# Charm physics: past, present and future



### Alexey A. Petrov

Wayne State University Michigan Center for Theoretical Physics

### Table of Contents:

#### Introduction

- $\Delta c = 2$  processes: mixing
- $\Delta c = 1$  processes: rare decays
- CP-violation in charm
- Conclusions

## Disclaimer:

# "It's Hard To Make Predictions, Especially About the Future"

Yogi Berra, Niels Bohr or Mark Twain



## Disclaimer:

# "It Is Always Wise To Look Ahead, But Difficult To Look Further Than You Can See."

Winston Churchill



## Introduction: charm

\* Charm physics provides incredible opportunities to study both QCD and NP!

★ Most studies of New Physics involve flavor changing neutral current transitions



## $\Delta c = 2 \text{ example: mixing}$

\* Main goal of the exercise: understand physics at the most fundamental scale

 $\star$  It is important to understand relevant energy scales for the problem at hand



### Mixing: short vs long distance

\* How can one tell that a process is dominated by long-distance or short-distance?

★ To start thing off, mass and lifetime differences of mass eigenstates...

$$x_D = \frac{M_2 - M_1}{\Gamma_D}, \ y_D = \frac{\Gamma_2 - \Gamma_1}{2\Gamma_D}$$

 $\star$  ...can be calculated as real and imaginary parts of a correlation function

$$y_{\rm D} = \frac{1}{2M_{\rm D}\Gamma_{\rm D}} \operatorname{Im} \langle \overline{D^0} | i \int \mathrm{d}^4 x \, T \Big\{ \mathcal{H}_w^{|\Delta C|=1}(x) \, \mathcal{H}_w^{|\Delta C|=1}(0) \Big\} | D^0 \rangle$$

bi-local time-ordered product

$$x_{\rm D} = \frac{1}{2M_{\rm D}\Gamma_{\rm D}} \operatorname{Re} \left[ 2\langle \overline{D^0} | H^{|\Delta C|=2} | D^0 \rangle + \langle \overline{D^0} | i \int \mathrm{d}^4 x \, T \Big\{ \mathcal{H}_w^{|\Delta C|=1}(x) \, \mathcal{H}_w^{|\Delta C|=1}(0) \Big\} | D^0 \rangle \right]$$
  
local operator  
(b-quark, NP): small?

 $\star$  So, the big question is if the integrals are dominated by  $x \rightarrow 0$ ???

## Mixing: short vs long distance

\* How can one tell that a process is dominated by long-distance or short-distance?

 $\star$  It is important to remember that the expansion parameter is  $1/E_{released}$ 

$$y_{\rm D} = \frac{1}{2M_{\rm D}\Gamma_{\rm D}} \operatorname{Im} \langle \overline{D^0} | i \int d^4x \, T \Big\{ \mathcal{H}_w^{|\Delta C|=1}(x) \, \mathcal{H}_w^{|\Delta C|=1}(0) \Big\} | D^0 \rangle$$
  
OPE-leading contribution:

**★** In the heavy-quark limit  $m_c \rightarrow \infty$  we have  $m_c \gg \sum m_{intermediate quarks}$ , so  $E_{released} \sim m_c$ 

- the situation is similar to B-physics, where it is "short-distance" dominated
- one can consistently compute pQCD and 1/m corrections

 $\star$  But wait, m<sub>c</sub> is NOT infinitely large! What happens for finite m<sub>c</sub>???

- how is large momentum routed in the diagrams?
- are there important hadronization (threshold) effects?

## Threshold (and related) effects in OPE

#### \* How can one tell that a process is dominated by long-distance or short-distance?

★ Let's look how the momentum is routed in a leading-order diagram

- injected momentum is  $p_c \sim m_c$ , so
- thus,  $p_1 \sim p_2 \sim m_c/2 \sim O(\Lambda_{QCD})$ ?



 $\star$  For a particular example of the lifetime difference, have hadronic intermediate states

- let's use an example of KKK intermediate state
- in this example,  $E_{released} \sim m_D 3 m_K \sim O(\Lambda_{QCD})$



**p**<sub>2</sub>

#### $\star$ Similar threshold effects exist in B-mixing calculations

- but  $m_b \gg \sum m_{intermediate \; quarks}$ , so  $E_{released} \sim m_b$  (almost) always
- quark-hadron duality takes care of the rest!

