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Disclaimer:

"It's Hard To Make Predictions, Especially
About the Future"

Yogi Berra, Niels Bohr or Mark Twain
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Disclaimer:

“It Is Always Wise To Look Ahead, But
Difficult To Look Further Than You Can
See.”

Winston Churchill
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Introduction: charm

* Charm physics provides incredible opportunities to study both QCD and NP!

% Most studies of New Physics involve flavor changing neutral current transitions

Yooy
=

< Breadth > v
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Ac = 2 example: mixing

* Main goal of the exercise: understand physics at the most fundamental scale

% It isimportant to understand relevant energy scales for the problem at hand

physics of beauty physics of charm
i
P d Gl ="
t b,s,d

cu

c,u t
M

small dominant dominant small

< X X X
X
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Mixing: short vs long distance

* How can one tell that a process is dominated by long-distance or short-distance?

% To start thing of f, mass and lifetime differences of mass eigenstates...

MQ—Ml FQ_Fl
S e

% ...can be calculated as real and imaginary parts of a correlation function

1 _
_ Im (DO i | d T{ |IAC|=1 IAC|=1 }DO
= gy I (D73 [t {01 (o) 1l ple
bi-local time-ordered product
tp = ——— Re |2(DO|HIACI=2 | D% 4 (D0 /d%T{HL}AC':l(x)Hlfc|:1(0)}\D0>
2MpT'p

local operator bi-local time-ordered product
(b-quark, NP): small?

% So, the big question is if the integrals are dominated by x — 0 ???
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Mixing: short vs long distance

* How can one tell that a process is dominated by long-distance or short-distance?
% It isimportant to remember that the expansion parameter is 1/Ereleased

1 01 ; _ _
vo = g 1 (D) z/d4x T{Hlﬁcl—l(az) HLUAC|—1(0)}|D0>

c \ :
OPE-leading contribution:

% In the heavy-quark limit m. — o we have mc » ¥ Mintermediate quarks, SO Ereleased ~ Mc

- the situation is similar to B-physics, where it is "short-distance” dominated
- one can consistently compute pQCD and 1/m corrections

% But wait, m¢ is NOT infinitely large! What happens for finite m:???
- how is large momentum routed in the diagrams?
- are there important hadronization (threshold) effects?
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Threshold (and related) effects in OPE

* How can one tell that a process is dominated by long-distance or short-distance?

p1
c /\ u

% Let's look how the momentum is routed in a Pe

leading-order diagram \

- injected momentum is pc ~ mc, so

- thus, pi~p2~mc/2 ~ O(Aqcp)? o \/ c
% For a particular example of the lifetime difference, >
have hadronic infermediate states K

- let's use an example of KKK intermediate state m
- in this example, Ersesea ~ Mo - 3 mc ~ OlAqen) 0= 0

% Similar threshold effects exist in B-mixing calculations
- but mp » 3 Mintermediate quarks, SO Ereleased ~ My (almost) ClIWClYS
- quark-hadron duality takes care of the rest!

Maybe a better approach would be to work
with hadronic DOF directly?
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Mixing: Standard Model predictions

% Predictions of x and y in the SM are complicated
-second order in flavor SU(3) breaking
-mc is not quite large enough for OPE
-x,y << 1073 (“short-distance")
-x,y ~ 102 ("long-distance")

Standard Model mixing predictions

1.00E+00 H++H+H+HHHHHHHHHHHHHHHHHHHHHH *ShoeriSTGnce:
1O00E01 41 4 7 10 13 16 19 22 25 28 31 34 37 40 ,
' A A -assume mc is large
1.00E-02 + A OCH ) )
1 00E.03 1 Azr ‘FA A D T 0o -combined ms, 1/mc, as expansions
> 4 0E-04 1 = A A 0 O -leading order: ms?, 1/mc°!
; 1.00E-05 - Z}A A A A A O —TthShOId efoCTS? H. Georgi; T. Ohl, ...
B 1.00E-06 { & oA A L. Bigi, N. Uraltsev;
1.00E-07 4 L_[p . . M. Bobrowski et al
1 00E-08 - % Long distance: .
1.00E-09 -assume m¢ is NOT large

-sum of large numbers with alternating
signs, SU(3) forces zero!

