A bosonic technicolor update

Alex Kagan

Capri, May 2014

Plan

work in progress with S. J. Lee, A. Martin, P. Uttayarat, J. Zupan

- Introduction
- Higgs phenomenology
- $oldsymbol{9}$ S and T away from the chiral limit
- vector phenomenology
- Comments on R-symmetric BTC

Introduction

- BTC combines technicolor and supersymmetry Dine, A.K., Samuel, 1990; non-susy version: Simmons, 1989
- technicolor condensates trigger electroweak symmetry breaking
- fundamental Higgs fields H_u , H_d give masses to quarks, leptons
- supersymmetry stabilizes the Higgs scalar masses
- Higgs VEV's via Yukawa couplings to technifermion condensates

$$\lambda_U \bar{U}_R T_L \hat{H}_u + \lambda_D \bar{D}_R T_L \hat{H}_d \Rightarrow \langle H_u \rangle \sim \lambda_U \frac{\langle \bar{U}_R U_L \rangle}{m_{H_u}^2}, \quad \langle H_d \rangle \sim \lambda_D \frac{\langle \bar{D}_R D_L \rangle}{m_{H_d}^2}$$

- ${\color{red} \blacktriangleright}$ positive Higgs mass parameters, $m_{H_u}^2$, $m_{H_d}^2>0 \ \Rightarrow$ no electroweak symmetry breaking in absence of TC
- \blacktriangleright W, Z receive masses both from technicolor condensates, HIggs VEV's

$$v_W^2 = (246 \text{ GeV})^2 \approx f_{TC}^2 + f_u^2 + f_d^2, \qquad \langle H_{u,d} \rangle \equiv f_{u,d} / \sqrt{2}$$

- -Fermion mass generation in BTC via "Higgs scalar exchange", integrated out in heavy limit -for light Higgs, use chiral Lagrangian approach Carone, Simmons; Carone, Georgi
- Minimal BTC = MSSM + $SU(N)_{TC}$, with technifermion superfields

$$\hat{T}_L(2_{\text{TC}}, 1_C, 2_L, 0), \quad \hat{U}_R(2_{\text{TC}}, 1_C, 1_L, -1/2), \quad \hat{D}_R(2_{\text{TC}}, 1_C, 1_L, +1/2),$$

and Yukawa superpotential

$$W_{Y} = \lambda_{U} \hat{U}_{R} \hat{T}_{L} \hat{H}_{u} + \lambda_{D} \hat{D}_{R} \hat{T}_{L} \hat{H}_{d}$$

- $N_{\rm TC}=2$ is minimal choice
- $N_{\mathrm{TC}}=3$ disfavored: stable fractionally charged technibaryons; $SU(2)_L$ anomaly
- $N_{\mathrm{TC}}=4$ disfavored by S parameter?
- superpartner technigluino, technisquarks acquire masses $> \Lambda_{\rm TC}$, yielding a QCD-like technicolor theory at lower scales

Original Motivation - 90's

- large m_h easily obtained: unlike MSSM, where $m_h \sim m_Z$, in BTC m_h not tied to quartic coupling little change if set D^2 terms to zero
- $lap{1}{\hspace{-0.1cm}/}{}$ at the time, $m_t\gtrsim 100~{\rm GeV}$
- for $\lambda_U\sim 1$ and top Yukawa $y_t\sim 1$, was possible to obtain $m_t\sim 100$ GeV for $m_hpprox 1/2-1$ TeV
 - multi-TeV squark, slepton masses (5-10 TeV) natural
- motivation was to combine SUSY and TC, to ease FCNC problems in each
 - ▶ heavy superpartners ⇒ SUSY FCNC problem alleviated relaxed degeneracy
 - Extended TC fermion mass generation plagued by FCNC problems, unlike Higgs Yukawa couplings

As it turned out

- top significantly heavier, Higgs significantly lighter (preferred by precision electroweak for some time)
- combined with preference for perturbative O(1) top and TC Yukawa couplings, to allow $m_{H_u}^2$, $m_{H_d}^2>0$ without fine-tuning

$$\Rightarrow v_W^2 \approx f_u^2 + f_d^2 \gg f_{TC}^2$$
, e.g. $f_{TC} \lesssim 100 \text{ GeV}$

- bulk of W, Z masses come from Higgs VEV's, but EWK symmetry breaking triggered by TC: $f_{\rm TC} \neq 0$ Kagan, KITP '08; Azatov, Galloway, Luty '11
- $f^2 << v_W^2$, light Higgs also considered in non-susy BTC Carone, Simmons; Carone, Georgi; Antola et al.