## Maybe a better approach would be to work with hadronic DOF directly?

Alexey A Petrov (WSU & MCTP)

## Mixing: Standard Model predictions



\* Not an actual representation of theoretical uncertainties. Objects might be bigger then what they appear to be...



#### \* Predictions of x and y in the SM are complicated

-second order in flavor SU(3) breaking -m<sub>c</sub> is not quite large enough for OPE -x, y << 10<sup>-3</sup> ("short-distance") -x, y ~ 10<sup>-2</sup> ("long-distance")

#### **★** Short distance:

-assume m<sub>c</sub> is large
 -combined m<sub>s</sub>, 1/m<sub>c</sub>, a<sub>s</sub> expansions
 -leading order: m<sub>s</sub><sup>2</sup>, 1/m<sub>c</sub><sup>6</sup>!
 -threshold effects?
 H. Georgi; T. Ohl, ...
 I. Bigi, N. Uraltsev;

#### ★ Long distance:

-assume m<sub>c</sub> is NOT large
 -sum of large numbers with alternating signs, SU(3) forces zero!
 -multiparticle intermediate states dominate
 J. Donoghue et. al. P. Colangelo et. al.

Falk, Grossman, Ligeti, Nir. A.A.P. Phys.Rev. D69, 114021, 2004 Falk, Grossman, Ligeti, and A.A.P. Phys.Rev. D65, 054034, 2002

M. Bobrowski et al

### Test: inclusive decays and lifetimes

- Nice test of our understanding of non-perturbative QCD effects in charm
- One of the few unambiguous theoretical predictions that are easy to test experimentally
- 3. Theoretical uncertainty can be estimated: precision studies



$$\Gamma(H_{b}) = \frac{1}{2M_{b}} \langle H_{b} | T | H_{b} \rangle = \frac{1}{2M_{b}} \langle H_{b} | \operatorname{Im} i \int d^{4}x \, T \left\{ H_{eff}^{\Delta B=1}(x) H_{eff}^{\Delta B=1}(0) \right\} | H_{b} \rangle$$

$$\Gamma(H_{b}) = \frac{G_{F}^{2} m_{Q}^{5}}{192\pi^{3}} \left[ A_{0} + \frac{A_{2}}{m_{Q}^{2}} + \frac{A_{2}}{m_{Q}^{3}} + \dots \right]$$

HQ expansion is converging reasonably well

## Generic restrictions on NP from DD-mixing



★ Comparing to experimental value of x, obtain constraints on NP models...

assume x is dominated by
the New Physics model
assume no accidental
strong cancellations b/w SM
and NP

| Experiment   | R <sub>D</sub><br>(x10 <sup>-3</sup> ) | y'<br>(x10 <sup>-3</sup> ) | x <sup>2</sup><br>(x10 <sup>-3</sup> ) | Excl. No-Mix<br>Significance | R <sub>B</sub><br>(x10 <sup>-3</sup> ) |
|--------------|----------------------------------------|----------------------------|----------------------------------------|------------------------------|----------------------------------------|
| Belle (2006) | $3.64 \pm 0.17$                        | $0.6 \pm 4.0$              | $0.18 \pm 0.22$                        | 2.0                          | 3.77 ± 0.09                            |
| BaBar (2007) | $3.03 \pm 0.19$                        | $9.7 \pm 5.4$              | $-0.22 \pm 0.37$                       | 3.9                          | $3.53 \pm 0.09$                        |
| LHCb         | $3.52 \pm 0.15$                        | $7.2 \pm 2.4$              | $-0.09 \pm 0.13$                       | 9.1                          | $4.25 \pm 0.04$                        |
| CDF (9.6/fb) | 3.51 ± 0.35                            | 4.27 ± 4.30                | 0.08 ± 0.18                            | 6.1                          | $4.30 \pm 0.06$                        |

M. Mattson, 2013

$$\mathcal{H}_{NP}^{\Delta C=2} = \frac{1}{\Lambda_{NP}^2} \sum_{i=1}^8 z_i(\mu) Q_i'$$

New Physics is either at a very high scales

| tree level: | $\Lambda_{NP} \ge (4 - 10) \times 10^3 \text{ TeV}$ |
|-------------|-----------------------------------------------------|
| loop level: | $\Lambda_{NP} \ge (1-3) \times 10^2 \text{ TeV}$    |

or has highly suppressed couplings to charm!