Reference Index

“ Not an actual representation of theoretical
uncertainties. Objects might be bigger then

what they appear to be...
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-multiparticle intermediate states

dominate

J. Donoghue et. al.
P. Colangelo et. al.

Falk, Grossman, Ligeti, Nir. A.A.P.
Phys.Rev. D69, 114021, 2004

Falk, Grossman, Ligeti, and A.A.P.
Phys.Rev. D65, 054034, 2002
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© Test: inclusive decays and lifetimes

b m b | b b
1. Nice test of our understanding N -

of non-perturbative QCD

effects in charm ﬁ 2
2. One of the few unambiguous g b Iy b, gt

L

theoretical predictions that are
easy to test experimentally

3. Theoretical uncertainty can be
estimated: precision studies

1 1 .
U(H,)= o =(H,|T|H,) = o (H,[Imifd*x T {7 (<) "0)}#,)
b b
\ Gl%m; A, A,
R T R
o o

HQ expansion is converging reasonably well
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Generic restrictions on NP from DD-mixing @

% Comparing to experimental value . Rp y x2 Excl. No-Mix R
of x, obtain constraints on NP (x10°) (x10%) (x10%)  Significance | (x10~)

models... Belle (2006) 364+017  06+40  0.18+022 20 3.77£0.09
- assume x is dominated by

the New Physics model BaBar (2007) 303+019 97+54  -022+037 39 353+0.09
- assume ho accidental LHCb 3524015 72+24  -009+013 9.1 4254004
strong cancellations b/w SM
and NP CDF (9.6/fb) 351+035 427+430 008+0.18 6.1 430 +0.06
1 8 M. Mattson, 2013
AC=2 _
NP Z
|Zl| < 0 7 x 107 ( 1 TeV ) =1
2l < 16 x 1077 A New Physics is either at a very high scales
VA
% ... which are - Axp tree level: Anp > (4—10) x 10° TeV
lz3] < 5.8 x10~
1TeV loop level: Anp > (1—3) x 10% TeV
Any
24| < 5.6 x 10" ( Teo V) or has highly suppressed couplings to charm!
|Z5| < 1.6 X 1077 ( ) Gedalia, Grossman, Nir, Perez
1 TeV Phys.Rev.D80, 055024, 2009
% Constraints on particular NP models also available! Pie. fev. 600008, 2007 AL
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Ac = 1 example: radiative and rare decays

* There are some improvements in measurements of rare decays

- 102
e 10° r s . s+ v| % FCNC transitions “directly” probe NP
3 % vy B8 v, © £t vy 0O .
g T @ @, " : % SM calculable contributions are usually small
A O o O . .
10° 4§ % ... but long-distance effects dominate
100 @ @
¥ HFAG-ch .
107 T % can use we rare and radiative charm decays
O to rule out NP models...
R AR AR i R A i R R ek AR i o % ... and help with sorting out surprises?
R%R T TR RR S ST T BT RT R
B (] Y ¢ X g 4 g ‘E
X e
; 107
3 L BL E
< 107 . ] 791 « CLEOIl + BaBar
3 104E2 . a - o . « |0 o 0 g4 " D
. o ¥ o « CLEO vE653 - Belle
10 I
10° .
o HEAG-charm o E789 - HERAB * CDF
March 2012
8
10 Lo Lo | < Argus < LHCb  © Mark3
DiRiREriiriiiisisisen
A ,: o S § 91! ,; Q’iq»o Yte ate 4 ’:L v T o 'f"" . L1 3T a ;)r 2 o o -
Seg8gddeee rIFAUITharm Physies Parameters
B AN oSSR Ry
.I‘; X ¥ N & oo
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Rare radiative decays of charm

* Standard Model contribution to D — vy

kL kY
A(D — v7) = 1oy [APCE“”aﬁklakm +iApy (9“” - k:12 ]i )]
T2

m3

['(D—vyy) = Y

[!APO\ — \APV2]

D

% Short distance analysis L = _Gr VusV* C’?};f 462ijmc ( %(1 +75) )
70

L

(a)

i Paul, Bigi, Recksiegel (2011
- only one operator contributes aul, Bigi, Recksicgel (2011)

- including QCD corrections, SD effects amount to Br = (3.6-8.1)x1012

% Long distance analysis

. _ Burd , Golowich, H tt, Pak 02);
- long distance effects amount to Br = (1-3)x108 Pater Simgen Zuman oy 0 v (01
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New physics and radiative D-decays

* New constraints on NP models from D — vy since 2010

* Some popular "LHC models” can be tested with D — vy

- consider an example of Littlest Higgs model with T-parity  Paul Bigi, Recksiegel 2011)
- new particles: partner of top, mirror fermions and gauge
bosons, triplet and singlet Higgs bosons: possible effect!