- light Higgs ⇒ relaxing SUSY FCNC no longer a motivation
- ho However, from low energy perspective, $m_h \approx 125$ GeV is easy: no fine-tuned cancelations in scalar potential, no need for heavy stops with large left-right mixing,...
 - but, as in MSSM, Higgs mass parameters log sensitive to large SUSY breaking mediation scales
 - unless BTC is $U(1)_R$ symmetric (dirac gauginos), i.e. supersoft

Linking $\Lambda_{\rm TC}$ and $m_{\rm susy}$

- **PROOF** BTC introduces two scales at low energies: (i) m_{susy} , the scale of superpartner masses; (ii) Λ_{TC} , the scale of TC chiral symmetry breaking
- **potential coincidence problem since, e.g.** $m_{\rm susy}/\Lambda_{\rm TC} = O({\rm few})$
- when techni-superpartners acquire masses and "decouple", technicolor beta function becomes more negative.
 - ullet more rapid increase in $lpha_{
 m TC}$ below $m_{
 m susy}$ could link the two scales
- ullet most attractive realization Azatov, Galloway, Luty: above $m_{
 m susy}$, $lpha_{
 m TC}$ sits near a superconformal strong IR fixed point. Provides direct link between $m_{
 m susy}$ and $\Lambda_{
 m TC}$

Higgs Phenomenology

- $m N_{
 m TC}=2$ allows $M_R\hat U_R\hat D_R+M_L\hat T_LT_L$ superpotential bilinears unless impose $U(1)_B$ baryon number or R symmetry
 - in chiral limit $\lambda_{u,d} \to 0$, $M_{R,L} \to 0$: TC sector has global SU(4) symmetry
 - Yukawa couplings ensure desired vacuum alignment $\langle \bar{U}_R T_L \rangle, \langle \bar{D}_R T_L \rangle \neq 0 \Rightarrow \mathrm{SU}(4) \to \mathrm{Sp}(4) \Rightarrow 5$ pseudo-NGB's
 - π^a : the usual $SU(2)_L \times SU(2)_R \to SU(2)_V$ triplet
 - \blacksquare π_{UD} , $\pi_{\bar{U}\bar{D}}$: "baryonic" states which can lead to TC dark matter candidate Ryttov, Sanino; Frandsden, Sanino

- for Higgs phenomenology suffices to consider $SU(2)_L \times SU(2)_R$ subgroup of SU(4):
 - taking into account MSSM scalar fields, after electroweak symmetry breaking have 8 physical linear combinations of MSSM scalars and TC pions
 - ullet one light higgs h, one heavy Higgs H as in MSSM
 - two charged pions π_1^{\pm} , π_2^{\pm}
 - two neutral pions π_1^0 , π_2^0

TC Chiral Lagrangian

ullet Method I: employ 2 flavor $SU(2)_L imes SU(2)_R$ non-linear sigma model chiral Lagrangian \mathcal{L}_χ to $O(p^4)$ Gasser, Leutwyler + MSSM Higgs scalar potential

$$\mathcal{L} = -\bar{T}_L \, \Phi_{\Lambda} \, T_R + h.c., \quad T_{R(L)} = \begin{pmatrix} U_{R(L)} \\ D_{R(L)} \end{pmatrix}$$

Yukawa couplings:
$$\Lambda_u = \begin{pmatrix} \lambda_u & 0 \\ 0 & 0 \end{pmatrix} \quad \Lambda_d = \begin{pmatrix} 0 & 0 \\ 0 & \lambda_d \end{pmatrix}$$
,

scalar field content:

