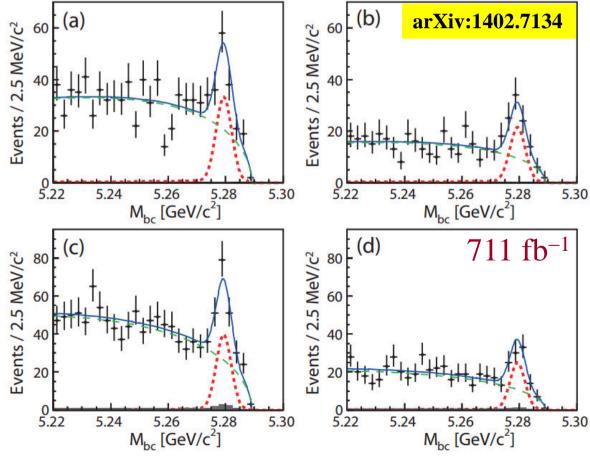
Lepton forward-backward asymmetry in $B \to X_S \ell^+ \ell^-$

$$A_{\rm FB} \equiv \frac{\Gamma(b \to s\ell^+\ell^-; \cos\theta > 0) - \Gamma(b \to s\ell^+\ell^-; \cos\theta < 0)}{\Gamma(b \to s\ell^+\ell^-; \cos\theta > 0) + \Gamma(b \to s\ell^+\ell^-; \cos\theta < 0)}$$

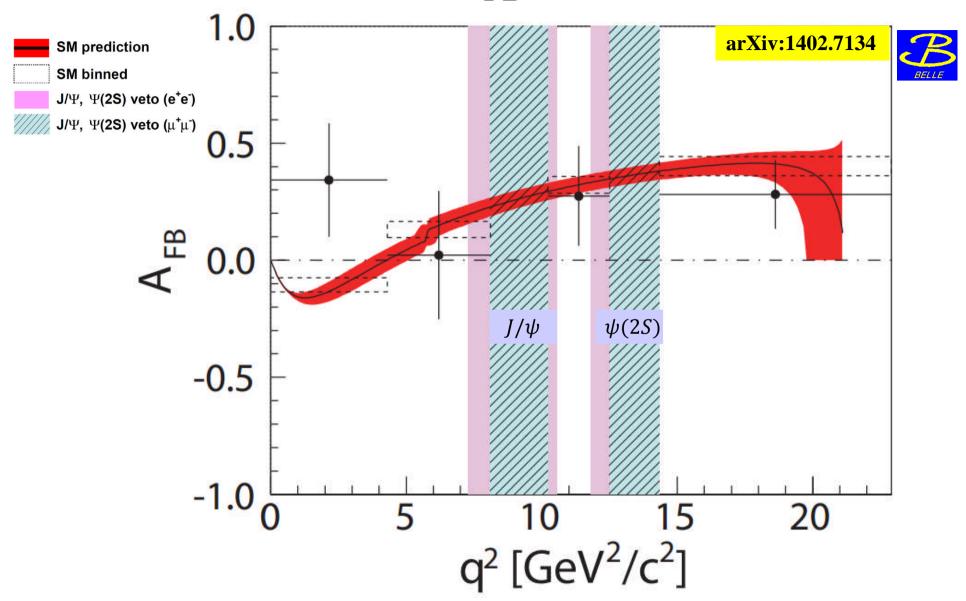
 $\overline{u}, \overline{d}$

 \square Contributions from electroweak loop and W^+W^- box diagrams

$$\frac{dA_{\rm FB}}{dq^2} = -3\Gamma_0 m_b^3 (1-s)^2 s \, C_{10} \text{Re}(C_9 + \frac{2}{s} C_7)$$

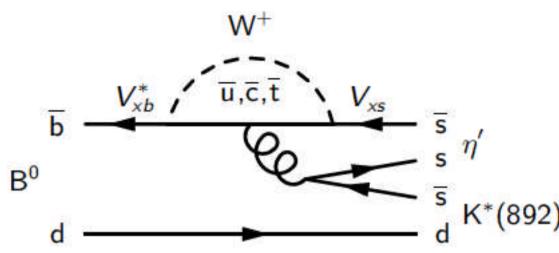

- \triangleright C₇, C₉ and C₁₀ are the Wilson coefficients representing electromagnetic loop, electroweak vector and axial-vector contributions, respectively
- $\Gamma_0 = \frac{G_F^2 \alpha^2}{48\pi^3 16\pi^2} |V_{tb}V_{ts}^{\star}|^2$ and $s = q^2/m_b^2$ with $q^2 = m_{\ell^+\ell^-}^2$ PRD 75, 034016 (2007)
- \square Previously measured by Belle in exclusive decays viz., $B \to K^{(*)} \ell^+ \ell^-$

PRL 103, 171801 (2009)