Gedalia, Grossman, Nir, Perez Phys.Rev.D80, 055024, 2009

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

★ ... which are

$$\begin{aligned} |z_2| &\lesssim 1.6 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ |z_3| &\lesssim 5.8 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ |z_4| &\lesssim 5.6 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ |z_5| &\lesssim 1.6 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2. \end{aligned}$$

23

 $|z_1| \lesssim 5.7 \times 10^{-7} \left( \frac{\Lambda_{\mathrm{NP}}}{1 \ TeV} \right)^2$ 

\* Constraints on particular NP models also available!

Alexey A Petrov (WSU & MCTP)

## $\Delta c = 1$ example: radiative and rare decays

\* There are some improvements in measurements of rare decays



22

Alexey A Petrov (WSU & MCTP)

### Rare radiative decays of charm

**\star** Standard Model contribution to D  $\rightarrow$  yy

$$A(D \to \gamma\gamma) = \epsilon_{1\mu}\epsilon_{2\nu} \left[ A_{PC}\epsilon^{\mu\nu\alpha\beta}k_{1\alpha}k_{2\beta} + iA_{PV} \left( g^{\mu\nu} - \frac{k_2^{\mu}k_1^{\nu}}{k_1 \cdot k_2} \right) \right]$$
  
$$\Gamma(D \to \gamma\gamma) = \frac{m_D^3}{64\pi} \left[ |A_{PC}|^2 + \frac{4}{m_D^4} |A_{PV}|^2 \right]$$

\* Short distance analysis  $\mathcal{L} = -\frac{G_f}{\sqrt{2}} V_{us} V_{cs}^* C_{7\gamma}^{eff} \frac{e}{4\pi^2} F_{\mu\nu} m_c \left( \bar{u} \sigma^{\mu\nu} \frac{1}{2} (1+\gamma_5) c \right)$ 



- only one operator contributes

Paul, Bigi, Recksiegel (2011)

- including QCD corrections, SD effects amount to  $Br = (3.6-8.1) \times 10^{-12}$ 

★ Long distance analysis

- long distance effects amount to Br = (1-3)x10<sup>-8</sup>

Burdman, Golowich, Hewett, Pakvasa (02); Fajfer, Singer, Zupan (01)

### New physics and radiative D-decays

**\*** New constraints on NP models from  $D \rightarrow \gamma \gamma$  since 2010

 $\star$  Some popular "LHC models" can be tested with D  $\rightarrow$  yy

- consider an example of Littlest Higgs model with T-parity

Paul, Bigi, Recksiegel (2011)

- new particles: partner of top, mirror fermions and gauge bosons, triplet and singlet Higgs bosons: possible effect!



**★** No observable effect in  $D \rightarrow \gamma \gamma!$  But could affect D-mixing: anti-correlation!

### Rare leptonic decays of charm

- $\bigstar$  Standard Model contribution to  $D \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$  .
- $\star$  Short distance analysis

$$Q_{10}=\frac{e^2}{16\pi^2}\bar{u}_L\gamma_\mu c_L\bar{\ell}\gamma^\mu\gamma_5\ell,$$

- only  $Q_{10}$  contribute, SD effects amount to Br ~  $10^{-18}$
- single non-perturbative parameter (decay constant)

$$B_{D^0\ell^+\ell^-}^{(\text{s.d.})} \simeq \frac{G_F^2 M_W^2 f_D m_\ell}{\pi^2} F ,$$
  

$$F = \sum_{i=d,s,b} V_{ui} V_{ci}^* \left[ \frac{x_i}{2} + \frac{\alpha_s}{4\pi} x_i \cdot \left( \ln^2 x_i + \frac{4 + \pi^2}{3} \right) \right]$$

UKQCD, HPQCD; Jamin, Lange; Penin, Steinhauser; Khodjamirian

$$\star \text{ Long distance analysis}$$

$$D^{0} \xrightarrow{P^{0}} \ell^{+} \qquad D^{0} \xrightarrow{\ell^{+}} D^{0} \xrightarrow$$

- LD effects amount to Br  $\sim 10^{-13}$
- could be used to study NP effects in correlation with D-mixing