Constrained by B and K Physics Not Constrained by B and K Physics

.............................................................

1000 | 80
800 | : 60 |

600 |
[ 40

counts
counts

400 |

I 20
200 |

hm__ o

[ | -
0 .. - —— .. - | 0w _._.”1H‘[| L
10 5 0 5 10 15 20 10 0 10 20

(Mot=Tgm)/T'sm % (Fiot=Tsm)/Tsm %

% No observable effect in D — yy! But could affect D-mixing: anti-correlation!
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Rare leptonic decays of charm

* Standard Model

contribution tfo D — pyy .

% Short distance analysis BEd) G%M&vfz)meF
2 B Dogre- = 2 ;
= 1 M 2
Qo 1672 ayuerby*yst, F= Y V.V [ iy Zog, <ln2 T; + d+m )]
i=d,s,b 2 dm 3

- only Qio contribute, SD effects amount to Br ~ 1018

- single non-per

% Long distance analysis

. UKQCD, HPQCD; Jamin, Lange;
turbative parameter (decay constant)  Penin, Steinhauser; Khodjamirian

Burdman, Golowich, Hewett, Pakvasa;
Fajfer, Prelovsek, Singer

Update soon: Healey, AAP

N 1 d3 d3
BEE, = X (PIHEIIDY) oy Brew | TnMu—ee = 3 3 [0 00

-Pn,

w1(27)3 2we(2m)3
X Mpoyy Mo e 2m)*69 (P — g1 — g2)

M} — Mp;

- LD effects amount to Br ~ 1073
- could be used to study NP effects in correlation with D-mixing
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Generic NP contribution to D — p'y- @

% Most general effective Hamiltonian:

Q1 = (Loyule) (pyPer) ,  Qa = (Crly) (uncw)
(flHnpli) = GY_Ci(w) (FIQilD) (1) Qo= (Comuls) @rr*cr),  @s = Erowly) (arot“cr)
=1
Qs = (£1Lr) (urer) plusL < R

% ... thus, the amplitude for D — e*e”/pu"u decay is

Mp 4m? 4me 2
1— —F Al + |B
- o =G| (1= S 1k |

2
BD0—>;1,+e— = Mp (1_m—2> [|A| +|B|] )

BDO—»e+Z

87TFD M2

foMp

c

Bl = 22 [ome (G M os A _
=G mz( -2+ Co_ 7) - (04—3+CQ—8) . Ci_r.=C; —Cy,

Al =G [63—8 + 6'4—9] ;

C

Many NP models give contributions to both D-mixing and D — e*e/p*p- decay: correlate!!!
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Mixing vs rare decays: a particular model

Bpo_ytu- < 1.3x107%  Bpoere- <1.2x 1079,
% Recent experimental constraints
BDO_,p;i:e:F S 8.1 % 10_7 )

E.Golowich, J. Hewett, S. Pakvasa and A.A.P.
PRD79, 114030 (2009)

% Relating mixing and rare decay
- consider an example: heavy vector-like quark (Q=+2/3)
- appears in little Higgs models, etfc.

M. . . H . g2 A2 Q . GF)‘?LCQ

22/3) _ 2Gr XN fpMpBpr(me, Mz)
? 3v2l'p

GFfDmu

Rare decay: Apo_g+g- =0 Bpo_gte- = Auc 2 A = — (ViVea + Voo Ves + Vo V)
uc = — \VyudVe us '’ cs ub

B 3v2 Gpmia:D . 4mi 1/2
N 64m BDr(mc, Mz)
4.3x 10 %p < 4.3x 1071

12

Note: a NP parameter-free relation!
L S VRS S D 3
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Mixing vs rare decays @

% Correlation between mixing/rare decays
- possible for tree-level NP amplitudes
- some relations possible for loop-dominated transitions

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. (09)

% Consider several popular models

Model Bpo_, i+ -
Standard Model (SD) ~ 10718
Standard Model (LD) ~ several x 10713
Q@ = +2/3 Vectorlike Singlet 43 x 1071

Obtained upper
limits on rare
decay branching
ratios.

Q = —1/3 Vectorlike Singlet|| 1 x 107! (mg/500 GeV)?
Q = —1/3 Fourth Family | 1 x 107 (mg/500 GeV)?
Z' Standard Model (LD) || 2.4 x 107'2/(Mz/(TeV))?

