Recent results on hot topics from #### Menu card - Charm mixing in $D \rightarrow K\pi$ decays - Mixing and CPV in $D \to K_S^0 \pi^+ \pi^-$ - Looking for CPV in $D^0 \to \pi^0 \pi^0$ - Lepton $A_{\rm FB}$ in $B \to X_{\rm S} \ell^+ \ell^-$ decays - BF and A_{CP} in $B^0 \rightarrow \eta' K^* (892)^0$ - Amplitude analysis of $B \rightarrow J/\psi K\pi$ Gagan Mohanty TIFR, Mumbai Fifth Workshop on Theory, Phenomenology and Experiments in Flavour Physics - Capri 2014 23-25 May 2014 Villa Orlandi, Anacapri, Capri #### Experiment and dataset - ➤ Multitasking magnetic spectrometer that operated at KEKB asymmetricenergy e⁺e⁻ collider in Japan - Recorded the data at various $\Upsilon(nS)$ resonances till June 2010 # $D^0 \overline{D}{}^0$ mixing in $D \to K\pi$ decays - □ Measure the time-dependent ratio of the $D^0 \to K^+\pi^-$ (wrong-sign) to $D^0 \to K^-\pi^+$ (right-sign) decay rates - □ Tag RS and WS decays through the decay chain $D^{*+} \to D^0 \left(K^{\mp} \pi^{\pm}\right) \pi_s^+$ by comparing charge of the pion from the *D* decay with that from the *D** decay "Wrong-sign" $D^{*+} \to D^0 \pi^+, \, D^0 \to K^+ \pi^-$ interference: mixing, double Cabibbo-suppression (DCS) $$R(\tilde{t}/\tau) \equiv \frac{\Gamma_{\rm WS}(\tilde{t}/\tau)}{\Gamma_{\rm RS}(\tilde{t}/\tau)} \approx R_D + \sqrt{R_D} \ y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2$$ $$\text{Mixing} \left\{ \begin{array}{ll} x \equiv \Delta m/\Gamma & x' \equiv x\cos\delta + y\sin\delta \\ y \equiv \Delta\Gamma/2\Gamma & y' \equiv y\cos\delta - x\sin\delta \end{array} \right.$$ δ = relative phase DCS $$R_D \equiv \Delta\Gamma(DCS)/\Delta\Gamma(CF)$$ ☐ Take the resolution effect into account in the measurement of mean decay time of the tagged D's #### Event yields in RS and WS decays PRL 112, 111801 (2014) Signal: A sum of a Gaussian and a Johnson distribution of common mean **Biometrika 36, 149 (1949)** rightharpoonup Background: An empirical threshold function $(x - m_{\pi})^{\alpha} e^{-\beta(x - m_{\pi})}$ ## Observation of D^0 - \overline{D}^0 mixing - \square No mixing hypothesis is ruled out at the 5.1 standard deviation (σ) level - \square Constitutes the first observation of D^0 - \overline{D}^0 mixing in e^+e^- collisions #### CP violation in charm decays - ☐ Provides an interesting test bed for new physics as the standard model (SM) predicts a very small asymmetry, owing to - ➤ Large GIM/CKM suppression - Lack of a large hierarchy in the down-type quark masses - □ Typical SM value of the order of 10⁻³ ⇒ most promising candidates to study are singly Cabibbo-suppressed (SCS) decays Grossman, Kagan and Nir PRD 75, 036008 (2007) - ☐ While talking about a percentage effect, we need a good control on the SM predictions, something that is in general lacking in this sector due to long-distance effects An example of "short vs. long" ☐ Further, with D^0 - \overline{D}^0 mixing being firmly established, what about CP violation (CPV) in the mixing or due to interference between mixing and decay? #### Current expectation for direct CP violation $$A_{\Gamma}^f \equiv rac{ au(\overline{D}^0 o f) - au(D^0 o f)}{ au(\overline{D}^0 o f) + au(D^0 o f)} pprox -a_{CP}^{ m ind}$$ $$A_{CP}^f \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$ JPG 39, 045005 (2012) $$\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = \left(1 + y\cos\phi\frac{\langle t\rangle}{\tau}\right)\Delta a_{CP}^{\text{dir}} + \left(\frac{\Delta\langle t\rangle}{\tau}\right)a_{CP}^{\text{ind}}$$ $x \equiv \Delta m/\Gamma$, $y \equiv \Delta \Gamma/\Gamma$ and $\phi \equiv \arg(q/p)$, where Δm and $\Delta \Gamma$ are the mass and width difference between two D mass eigenstates, Γ is their average width and (p,q) are the two complex coefficients that relate mass to flavor eigenstates $$a_{CP}^{\mathrm{ind}} = (+0.015 \pm 0.052)\%$$ $$\Delta a_{CP}^{\text{dir}} = (-0.333 \pm 0.120)\%$$ No CPV (0,0) point: $\Delta \chi^2 = 7.8$, CL = 2% (excluded at 2σ) # Study of mixing and CPV in $D^0 \to K_S^0 \pi^+ \pi^-$ Determine $D^0 - \overline{D}{}^0$ mixing and CPV effects by studying the time-dependent decay rate of self-conjugated $D^0 \to K_S^0 \pi^+ \pi^-$ decays Expressing A_f (\bar{A}_f), amplitude of the D^0 (\bar{D}^0) decay into $f \equiv K_S^0 \pi^+ \pi^-$, as a function of the Dalitz plot variables ($m_{K_S^0 \pi^+}^2$, $m_{K_S^0 \pi^-}^2$), the corresponding time-dependent decay rates are: $$|\mathcal{M}(f,t)|^{2} = \frac{e^{-\Gamma t}}{2} \{ (|\mathcal{A}_{f}|^{2} + |\frac{q}{p}|^{2} |\mathcal{A}_{\bar{f}}|^{2}) \cosh(\Gamma yt) + (|\mathcal{A}_{f}|^{2} - |\frac{q}{p}|^{2} |\mathcal{A}_{\bar{f}}|^{2}) \cos(\Gamma xt) + 2\Re(\frac{q}{p} \mathcal{A}_{\bar{f}} \mathcal{A}_{f}^{*}) \sinh(\Gamma yt) - 2\Im(\frac{q}{p} \mathcal{A}_{\bar{f}} \mathcal{A}_{f}^{*}) \sin(\Gamma xt) \}$$ $$|\overline{\mathcal{M}}(f,t)|^{2} = \frac{e^{-\Gamma t}}{2} \{ (|\mathcal{A}_{\bar{f}}|^{2} + |\frac{p}{q}|^{2} |\mathcal{A}_{f}|^{2}) \cosh(\Gamma yt) + (|\mathcal{A}_{\bar{f}}|^{2} - |\frac{p}{q}|^{2} |\mathcal{A}_{f}|^{2}) \cos(\Gamma xt) + 2\Re(\frac{p}{q}\mathcal{A}_{f}\mathcal{A}_{\bar{f}}^{*}) \sinh(\Gamma yt) - 2\Im(\frac{p}{q}\mathcal{A}_{f}\mathcal{A}_{\bar{f}}^{*}) \sin(\Gamma xt) \}$$ - $ightharpoonup \Gamma$ is the mean decay width of the two mass eigenstates: $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$ - \triangleright x and y are the D^0 - \overline{D}^0 mixing parameters, defined earlier - > p and q are complex coefficients that satisfy $|p|^2 + |q|^2 = 1$ in case of no CP violation, whereas possible CPV can lead to $q/p \neq 1$ # Mixing and CPV results from $D^0 \to K_S^0 \pi^+ \pi^-$ ☐ Time-dependent fit to the Dalitz plot (shown below together with one of its projections) | Events/100fs | | | me of D ⁰ .3±0.4 fs | |---|--|-----------------------|---| | Events | # | | -
-
-
-
- | | 10 ³ | | 1 | * A A A A A A A A A A A A A A A A A A A | | 10 ² | ++++ | | | | o + + + + + + + + + + + + + + + + + + + | _┡ ╇
╒ ╇
╒ ╇
╒ ╇
╒ ╇
╒ ╇
╒ ╋
╒ ╋
╒ ╋
╒ ╋
╒ ╋
╒ ╋
╒ ╋
╒ ╋ | _{╙╊╃┸┪} ┿╇╇╇ | +++++++ | | -5
-2000 | 0 | 2000
Proper tim | 4000