MSSM Higgs fields:
$$\Phi_q = \frac{1}{\sqrt{2}} (\sigma_q + f_q + 2i\pi_q^a T^a), \quad q = u, d.$$

ext. source for
$$\mathcal{L}_{\chi}: \Phi_{\Lambda} = \Phi_{u}\Lambda_{u} + \Phi_{d}\Lambda_{d}, \quad \Phi_{\Lambda} \to L\Phi_{\Lambda}R^{\dagger}$$

TC pions:
$$\Sigma = \text{Exp}\left[\frac{i2\pi^a T^a}{f}\right], \quad \Sigma \to L\Sigma R^{\dagger}$$

• $f = f_{\rm TC}$ in chiral limit, $m_U = m_D = 0$

Chiral Lagrangian for QCD-like TC:

$$\mathcal{L}_{\chi} = \frac{f^{2}}{4} \left(1 + \frac{M^{2}}{8\pi^{2} f^{2}} \right) \operatorname{Tr} \left[(D^{\mu} \Sigma)^{\dagger} (D_{\mu} \Sigma) \right] + \frac{f^{2} B}{2} \left(1 + \frac{3M^{2}}{32\pi^{2} f^{2}} \right) \left(\operatorname{Tr} \left[\Phi_{\Lambda} \Sigma^{\dagger} \right] + \text{h.c.} \right)$$

$$+ \sum_{q=u,d} \frac{1}{2} \operatorname{Tr} \left[(D^{\mu} \Phi_{q})^{\dagger} (D_{\mu} \Phi_{q}) \right] + \frac{B}{32\pi^{2}} (\bar{l}_{4} - 1) \left(\operatorname{Tr} \left[(D^{\mu} \Sigma)^{\dagger} (D_{\mu} \Phi_{\Lambda}) \right] + \text{h.c.} \right)$$

$$- \frac{B^{2}}{256\pi^{2}} (\bar{l}_{3} - 1) \left(\operatorname{Tr} \left[\Phi_{\Lambda} \Sigma^{\dagger} \right] + \text{h.c.} \right)^{2}$$

- condensate at $O(p^2)$: $\langle \bar{T}T \rangle_0 = -f^2 B$,
- TC pion mass at $O(p^2)$: $M^2 = 2\hat{m}B$, $\hat{m} = (m_U + m_D)/2$
- the chiral symmetry breaking scale $\Lambda_\chi \sim B \sim 4\pi f$ in NDA

- scaling to TC from QCD:
 - obtain B, low energy constants \bar{l}_3 , \bar{l}_4 from $n_f=2$ lattice QCD ETM 0911.5061
 - for massive quantities scale up by powers of $f/f_{\pi}^{\rm QCD}$
 - include 1/N scalings to account for $N_{\mathrm{TC}}=2$ vs $N_c=3$
 - for $\hat{m}/f>1$ use linear extrapolation of chiral logs (analog of $\hat{m}\gtrsim m_s$ in QCD)
 - **add** multiplicative fudge factors $\in [0.5, 1.5]$ for B/f, $\langle \bar{T}T \rangle / \langle \bar{T}T \rangle_0$, \bar{l}_3 , \bar{l}_4

Method II: NDA based parametrization for the chiral Lagrangian:

$$\mathcal{L} = Z_{1} \frac{f^{2}}{4} \operatorname{Tr} \left[D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma \right] + 4\pi f^{3} Z_{2} \left[\operatorname{Tr} \left(\Phi_{\Lambda} \Sigma^{\dagger} \right) + \text{h.c.} \right]$$

$$+ \frac{1}{2} \sum_{q=u,d} \operatorname{Tr} \left[D_{\mu} \phi_{q}^{\dagger} D_{\mu} \phi_{q} \right] + Z_{3} \frac{f}{4\pi} \left(\operatorname{Tr} \left[D_{\mu} \Sigma^{\dagger} D_{\mu} \Phi_{\Lambda} \right] + \text{h.c.} \right)$$

$$+ f^{2} Z_{4} \left(\operatorname{Tr} \left[\Phi_{\Lambda} \Sigma^{\dagger} \right] + \text{h.c.} \right)^{2}$$