Family Symmetry 0.7 1078 (Case A)

RPV-SUSY 1.7 x107° (500 GeV/my, )

Same idea can be employed to relate D-mixing to K-mixing  Blum, Grossman, Nir, Perez (09)
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Rare semileptonic decays of charm @

» These decays also proceed at one loop in the SM; GIM is very effective
- SM rates are expected to be small

% Rare decays D — M e*e /'y just like D — e*e”/p*y are mediated by c—u |l

Burdman, Golowich, Hewett, Pakvasa;

G Fajfer, Prelovsek, Singer
LR =2tV 3 Co,
2 i=7,9,10
Mode LD Extra heavy ¢ LD + extra heavy g
e _ e’ - D™ —mtetem 20x107° 13x107° 2.0X 107°
Q9 = Jeatyuctty*t, Qo =103 uryucrlyyst, D* —mtutum 20X10°° 16X 1070 2.0 X 10
Mode MSSME LD + MSSM§E

- SM contribution is dominated by LD effects »*— 7r+e+e“ 21107 23X 10°¢
- could be used to study NP effects D' »a'p"p” 65107 88X10

Fajfer, Kosnik, Prelovsek

D> w w 0.001

% Example: R-partity-violating SUSY I . . ~ ‘ DS

- operators with the same par'ame’rer's HeseR
contribute to D-mixing

- feed results into rare decays

1e-04

1e-05

dBr/dq’

1e-06 ||

(1T) dridm 2 (Gev'™?)

|
/
f

108

1e-07
1010

1e-08

O =

0.5 1 15 2
q? (GeV?)
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CP-violation in charmed mesons (general)

% Fundamental problem: observation of CP-violation in up-quark sector!

% Possible sources of CP violation in charm transitions:

* CPVin Ac = 1 decay amplitudes ("direct” CPV)
(D — f) # T(CP|D] — CP[f])

* CPVin p°_p° mixing matrix (Ac = 2):

D.2) = p|D")24[D7) = 1Dcrs) = 5 (107) £[D"))

2

M — s\ 4y #1

Am — (i/2)AT

B2 — |g/pl® '

* CPV in the interference of decays with and without mixing

}\f _ iﬁ — Rmei(¢+5)
p A A,

* One can separate various sources of CPV by customizing observables

4
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CP-violation I: indirect

% Indirect CP-violation manifests itself in DD-oscillations
- see time development of a D-system:

i) = (31 - 5r) 1D(0)

/ \

010\ — _t =3 :
(DY|H|D%) = Mjq 2P12 (DO|H|D°) = Mfz_% 12

% Define mixing parameters

yi2 = [T12]/T, 12 = 2|M12|/T,  ¢12 = arg(Mi2/T'12)
Note: can be calculated in a given model

* Assume that direct CP-violation is absent (Im (I'},A;/Af) = 0, |A;/Af| = 1)
- can relate x,y, @, |q/p| to x12, y12 and @12

_ 222 .2
Xy = X12Y12 €081y, X Yo = X12 7 Vi

@ +y?)lg/pl> = x{; + ¥, + 2x12y12 sindhy,
x*cos? ¢ — y?sin’¢p = x2,c0s?¢p 5.
% Four “"experimental” parameters related to three “theoretical” ones

- a "constraint” equation is possible
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CP-violation I: indirect

* Assume that direct CP-violation is absent (Im (I'}j,A;/Af) = 0, |A;/Af| = 1)
- experimental constraints on x,y, @, |q/p| exist
- can obtain generic constraints on Im parts of Wilson coefficients

8
_ 1
NP

1=1

* In particular, from 20y sin @y < 0.0022

2
Im(z) < 1.1x1077 Awe ,
1TeV R .
A 2 New Physics is either at a very high scales
Im(z) < 29x1078 (1 :ifv) :
A ) treelevel: A, ., > (4—10) x 10° TeV
— NP
Im(z) < 1.1x 107" (1 TeV) , loop level: Anp > (1—3) x 10% TeV
of A\’ or have highly suppressed couplings to charm!
< 1. 8
Im(zs) < 1.1 x10 (1 TeV) ,
Im(zs) < 30x10-8< A )2
5) R 9 . Gedalia, Grossman, Nir, Perez
1 TeV Ph;ls.lRev.Dso, 0550211 2(5)9

% Constraints on particular NP models possible as well JEED 0007007 2000 sieBel

A S U T E NN I TS T IR N T S L e T e U S R
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CP-violation I: indirect