e (fs) | | Fit type | Parameter | Fit result | |----------|-----------|--| | No CPV | x(%) | $0.56 \pm 0.19^{+0.03}_{-0.09}{}^{+0.06}_{-0.09}$ | | | y(%) | $0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.06}$ | | CPV | x(%) | $0.56 \pm 0.19^{+0.04}_{-0.08}{}^{+0.06}_{-0.08}$ | | | y(%) | $0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.07}$ | | | q/p | $0.90^{+0.16}_{-0.15}^{+0.05}_{-0.04}^{+0.06}_{-0.05}$ | arXiv:1404.2412, to appear in PRD(R) Assume no direct CP violation \Rightarrow $A_f = \bar{A}_f$ for the $K_S^0 \pi^+ \pi^-$ mode \geq 2.5 σ away from the no-mixing hypothesis $-6 \pm 11 \pm 3^{+3}_{-4}$ No evidence for indirect CP violation $arg(q/p)(^{\circ})$ # Why worry about CPV in $D^0 \to \pi^0 \pi^0$? ☐ Large CP asymmetries expected in the decay for new physics scenarios having large penguin contributions as well as large chromomagnetic dipole operators | Decay mode | Large penguins | Large c.d.o. | Cheng and Chiang,
PRD 86, 014014 (2012) | |------------------------------|----------------|------------------|--| | $D^0 o \pi^+ \pi^-$ | 3.96 (4.40) | 5.18 (3.70) | , , , | | $D^0 ightarrow \pi^0 \pi^0$ | 0.93 (1.01) | 8.63 (6.19)
× | 10.2 | | • • • | ••• | ••• X | $[0^{-3}]$ | □ Large penguin contribution is predicted for $D^0 \rightarrow \pi^0 \pi^0$ Bhattacharya, Gronau and Rosner, PRD 85, 014014 (2012) Some NP models e.g., triplet model, predict a sizeable CP asymmetry in $D^0 \rightarrow \pi^0 \pi^0$ Hiller, Jung and Schacht, PRD 87, 014024 (2013) Need a precise measurement that can be only done at the e^+e^- flavor factories ### How do we measure CPV in $D^0 \to \pi^0 \pi^0$? \Box Charge of the accompanying "slow" pion in the decay process $D^{*+} \to D^0 \pi_s^+$ determines flavor of the neutral charm meson (whether a D^0 or a \overline{D}^0) arXiv:1404.2412, to appear in PRL Measure $$A_{\text{rec}} = \frac{N_{\text{rec}}^{D^{*+} \to D^{0} \pi_{s}^{+}} - N_{\text{rec}}^{D^{*-} \to \overline{D}^{0} \pi_{s}^{-}}}{N_{\text{rec}}^{D^{*+} \to D^{0} \pi_{s}^{+}} + N_{\text{rec}}^{D^{*-} \to \overline{D}^{0} \pi_{s}^{-}}}$$ in $D^{0} \to \pi^{0} \pi^{0}$ and $D^{0} \to K_{S}^{0} \pi^{0}$ (control) decay modes ☐ Has three contributions: a) underlying A_{CP} , b) forwardbackward asymmetry (A_{FB}) , and c) detection asymmetry between π_s^+ and $\pi_s^ (A_s^{\pi_s})$ \square $A_{\varepsilon}^{\pi_S}$ is determined subtracting A_{rec} of the "untagged" $D^0 \to K^-\pi^+$ decay from that of the "tagged" $D^{*+} \rightarrow D^0 \pi_s^+$; $D^0 \rightarrow K^- \pi^+$ decay ## CPV results for $D^0 \to \pi^0 \pi^0$ and $K_S^0 \pi^0$ - \square $A_{\rm FB}$ is an odd function of $\cos \theta^*$, θ^* being the D^* polar angle in the center of mass frame: $A_{\rm FB} = \frac{1}{2} \left[A_{\rm rec}^{\rm cor}(\cos \theta^*) A_{\rm rec}^{\rm cor}(-\cos \theta^*) \right]$ - \Box A_{CP} is independent of kinematics \rightarrow $A_{CP} = \frac{1}{2} [A_{\text{rec}}^{\text{cor}}(\cos \theta^*) + A_{\text{rec}}^{\text{cor}}(-\cos \theta^*)],$ where $A_{\text{rec}}^{\text{cor}}$ is already corrected for $A_{\varepsilon}^{\pi_s} [O(0.1\%)]$ $$A_{CP}(D^0 \to \pi^0 \pi^0) = (-0.03 \pm 0.64 \pm 0.10)\%$$ Measured CP asymmetry is an order-of-magnitude improvement over the previous result of CLEO PRD 63, 071101 (2001) $$A_{CP}(D^0 \to K_S^0 \pi^0) = (-0.21 \pm 0.16 \pm 0.07)\%$$ supersedes our earlier result PRL 106, 211801 (2011) Dashed blue curves represent leading-order predictions for $A_{FB}(e^+e^- \rightarrow c\bar{c})$ **ZPC 30, 125 (1986)** #### Lepton forward-backward asymmetry in $B \to X_S \ell^+ \ell^-$ $$A_{\rm FB} \equiv \frac{\Gamma(b \to s\ell^+\ell^-; \cos\theta > 0) - \Gamma(b \to s\ell^+\ell^-; \cos\theta < 0)}{\Gamma(b \to s\ell^+\ell^-; \cos\theta > 0) + \Gamma(b \to