 $NDA \Rightarrow Z_i = O(1)$. We took

$$Z_{1,2} \in [.3,3], \quad Z_{3,4} \in [-3,3]$$

Method II yields Higgs pheno fits similar to Method I

calculability of loop effects?

pion loop effects are calculable if the chiral expansion parameter

$$\frac{M^2}{\Lambda_\chi^2} \approx \frac{\hat{m}}{2\pi f} << 1$$

- relevant for ΔS , ΔT
- $m{P}$ ho loops are not calculable because $m_{
 ho,a_1}^2/\Lambda_\chi^2\sim 1$
 - $h \rightarrow \gamma \gamma$ not calculable
- **p** parametrize TC induced $h\gamma\gamma$ coupling as

$$\frac{\alpha}{2\pi} \frac{1}{\Lambda} \kappa \frac{\lambda_u \cos \alpha - \lambda_d \sin \alpha}{\sqrt{2}} h A^{\mu\nu} A_{\mu\nu}$$

where $h = \cos \alpha \, \sigma_u - \sin \alpha \, \sigma_d$ and $\kappa = O(1)$ in NDA. Took

$$\Lambda = 4\pi f, \quad \kappa \in \pm [0.5, 3]$$

Fit to the Higgs data

Channel	(μ_V,μ_F)	$(\Delta\mu_V,\Delta\mu_F)$	ρ
ATLAS $\gamma\gamma$	(1.75, 1.62)	(1.25, 0.63)	-0.17
CMS $\gamma\gamma$	(1.48, 0.52)	(1.33, 0.60)	-0.48
ATLAS ZZ	(1.2, 1.8)	(3.9, 1.0)	-0.3
CMS ZZ	(1.7, 0.8)	(3.3, 0.6)	-0.7
ATLAS WW	(1.57, 0.79)	(1.19, 0.55)	-0.18
CMS WW	(0.71, 0.72)	(0.96, 0.32)	-0.23
ATLAS $ auar{ au}$	(1.67, 0.97)	(1.14, 1.86)	-0.49
CMS $ auar{ au}$	(1.28, 0.46)	(0.66, 0.81)	-0.42
Combined $Vh,h o bar{b}$	(0.9, -)	(0.3, -)	-
Combined $t ar{t} h, \ h o b ar{b}$	(-, -0.1)	(-,1.8)	-

Current signal strengths with their uncertainties and correlations for the 126 GeV resonance used in the fit. 18 measurements

■ 18 measurements, 6 parameters $(m_{H_u}^2, m_{H_d}^2, B\mu, \lambda_u, \lambda_d, f)$, 2 constraints (v_W, m_h) ⇒ 14 d.o.f. + 4 fudge factors

• The SM $\chi^2 = 5.79$

• both " p^4 " and "NDA" scans have $\chi^2_{\rm min} \approx 5.4$

 χ^2 plots for " p^4 " scan: $\leq 1\sigma$ (blue) and 1σ - 2σ (magenta) from χ^2_{\min}

ightharpoonup more plots for p^4 scan:

 $lackbox{lack}{lack$

ullet see expected trend for $|c_V|$ to increase and $|c_t|$ to decrease with increasing f

presence of charged pions means we should check ${
m Br}(b o s\gamma)$.

an important difference with respect to conventional TC models: large \hat{m} from Higgs VEVs means heavy π 's

Tuning study in the low energy effective theory

- ullet confirm that $m_h=126$ GeV and $v_W=246$ GeV does not require large tuning
- consider Barbieri-Giudice type measure for a given solution

tuning_{$$v_W(m_h)$$} = Max $\left[\frac{\partial \log v_W(m_h)}{\partial \log p_i}\right]$; $p_i = f, \lambda_u, \lambda_d, m_{H_u}^2, m_{H_d}^2, B\mu$, fudge factors

above plots from NDA scan, with $f>50\ {\rm GeV}$

S and T away from the chiral limit

• S_{tree} in the narrow width approximation, due the lowest lying ρ , a_1 resonances

$$S_{\text{tree}} = 4\pi \left(\frac{f_{\rho}^2}{m_{\rho}^2} - \frac{f_{a_1}^2}{m_{a_1}^2} \right)$$