% Relation; data from HFAG's compilation 35 F 10
g CHARM 2013 20
= 601
v _1-lo/pl _ 1 Am g |
Y tan ¢ 2 tan ¢ o 40
< 7
-y/x%0.8 +0.3 =™ Ap ~ tan @ 201
- CPV in mixing is comparable to CPV of
in the interference of decays with i
and w/out mixing -20-
o -40
- aside: if |Miz] < |T12]: -
z/y = 2|Mi2/T'12| cos ¢12, - -
I_llllllllllllllllllllllllllllllll|l
Ap, = 4|Mi2/T12|sin @12, 02 04 06 08 1 12 14 16 1.8
. lg/pl
¢ = —2|Myy/T1o|?sin2¢1s. ¥
Note: CPV is suppressed even if Mi2 is all NP!!I 1‘3{%2‘;‘6“;‘2’0‘;;;’?1‘2““’ Ligeti, Nir, AAP

% With available experimental constraints on x, y, and q/p, one can bound WCs of a
generic NP Lagrangian -- bound any high-scale model of NP
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CP-violation IT: direct

* IDEA: consider the DIFFERENCE of decay rate asymmetries: D —nm vs D — KK!
For each final state the asymmetry D% no neutrals in

. the final statel
r(p—s)-r(0—-7) =P a,=a;+a; +d,

a'f=r(D—>f)+r(B—>7) ! A X

direct mixing interference

* A reason: a™=a"r and a'kk=a'rr (for CP-eigenstate final states), so, ideally,

mixing asymmetries cancel!
d . .
a, =2r.sin¢,sinod,

% ... and the resulting DCPV asymmetry is Aacp = ak — a2, =~ 2a% 5 (double!)

G .
= ZEA[(T + E + Poa) + ar'e Py

A

KK \/§

A =CYENiCriE ap Me— P,
Wﬁ—ﬁ [(_( + )+ sd)+a € bd]

% ... so it is doubled in the limit of SU(3)F symmetry

SU(3) is badly broken in D-decays
e.g. Br(D — KK) ~ 3 Br(D —nm)

L U S VNS S DS
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Experiment?

* Experiment: the difference of CP-asymmetries: Aacp = acp,KkK — GCPxx

% Earlier results (before 2013):

Experiment AAcp
LHCb (—0.82 + 0.21 + 0.11)%
CDF (—0.62 £0.21 + 0.10)%
Belle (_0-87 +041 £ 0°06)% Looks like CP is broken in
BaBar (4+0.24 £ 0.62 +0.26)% charm transitions!
Now what?

% Recent results (after 2013):

D** tag (this analysis): AAgp = (—0.34 £ 0.15 (stat.) = 0.10 (syst.)) %
Semileptonic analysis: ~ AAgp = (4+0.49 £ 0.30 (stat.) 4 0.14 (syst.)) %
Combination: AAcp = (—0.15£0.16) %

LHCb-CONF-2013-003

Not so sure anymore...

L S VRS S D ¥
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Is it Standard Model or New Physics??

* Is it Standard Model or New Physics? Theorists used to say...

Naively, any CP-violating signal in the SM will be small, at most O(V,V,,"/V V)~ 1073
Thus, O(1%) CP-violating signal can provide a "smoking gun” signature of New Physics

...what do you say now?

% assuming SU(3) symmetry, acp (m) ~ acp (KK) ~ 0.15%. Looks more or less 0.1%...
% let us try Standard Model
- need Yo estimate size of penguin/penguin contractions vs. tree

< O
e

- unknown penguin enhancement (similar to AT = 1/2)
- SU(3) analysis: some ME are enhanced
Golden & Grinstein PLB 222 (1989) 501;Pirtshalava & Uttayarat 1112.5451

- unusually large 1/m. corrections
Isidori et al PLB 711 (2012) 46; Brod et al 1111.5000

- no assumptions, flavor-flow diagrams
Broad et al 1203.6659; Bhattacharya et al PRD 85 (2012) 054014;
Cheng & Chiang 1205.0580
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New Physics: operator analysis

* Factorizing decay amplitudes, e.g.