 \square Inclusive A_{FB} has a comparatively smaller theory uncertainty

Semi-inclusive reconstruction of $B \to X_S \ell^+ \ell^-$

- □ 18 exclusive hadronic final states with $X_S = \{K\}\{n\pi\}$, $K = K^{\pm}$, K_S^0 and $N = 1 \dots 4$, where at most one pion can be neutral, and two leptons $(\ell = e, \mu)$
- \square In case of $B^0(\bar{B}^0)$ decays, only self-tagging modes with a $K^+(K^-)$ are used
- \Box Event reconstruction using two kinematic variables: M_{bc} and ΔE
- Background suppression based on a neural network and veto the J/ψ and $\psi(2S)$ regions
- To reduce cross-feed from the modes not used in A_{FB} measurement (total 8), we remove them once the best candidate selection is done
- Plots on right are for (a) $X_S e^+ e^-$; $\cos \theta > 0$, (b) $X_S e^+ e^-$; $\cos \theta < 0$, (c) $X_S \mu^+ \mu^-$; $\cos \theta > 0$ and (d) $X_S \mu^+ \mu^-$; $\cos \theta < 0$



Results on $A_{FB}: B \to X_S \ell^+ \ell^-$

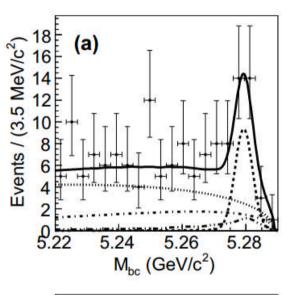
- \square Low q^2 : 1.8 σ away from the SM expectation
- \square High q^2 : consistent with the SM and $A_{\rm FB} < 0$ is excluded at the 2.3σ level

BF and A_{CP} measurement in $B^0 \to \eta' K^* (892)^0$

- ➤ Dominant contribution from the $b \rightarrow s$ loop transition
- Possible new physics can appear in the loop

- Previous Belle analysis based on 535×10^6 $B\bar{B}$ pairs put a 90% confidence-level upper limit $\mathcal{B}[B^0 \to \eta' K^{\star}(892)^0] < 2.6 \times 10^{-6}$ PRD 75, 092002 (2007)
- \Box BABAR claimed a signal at the 4σ level and reported

$$\mathcal{B}[B^0 \to \eta' K^{\star}(892)^0] = [3.1^{+0.9}_{-0.8}(\mathrm{stat.}) \pm 0.30(\mathrm{syst.})] \times 10^{-6}$$
 PRD 82, 011502 (2010)


On the theory front, the branching fraction is predicted to be in the range of $(1.2-6.3)\times10^{-6}$

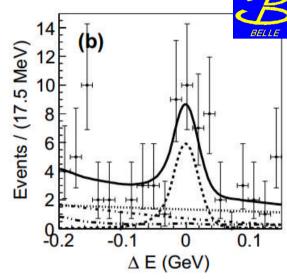
PRD 75, 054003 (2007) NPB 675, 333 (2003)

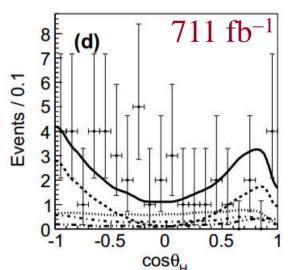
PRD 78, 034011 (2008) PRD 69, 34001 (2004)

BF and A_{CP} results for $B^0 \to \eta' K^* (892)^0$

- \square Reconstructed from $\eta' \to \eta \pi^+ \pi^-$, $\eta \to \gamma \gamma$ and $K^*(892) \to K^+ \pi^-$
- \square 4D extended maximum likelihood fit comprising M_{bc} , ΔE , C'_{NB} (continuum suppression variable), and $\cos \theta_H$ (cosine of the K^* helicity angle)

60


50


40

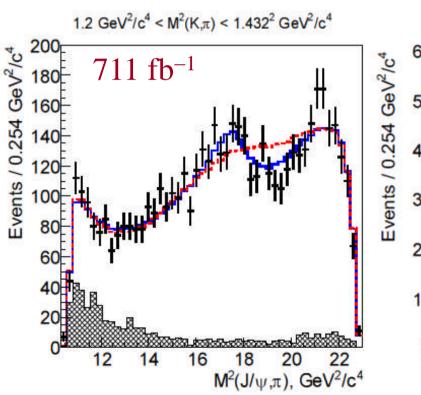
10

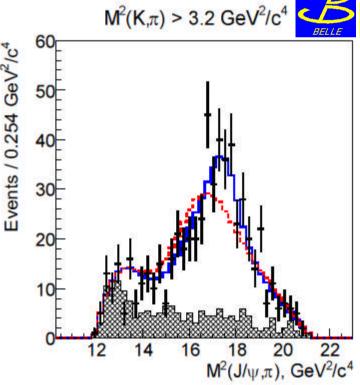
Events / 0.8

(c)