s\ell^+\ell^-; \cos\theta < 0)}$$ $\overline{u}, \overline{d}$ \square Contributions from electroweak loop and W^+W^- box diagrams $$\frac{dA_{\rm FB}}{dq^2} = -3\Gamma_0 m_b^3 (1-s)^2 s \, C_{10} \text{Re}(C_9 + \frac{2}{s} C_7)$$ - \triangleright C₇, C₉ and C₁₀ are the Wilson coefficients representing electromagnetic loop, electroweak vector and axial-vector contributions, respectively - $\Gamma_0 = \frac{G_F^2 \alpha^2}{48\pi^3 16\pi^2} |V_{tb}V_{ts}^{\star}|^2$ and $s = q^2/m_b^2$ with $q^2 = m_{\ell^+\ell^-}^2$ PRD 75, 034016 (2007) - \square Previously measured by Belle in exclusive decays viz., $B \to K^{(*)} \ell^+ \ell^-$ PRL 103, 171801 (2009) \square Inclusive A_{FB} has a comparatively smaller theory uncertainty ### Semi-inclusive reconstruction of $B \to X_S \ell^+ \ell^-$ - □ 18 exclusive hadronic final states with $X_S = \{K\}\{n\pi\}$, $K = K^{\pm}$, K_S^0 and $N = 1 \dots 4$, where at most one pion can be neutral, and two leptons $(\ell = e, \mu)$ - \square In case of $B^0(\bar{B}^0)$ decays, only self-tagging modes with a $K^+(K^-)$ are used - \Box Event reconstruction using two kinematic variables: M_{bc} and ΔE - Background suppression based on a neural network and veto the J/ψ and $\psi(2S)$ regions - To reduce cross-feed from the modes not used in A_{FB} measurement (total 8), we remove them once the best candidate selection is done - Plots on right are for (a) $X_S e^+ e^-$; $\cos \theta > 0$, (b) $X_S e^+ e^-$; $\cos \theta < 0$, (c) $X_S \mu^+ \mu^-$; $\cos \theta > 0$ and (d) $X_S \mu^+ \mu^-$; $\cos \theta < 0$ # Results on $A_{FB}: B \to X_S \ell^+ \ell^-$ - \square Low q^2 : 1.8 σ away from the SM expectation - \square High q^2 : consistent with the SM and $A_{\rm FB} < 0$ is excluded at the 2.3σ level # BF and A_{CP} measurement in $B^0 \to \eta' K^* (892)^0$ - ➤ Dominant contribution from the $b \rightarrow s$ loop transition - Possible new physics can appear in the loop - Previous Belle analysis based on 535×10^6 $B\bar{B}$ pairs put a 90% confidence-level upper limit $\mathcal{B}[B^0 \to \eta' K^{\star}(892)^0] < 2.6 \times 10^{-6}$ PRD 75, 092002 (2007) - \Box BABAR claimed a signal at the 4σ level and reported $$\mathcal{B}[B^0 \to \eta' K^{\star}(892)^0] = [3.1^{+0.9}_{-0.8}(\mathrm{stat.}) \pm 0.30(\mathrm{syst.})] \times 10^{-6}$$ PRD 82, 011502 (2010) On the theory front, the branching fraction is predicted to be in the range of $(1.2-6.3)\times10^{-6}$ PRD 75, 054003 (2007) NPB 675, 333 (2003) PRD 78, 034011 (2008) PRD 69, 34001 (2004) # BF and A_{CP} results for $B^0 \to \eta' K^* (892)^0$ - \square Reconstructed from $\eta' \to \eta \pi^+ \pi^-$, $\eta \to \gamma \gamma$ and $K^*(892) \to K^+ \pi^-$ - \square 4D extended maximum likelihood fit comprising M_{bc} , ΔE , C'_{NB} (continuum suppression variable), and $\cos \theta_H$ (cosine of the K^* helicity angle) 60 50 40 10 Events / 0.8 (c) #### **Preliminary** > We measure $$\mathcal{B}(\mathsf{B}^0 o \eta' \mathsf{K}^*(892)) = [2.6^{+0.7}_{-0.6}(\mathsf{stat}) \pm 0.2(\mathsf{syst})] imes 10^{-6}$$ - \triangleright Constitutes the first observation of the decay (5 σ significance) - ► A_{CP} is obtained by splitting the obtained yields according to the flavor of the decaying B meson $[B^0(\bar{B}^0) \longrightarrow K^+(K^-)]$ $$A_{CP} = -0.22 \pm 0.29(\text{stat}) \pm 0.03(\text{syst})$$ #### Amplitude analysis of $B \rightarrow J/\psi K\pi$ - \triangleright Look for possible exotic, charmonium-like resonances in the $J/\psi\pi$ system - □ 4D amplitude analysis comprising $(M_{K\pi}^2, M_{J/\psi\pi}^2, \cos\theta, \phi)$, where θ is the J/ψ helicity angle and ϕ is the angle between the two planes containing $J/\psi(\ell^+\ell^-)$ and $(K\pi)$ systems in the B rest frame - Resonances: $10 K^*$ resonances and the $Z_c(4430)^+$ state for the $J/\psi\pi$ system; additional Z_c^+ states are used for a cross-check - □ Tried out five spin-parity hypotheses: 0^- , 1^+ , 1^- , 2^+ , 2^- for the $Z_c^+(J^P = 0^+)$ is forbidden due to parity conservation) #### **Preliminary** - Projections of the $J/\psi\pi$ invariant mass including a new Z_c^+ state along with the Z_c (4430) - Red dashed lines with the $Z_c(4430)$ only #### Observation of a new state in $B \rightarrow J/\psi K\pi$ | J^P | 0- | 1- | 1+ | 2- | 2+ | |-----------------|---------------|--------------|---------------|-------------|---------------| | Mass, MeV/c^2 | 4220 ± 14 | 4315 ± 40 | 4196 ± 27 | 4209 ± 14 | 4203 ± 24 | | Width, MeV | 71 ± 20 | 220 ± 80 | 370 ± 61 | 64 ± 18 | 121 ± 53 | | Significance | 3.3σ | 2.3σ | 8.2σ | 3.9σ | 1.9σ | - \square A new Z_c^+ state $[Z_c(4200)^+]$ with $J^P = 1^+$ is found with 7.2σ significance $M = 4196^{+31+17}_{-29-6}$ MeV/ c^2 , $\Gamma = 370^{+70+70}_{-70-85}$ MeV - \square Other J^P hypotheses are excluded: $0^-(6.7\sigma)$, $1^-(7.7\sigma)$, $2^-(5.2\sigma)$, $2^+(7.6\sigma)$ - \square Evidence for the $Z_c(4430)^+$ at the 4.0σ significance level $$\mathcal{B}(\bar{B}^{0} \to J/\psi K^{-}\pi^{+}) = (1.15 \pm 0.01 \pm 0.05) \times 10^{-3}$$ $$\mathcal{B}(\bar{B}^{0} \to J/\psi K^{*}(892)) = (1.19 \pm 0.01 \pm 0.08) \times 10^{-3}$$ $$\mathcal{B}(\bar{B}^{0} \to Z_{c}(4430)^{+}K^{-}) \times \mathcal{B}(Z_{c}(4430)^{+} \to J/\psi \pi^{+}) = (5.4^{+4.0+1.1}_{-1.0-0.9}) \times 10^{-6}$$ $$\mathcal{B}(\bar{B}^{0} \to Z_{c}(4200)^{+}K^{-}) \times \mathcal{B}(Z_{c}(4200)^{+} \to J/\psi \pi^{+}) = (2.2^{+0.7+1.1}_{-0.5-0.6}) \times 10^{-5}$$ $$\frac{\mathcal{B}(Z_{c}(4430)^{+} \to \psi(2S)\pi^{+})}{\mathcal{B}(Z_{c}(4430)^{+} \to J/\psi \pi^{+})} \sim 10$$ #### Summary and outlook - ☐ Though close to five years have passed away since the last data taking, Belle continues to produce high-quality results - ☐ A small sample of those are presented here, based on the full data statistics - First observation of D^0 - $\overline{D}{}^0$ mixing using $D \to K\pi$ decays in e^+e^- collisions - \triangleright 2.5 σ indication for D^0 - \overline{D}^0 mixing and no sign of CPV in $D \to K_S^0 \pi^+ \pi^-$ - An order-of-magnitude improvement over the previous result for A_{CP} in the $D \to \pi^0 \pi^0$ decay - ≥ 1.8 σ discrepancy with respect to the SM prediction for the lepton forward-backward asymmetry at low q^2 in inclusive $B \to X_s \ell^+ \ell^-$ decays - First observation of the $b \to s$ penguin decay $B \to \eta' K^*(892)^0$ - \triangleright Observation of another charged charmonium-like state in $B \rightarrow J/\psi K\pi$ - ☐ The unique explorations at the intensity frontier will continue with the start of Belle II - Refer to yesterday's talk by P. Urquijo