_ Gp Gr
Hiagmr = —= > > (CIQI+CIQY) + —= > (CiQi + C/Q;) + H.c.
|Ac|=1 1% 1 i L )
V2 i=1,2,5.6 gq V2 i=17,8

Qi = (aq)v-a(Gc)v-a
Q5= (taqp)v-a (daca)v-a
Qi = (ac)v-a(dq)vsa

Qg = (ﬁacﬂ)V—A (q—ﬁQLx)V+A

e

Qr = — gz Me w0, (1 + v5)F" e
Js a ~pv Z. Ligeti, CHARM-2012
Q8=_8 zmcuoltu(1+'7’5)T Ga c
X one can fit to £'/¢ and mass difference in D-anti-D-mixing Gedalia, et al, arXivi1202.5038
- LL are ruled out
. Allowed Ajar Disfavored
- LR are borderline Qrs. Obe, QF, “h0), T Qe

- RR and dipoles are possible  y; of, qleswsor o) Q(“)’ ijdc w.8d,b

5,6

Constraints from particular models also available
L S VRS S D S U T R RN N ST T I T OERAY (L SO S e e e U S R
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Future: lattice to the rescue*?

% There are methods to compute decays on the lattice (Lellouch-Liischer)
- calculation of scattering of final state particles in a finite box
- matching resulting discrete energy levels to decaying particle
- reasonably well developed for a single-channel problems (e.g. kaon decays)

% Can these methods be generalized to D-decays?
- make D-meson slightly lighter, mp < 4 my
- assume G-parity and consider scattering of two pions and two kaons in a
box with SM scattering energy

Hansen, Sharpe

2m. < 2mi < BE* < 4m, PRDS6, 016007 (2012)

- only four possible scattering events: nm—nm, nm—KK, KK—=nm, KK—=KK

- couple the two by adding weak part to the strong Hamiltonian H(z) — H(x) + AHw (x)

% Application of this approach to calculate lifetime difference is not triviallll
- need to consider other members of SU(3) octet
- need to consider 4m states that mix with mm + others
- need to consider 3-body and excited light-quark states

* See “panacea”: In Greek mythology, Panacea (Greek Mavdkeia, Panakeia) was a goddess of Universal remedy.
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Future: CP-violation in charmed baryons

» Other observables can be constructed for baryons, e.g.

A(Ac — N7t )=;N (pas)[AS +APY5]MAC (pAaSA)

2Re(4;4, )
These amplitudes can be related to "asymmetry parameter” @, =-—73 >
45| +] 4,
aw 1
.. which can be extracted from =—(1l+ Po, cosﬁ)
dcos® 2 ‘

Same is true for A -decay

cp
If CPis conserved ¢, => —a.» , thus CP-violating observable is

Qp, + QA
Ay = — FOCUS[2006]: A, =-0.07+0.19+0.24
Q0 . Az
Ac A,
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Transitions forbidden w/out CP-violation

t-charm factory

* Recall that CP of the states in D°DY — (F;)(F3) are anti-correlated at y(3770):
*  asimple signal of CP violation: (3770) — D°DY — (CP1)(CPy)

I. Bigi, A. Sanda; H. Yamamoto;
Z.7. Xing; D. Atwood, AAP

CP|Fi| = CP|F;] 7,

CP eigenstate F,

/>

‘D°50>L - % H D°(k, )BO(k2)> £ (=D

—0
Peigenstate F, | D" (k,)D <k1>>]

FF FF 2 2 2 D 2 2
I‘\F1F2_ flig : [(24—58 +y)‘)‘F1_)‘F2| —I—(CC +y)|1_)‘F1)‘F2| }
: \
* CP-violation in the rate — of the second order in A = iﬁ
CP-violating parameters. "p 4,
*  Cleanest measurement of CP-violation! AAP, Nucl. Phys. PS 142 (2005) 333

hep-ph/0409130
L S O S VNS S S D 3
Alexey A Petrov (WSU & MCTP) 4 EWSB, Dark Matter & Flavor Workshop, Capri 23-25 May 2014




Better observables: untagged asymmetries?

% Look for CPV signals that are A-A-F, PRDGS, 11I901(R), 2004
- first order in CPV parameters
- do not require flavor tagging (for D°)

% Consider the final states that can be reached by both D° and D,

but are not CP eigenstates (TP, KK*, K, Kp, ...)

Y -7

Alp(f) = ZfTEf

where Sy =T(D° — f)+T(D - )
% For a CF/DCS final state K, the time-integrated asymmetry is simple
Alp (KTn™) = —ysindgn sin v/ Rk (<10 for NP)

% For a SCS final state pm, neglecting direct CPV contribution,

Agp (,0+7T_) = —ysin 0,y Sin P/ Ryre (<102 for NP)

Note: a "theory-free" relation!
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"I'm looking for a lot of men who
have an infinite capacity to not
know what can't be done."