Preliminary

> We measure


$$\mathcal{B}(\mathsf{B}^0 o \eta' \mathsf{K}^*(892)) = [2.6^{+0.7}_{-0.6}(\mathsf{stat}) \pm 0.2(\mathsf{syst})] imes 10^{-6}$$


- \triangleright Constitutes the first observation of the decay (5 σ significance)
- ► A_{CP} is obtained by splitting the obtained yields according to the flavor of the decaying B meson $[B^0(\bar{B}^0) \longrightarrow K^+(K^-)]$

$$A_{CP} = -0.22 \pm 0.29(\text{stat}) \pm 0.03(\text{syst})$$

Amplitude analysis of $B \rightarrow J/\psi K\pi$

- \triangleright Look for possible exotic, charmonium-like resonances in the $J/\psi\pi$ system
- □ 4D amplitude analysis comprising $(M_{K\pi}^2, M_{J/\psi\pi}^2, \cos\theta, \phi)$, where θ is the J/ψ helicity angle and ϕ is the angle between the two planes containing $J/\psi(\ell^+\ell^-)$ and $(K\pi)$ systems in the B rest frame
- Resonances: $10 K^*$ resonances and the $Z_c(4430)^+$ state for the $J/\psi\pi$ system; additional Z_c^+ states are used for a cross-check
- □ Tried out five spin-parity hypotheses: 0^- , 1^+ , 1^- , 2^+ , 2^- for the $Z_c^+(J^P = 0^+)$ is forbidden due to parity conservation)

Preliminary

- Projections of the $J/\psi\pi$ invariant mass including a new Z_c^+ state along with the Z_c (4430)
- Red dashed lines with the $Z_c(4430)$ only

Observation of a new state in $B \rightarrow J/\psi K\pi$

J^P	0-	1-	1+	2-	2+
Mass, MeV/c^2	4220 ± 14	4315 ± 40	4196 ± 27	4209 ± 14	4203 ± 24
Width, MeV	71 ± 20	220 ± 80	370 ± 61	64 ± 18	121 ± 53
Significance	3.3σ	2.3σ	8.2σ	3.9σ	1.9σ

- \square A new Z_c^+ state $[Z_c(4200)^+]$ with $J^P = 1^+$ is found with 7.2σ significance $M = 4196^{+31+17}_{-29-6}$ MeV/ c^2 , $\Gamma = 370^{+70+70}_{-70-85}$ MeV
- \square Other J^P hypotheses are excluded: $0^-(6.7\sigma)$, $1^-(7.7\sigma)$, $2^-(5.2\sigma)$, $2^+(7.6\sigma)$
- \square Evidence for the $Z_c(4430)^+$ at the 4.0σ significance level

$$\mathcal{B}(\bar{B}^{0} \to J/\psi K^{-}\pi^{+}) = (1.15 \pm 0.01 \pm 0.05) \times 10^{-3}$$

$$\mathcal{B}(\bar{B}^{0} \to J/\psi K^{*}(892)) = (1.19 \pm 0.01 \pm 0.08) \times 10^{-3}$$

$$\mathcal{B}(\bar{B}^{0} \to Z_{c}(4430)^{+}K^{-}) \times \mathcal{B}(Z_{c}(4430)^{+} \to J/\psi \pi^{+}) = (5.4^{+4.0+1.1}_{-1.0-0.9}) \times 10^{-6}$$

$$\mathcal{B}(\bar{B}^{0} \to Z_{c}(4200)^{+}K^{-}) \times \mathcal{B}(Z_{c}(4200)^{+} \to J/\psi \pi^{+}) = (2.2^{+0.7+1.1}_{-0.5-0.6}) \times 10^{-5}$$

$$\frac{\mathcal{B}(Z_{c}(4430)^{+} \to \psi(2S)\pi^{+})}{\mathcal{B}(Z_{c}(4430)^{+} \to J/\psi \pi^{+})} \sim 10$$

Summary and outlook

- ☐ Though close to five years have passed away since the last data taking, Belle continues to produce high-quality results
- ☐ A small sample of those are presented here, based on the full data statistics
 - First observation of D^0 - $\overline{D}{}^0$ mixing using $D \to K\pi$ decays in e^+e^- collisions
 - \triangleright 2.5 σ indication for D^0 - \overline{D}^0 mixing and no sign of CPV in $D \to K_S^0 \pi^+ \pi^-$
 - An order-of-magnitude improvement over the previous result for A_{CP} in the $D \to \pi^0 \pi^0$ decay
 - ≥ 1.8 σ discrepancy with respect to the SM prediction for the lepton forward-backward asymmetry at low q^2 in inclusive $B \to X_s \ell^+ \ell^-$ decays
 - First observation of the $b \to s$ penguin decay $B \to \eta' K^*(892)^0$
 - \triangleright Observation of another charged charmonium-like state in $B \rightarrow J/\psi K\pi$
- ☐ The unique explorations at the intensity frontier will continue with the start of Belle II
 - Refer to yesterday's talk by P. Urquijo