- f_{ρ} is well known in QCD, f_{a_1} is not so well known
- taking $f_{a_1}=152$ MeV from ${\rm Br}(\tau^+\to\nu_\tau\pi^+\pi^+\pi^-)$ (Isgur et al. '89 + updated Br measurement)

$$\Rightarrow$$
 $S_{\text{tree}} = \left(.27 \, \frac{N_{\text{TC}}}{3}\right)$

including 1/N scaling, consistent with more sophisticated approximation of Peskin&Takeuchi

ullet the $S_{
m tree}$ estimates have been essentially obtained in the chiral limit $m_{u,d} << f$

- what happens far from the chiral limit, as is typical in BTC?
 - ${\color{red} {\bf _P}}$ based on QCD, lattice, we know that m_{ρ} must increase more rapidly than f_{ρ} with increasing \hat{m}
 - the m_{a_1} is $\approx 50\%$ larger than m_{ρ} (due to a larger P-wave quark energy)
 - therefore expect slower relative increase in m_{a_1} than in m_{ρ} , with increasing \hat{m}
- Therefore, S_{tree} could decrease significantly with increasing \hat{m} !

9 get an idea of the effect from lowest lying $[s\bar{s}]$ vector V_s and axial vector A_s resonance masses and decay constants. Ideally, evaluate

$$S'_{\text{tree}} = 4\pi \left(\frac{f_{V_s}^2}{m_{V_s}^2} - \frac{f_{A_s}^2}{m_{A_s}^2} \right)$$

- $f_{V_s}=f_{\phi}, \;\; m_{V_s}=m_{\phi}$ to very good approximation
- $\textbf{\textit{A}}_s \text{ is } O(10\%) \text{ admixture of } f_1(1285) \text{ and } f_1(1420); \text{ heavier } f_1(1420) \text{ is dominantly } [\bar{s}s] \ \Rightarrow \ m_{A_s} < m_{f_1(1420)}$
- $lap{lem}$ know $f_{A_s} > f_{a_1}$

$$\Rightarrow$$
 $S'_{\text{tree}} < 4\pi \left(\frac{f_{\phi}^2}{m_{\phi}^2} - \frac{f_{a_1}^2}{m_{f_1(1420)}^2} \right) \approx 0.15 \ (N_c = 3)$

compared to chiral limit approximation $S=0.27 \; (N_c=3)$

- Iattice data for f_{η_h} , for variation of M_{η_h} between M_{η_c} and M_{η_b} gives an excellent approximation for the variation of the quarkonium decay constant between the J/ψ and Υ HPQCD, 1207.0994
- combining with f_{ρ} , f_{ω} , f_{ϕ} get an approximate extrapolation for quarkonium decay constants over wide range of \hat{m} : rescale to BTC via scale factor f/f_{π}
- the dependence of the BTC ρ and a_1 masses on \hat{m} approximated by scaling from a naive quark model estimate of the light vector mass dependence on \hat{m} in QCD:

$$m_{\rho (a_1)}^2 \sim m_{\rho (a_1) QCD}^2 \left(\frac{f}{f_{\pi}}\right)^2 \frac{3}{N_{TC}} + \mu_{V(A)} \frac{f}{f_{\pi}} \sqrt{\frac{3}{N_{TC}}} \left(m_U + m_D\right)$$

 $\mu_V, \mu_A \approx 2.2$ GeV in naive quark model QCD fit.

• taking $f_{a_1} = f_{a_1}^{ ext{QCD}} imes f/f_{\pi}^{ ext{QCD}}$ obtain

ΔS from "low energy" pion, higgs, Z loops

- example: non-susy one Higgs doublet BTC Carone, Simmons; Carone, Georgi (expect similar results in two higgs doublet case, in progress)
- $m{D}$ ΔS_{IR} vs m_{π} suggests an additional significant decrease in S away from the chiral limit, but for $\hat{m}/f\lesssim 2$, so reasonable to consider pion loop