Henry Ford
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Things to take home

» Computation of charm mixing amplitudes is a difficult task
- no dominant heavy dof, as in beauty decays
- light dofs give no contribution in the flavor SU(3) limit
- D-mixing is a second order effect in SU(3) breaking (x,y ~ 1% in the SM)

> Charm quark is neither heavy nor light enough for a clean application of
well-established techniques

"heavy-quark” techniques miss threshold effects

- "heavy-quark" techniques give numerically leading contribution that is
parametrically suppressed by 1/m®

- "hadronic” techniques need to sum over large number of infermediate states,
AND cannot use current experimental data on D-decays

- "hadronic” techniques currently neglect some sources of SU(3) breaking
> Calculations of New Physics contributions to mixing are in better shape
- contributions of NP in Ac=2 operators are local and well-behaved

- ATp can have large (even dominant) contribution from NP

> Lattice calculations can, in principle, provide a result for exclusive yp
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Experimental analyses of mixing

* In principle, can extract mixing (x,y) and CP-violating parameters (Am, @)
See talk by S. Stone

% In particular, fime-dependent D°(t) — K7~ analysis

2
LD°(t) —» KTn | = e " |[Agsn-|? [R + VRR,, (3 cos ¢ — z' sin ¢) T't + B (22 +y?) (Tt)°

4
o

R2=‘1

"op

, X'=Xxc0sd + ysind, y'= ycosd —xsind

C LHCb: x'2=(-09+13) x 104,y' = (7.2+ 2.4) x 10'3)

% The expansion can be continued to see how well it converges for large t

I[D(t) —» K*77]|Ak.| %™ = R — VRR,,(zsin(é + ¢) — ycos(d + ¢)) (T't)

4 2 (R = B2+ (R4 Ra) o) (T

+ é\/ﬁRm (x3 sin(d + ¢) + y° cos(d + ¢)) (Tt)”
- %Rm (1'4 - y4) (Ft)4

AN AT a - VIS L G Jul
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© 2b. Leptonic decays of D" and Ds @

* In the Standard Model probes meson decay constant/CKM matrix element

(057 5¢lD.) = i f. : p
G? / 2\ W
m
T(Dg — tv) = =L 3 miMp, [ 1— —£& | [Veql’ 5 _
87 M3, v

.. o theory can be compared to experiment by comparing |[foq Vel

see Artuso, Meadows, AAP

% New physics contribution o Ds — Iv decay

. . HPQCD :
- possible heavy NP mediators  akeryod; Hou; Hewett (2007) - fps
Dobrescu, Kronfeld (2010) -

\\/ \\/E Fermilab/MILC :

) :
(+1) (2005) ——
) >> +2/3) , v (~1/3) (2010) [prelim.] ——
s 1
i+ 3 /\u ETMC (2009): -

see Dorsner, Fajfer, Kamenik and Kosnik
Aditya, Healey, AAP HFAG: 2.3%

- ultra-light NP particle emission in the final state?

No helicity suppression !!! 1.60 1;;0 22)0 2'20 2;0 2;30 2;30 300
MeV
‘ No discrepancy between theory and experiment '
J. Shigemitsu, CKM-2010
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© Radiative leptonic decays of D* and Ds

% Recall that purely leptonic decays are helicity suppressed in the SM
- add photon to the final state to lift helicity suppression

A(D — pvy) = (ury (k)| Hw (0)| D(p)) ~ / d*we= e 0T[5 (2) J5(0)] |1 D(p))

LSZ reduction + e/m
perturbation theory

, (D —tvy) « (mp
* Define RY = = (

2
= ° I(A ;
F(D —>£l/) 67 ) Ky ( 7mD77)

my
Burdman, Goldman, Wyler
* Estimate RY, ~ (1 — 10) x 10~ 24} GeV?
- results in B(D — pvy) ~ 107 and B(Ds — pvy) ~ 10* with B(D — evy) >> B(D — ev)
- for B-mesons, QCD-based calculations are possible

Lunghi, Pirjol, Wyler
Korchemsky, Prjol, Yan

% Is lattice prediction for D — pvy possible?
— Char'monium radiative dCCC(YS Dudek, Edwards; Dudek, Edwards, Roberts
- photon structure functions, pion form-factor, etc. X.JiC.Jung
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© 2c. Semileptonic decays of D-mesons

* In the Standard Model probes meson form factor/CKM matrix element

PRD 76:052005,2007 (75fb™")

* BABAR
+» FOCUS
2 - = Lattice-QCD (a, = 0.50(4))

f.(q°)/f,(0) {é

| DO — Ketv |
1 <t ~74kK sig. evts—
PR T T ST T

0 0.5 1 1.5

_ ,5 —PRL 97:061804,2006 (282fb-1)

"321'5 Bl unquenched LOCD (2]

2 juenched LQCD [2)
1.75 g~ simple pole model [16])

075 £ il
o?z': DO Kty Apole™ 0.52 (8) (6)

~ O0F ~ i —
“3.2425 3 2500 sig. evts 1 15

0 | Doy oy O™ 01021 (10)
o ~230 sig. evts ' *

3
q° (GeViic?)

Alexey A Petrov (WSU & MCTP)

- direct access to Ves and Vg
- lattice QCD: exclusive transitions

% Decay rate depend on form factors
- parameterization of q° dependence defines a model

dT'(D — K(n)eve) GLIV., |
dq? Yy Z pK(,,)If+(qz)|2

where (K(m)|gT*c|D) = fi(¢*)P* + f-(g5)q"

% Can success of LQCD calculations of D — K and D — m form factors

be replicated for other systems?
- calculations of Ds form factors
- calculations of semileptonic decays of baryons
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&, Quarkonia and exotics

* Rich physics opportunities for studies of QCD in different regimes

- effective theories for charmonium states
- charmonium exotics
- lattice QCD: exclusive transitions

© Charm in heavy ion collisions

* Rich physics opportunities for studies of QCD in different regimes

- charmonium suppression

- do charm quarks flow?

- how do charm quarks loose energy while propagating through a QGP (radiative
vs. collisional energy loss)?

- how do charm quarks hadronize in a decaying QGP (recombination vs.
fragmentation)?

- what are the charm quark transport coefficients (e.g. diffusion constant)?

- what QGP properties are charm quarks most sensitive to?
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Rare radiative decays of charm

* Can radiative charm decays help with Aacr?

% In many NP models, there is a link between chromomagnetic and

electric-dipole operators Isidori, Kamenik (12)

Uz
OF A2 ULUMUTGQSGZVCR
me, _ "y
Q7 = A2 'U:LO';WQueFM CR

Same is true for operators of opposite chirality as well

Gludice, Isidori, Paradisi (12
* There are many operators that can generate Aacp tudice, Isidord, Paradist (12)

- one possibility is that NP affects Qg the most; the asymmetry then

|Aa§1133 ~ —1.8|Im[C§\IP(mC)]|

- e.g. in SUSY, gluino-mediated amplitude satisfies C?Y5Y (mgysy) = (4/15)C5Y5Y (msusy)
- then at the charm scale,

IIm[CNF (m,)]| = (0.2 — 0.8) x 1072

|CPM= ()| = (0.5£0.1) x 1072 What about LD effects?
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CP-violation in radiative decays of charm

* Probing acp in radiative D-decays can probe Im C7 — Im Cs — Aacp

- problem is, radiative decays are dominated by LD effects

Isidori, Kamenik (12)

m3 m2\°
(D — V7y) = 32—1; (1 — m—;’) [[Apv[* +[Apc|]
D s

% CP-violating asymmetry in radiative transitions would be

Im[C7(m,)]
0.4 x 102

|a(p,w)7|max = 004(1) ‘

105 1/2
<
~ [B(D > (p,wm] S 10% .

X Better go of f-resonance (consider K*Ky) or even h*h"u*y final states
- the LD effects would be smaller, but the rate goes down as well

Isidori, Kamenik (12)
Cappiello, Cata, D’Ambrosio (12)
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Do we need full SU(3)?

% Since ms provides the dominant source for SU(3) breaking, try U-spin Gronau, Rosner
- U-spin interchanges s- and d-quarks PRDS6, 114029 (2012)
- ... thus, has the same source of breaking
- ... but the formulas could be simpler

HZ°='=H_,+ Hy+ H,,

Gr C? _ GrCS Gr S?

Ha=="7% (sc)(ud), Hy 73 (3¢)(as) — (de)(ud)], Hir=-— /3 (676)(17»_8)‘

-the Hamiltonian has three parts corresponding to three components of U-spin vector
U-spin triplets

J\

AT = Y > p(f&)(D°|H_s|fs)(fs|Hs|D% + c.c.

S=71,0 fé? \ /

U-spin singlets

% One can follow the same logic as with full SU(3), but tracking U-spin only
- get several sum rules in the U-spin limit
- GR used experimental data to see how much sum rules are violated A CAUTION
- those contributions (esp 4-body) add up to the physical value of yp~1%
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