T away from the chiral limit

lacksquare $\Delta T_{
m tree}$ from

$$\mathcal{L} \sim \left(\text{Tr} \left[\Phi_{\Lambda} D^{\mu} \Sigma^{\dagger} \right] \right)^2 \implies \Delta T_{\text{tree}} \sim \frac{1}{16\pi^2 \alpha} \frac{(m_U - m_D)^2}{v_W^2}$$

 $m{ ilde{I}}$ e.g. $\Delta T_{
m tree} < 0.10$ corresponds to $|m_U - m_D| \lesssim 90~{
m GeV}$

- imposed $|m_U - m_D| < 100$ GeV on Higgs scans

- $ightharpoonup \Delta T_{\rm IR}$ due to $\pi^+ \pi^-$ mass splitting
 - previous authors considered $\pi^+ \pi^-$ mass splitting via (in our notation)

$$\mathcal{L} \sim f^2 \text{Tr} \left(\left[\Phi_{\Lambda} \Sigma^{\dagger} \right] - \text{h.c.} \right)^2$$

- 1-loop diagrams with π 's, Higgs in loop then yields a scale dependent (log-divergent) contribution to T interpreted as logarithmic enhancement by setting the scale to $\Lambda_\chi \sim 4\pi f$.
- thought to dominate over ΔT_{tree}
- instead we attribute the $\pi^+ \pi^0$ mass splitting to $\pi \eta'$ mixing this should be the dominant source.
 - adapting the QCD $\pi-\eta-\eta'$ mixing formalism in Kroll '08 to $\pi-\eta'$ mixing in BTC (scaling from QCD), and also including the η' in the loops, yields finite, negligible $T_{\rm IR} < 0.001$

Summary of S and T

for $N_{\rm TC}=2$ can easily lie inside the 1σ ellipse when away from the chiral limit! Achieved via QCD-like dynamics. No need to speculate about non-QCD like walking or conformal dynamics

- $m{ullet}$ $\Delta S_{
 m tree} < 0.15$, $\Delta S_{
 m IR} \sim -0.10$ for $\hat{m} \sim f$
- $m{m{\square}}$ $\Delta T_{
 m tree} \sim 0.1$ for $|m_U m_D| \sim 90$ GeV, $\Delta T_{
 m IR}$ is neglgible

Vector phenomenology

- employ chiral Lagrangian formalism for vectors Ecker et al. '89
- for now consider LHC bounds on Drell-Yan production $\sigma(pp \to \rho^{\pm} \to W^{\pm}Z)$
- use CMS 19.6 fb⁻¹ $W' \rightarrow WZ$ trilepton search at 8 TeV CMS PAS EXO-12-025
 - CMS presents bounds on $\sigma(pp \to W' \to W^{\pm}Z)$, together with predictions for the sequential SM W' (SSM) Altarelli et al.
 - $oldsymbol{ iny SSM} \ W'ff$ couplings have SM strength; W'WZ coupling is SM strength $\times M_W M_Z/M_W^2$,
 - obtain the ratio

$$\frac{\sigma(pp \to W' \to WZ)_{\text{bound}}}{\sigma(pp \to W' \to WZ)_{\text{SSM}}}$$

compare this to the ratio

$$\frac{\sigma(pp \to \rho \to WZ)}{\sigma(pp \to W' \to WZ)_{\rm SSM}}$$

assuming narrow width approximation for the ρ . Taking into account the ρ width will only weaken the CMS constraint on BTC

Left: CMS bound (blue) and SSM W^\prime prediction (red); Right: line is ratio of CMS bound to SSM prediction, scatter points are ratio of BTC predictions for NDA scan to SSM prediction

⇒ LHC is not sensitive to Drell-Yam production of TC vectors

- per reason for weak bounds: ho f f coupling $\sim f_{
 ho}/m_{
 ho}$ and ho WW coupling $\sim m_{
 ho}/f_{
 ho}$. therefore ${
 m Br}(
 ho o \bar{u}d)$ is tiny
 - in narrow width approximation

$$\sigma(pp \to \rho \to WZ) \approx \frac{4\pi^2}{3} \frac{\Gamma_{\rho}}{m_{\rho}} \text{Br}(\rho \to \bar{u}d) \text{Br}(\rho \to WZ)$$

lacksquare However, sensitivity to ho in WW scattering could be interesting