## Generic NP contribution to $D \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$



#### ★ Most general effective Hamiltonian:

$$\begin{split} \widetilde{Q}_1 &= (\bar{\ell}_L \gamma_\mu \ell_L) \, (\overline{u}_L \gamma^\mu c_L) \,, \qquad \widetilde{Q}_4 = (\bar{\ell}_R \ell_L) \, (\overline{u}_R c_L) \,, \\ \langle f | \mathcal{H}_{NP} | i \rangle &= G \sum_{i=1} \widetilde{C}_i(\mu) \, \langle f | Q_i | i \rangle(\mu) \qquad \widetilde{Q}_2 &= (\bar{\ell}_L \gamma_\mu \ell_L) \, (\overline{u}_R \gamma^\mu c_R) \,, \qquad \widetilde{Q}_5 = (\bar{\ell}_R \sigma_{\mu\nu} \ell_L) \, (\overline{u}_R \sigma^{\mu\nu} c_L) \,, \\ \widetilde{Q}_3 &= (\bar{\ell}_L \ell_R) \, (\overline{u}_R c_L) \,, \qquad \text{plus } \mathsf{L} \leftrightarrow \mathsf{R} \end{split}$$

 $\bigstar$  ... thus, the amplitude for  $D \rightarrow e^+e^-/\mu^+\mu^-$  decay is

$$\begin{aligned} \mathcal{B}_{D^0 \to \ell^+ \ell^-} &= \frac{M_D}{8\pi\Gamma_D} \sqrt{1 - \frac{4m_\ell^2}{M_D^2}} \left[ \left( 1 - \frac{4m_\ell^2}{M_D^2} \right) |A|^2 + |B|^2 \right] \quad, \\ \mathcal{B}_{D^0 \to \mu^+ e^-} &= \frac{M_D}{8\pi\Gamma_D} \left( 1 - \frac{m_\mu^2}{M_D^2} \right)^2 \left[ |A|^2 + |B|^2 \right] \quad, \end{aligned}$$

$$|A| = G \frac{f_D M_D}{4m_c} \left[ \tilde{C}_{3-8} + \tilde{C}_{4-9} \right] ,$$
  

$$|B| = G \frac{f_D}{4} \left[ 2m_\ell \left( \tilde{C}_{1-2} + \tilde{C}_{6-7} \right) + \frac{M_D^2}{m_c} \left( \tilde{C}_{4-3} + \tilde{C}_{9-8} \right) \right], \quad \tilde{C}_{i-k} \equiv \tilde{C}_i - \tilde{C}_k$$

Many NP models give contributions to both D-mixing and  $D \rightarrow e^+e^-/\mu^+\mu^-$  decay: correlate!!!

18

Alexey A Petrov (WSU & MCTP)

### Mixing vs rare decays: a particular model

★ Recent experimental constraints

$$\mathcal{B}_{D^0 \to \mu^+ \mu^-} \le 1.3 \times 10^{-6},$$
  
 $\mathcal{B}_{D^0 \to \mu^\pm e^\mp} \le 8.1 \times 10^{-7},$ 

$$\mathcal{B}_{D^0 \to e^+ e^-} \le 1.2 \times 10^{-6},$$

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. PRD79, 114030 (2009)



$$\lambda_{uc} \equiv -\left(V_{ud}^* V_{cd} + V_{us}^* V_{cs} + V_{ub}^* V_{cb}\right)$$

c (b) 
$$\mu^+$$

$$\lambda_{uc} \equiv -\left(V_{ud}^* V_{cd} + V_{us}^* V_{cs} + V_{ub}^* V_{cb}\right)$$

$$\mathcal{B}_{D^0 \to \mu^+ \mu^-} = \frac{3\sqrt{2}}{64\pi} \frac{G_F m_\mu^2 x_D}{B_D r(m_c, M_Z)} \left[ 1 - \frac{4m_\mu^2}{M_D} \right]$$
$$\simeq 4.3 \times 10^{-9} x_D \leq 4.3 \times 10^{-11}$$

17



#### Note: a NP parameter-free relation!

Alexey A Petrov (WSU & MCTP)

EWSB, Dark Matter & Flavor Workshop, Capri 23-25 May 2014

★ Relating mixing and rare decay

- consider an example: heavy vector-like quark (Q=+2/3)
  - appears in little Higgs models, etc.

Mixing:

$$x_{\rm D}^{(+2/3)} = \frac{2G_F \lambda_{uc}^2 f_D^2 M_D B_D r(m_c, M_Z)}{3\sqrt{2}\Gamma_D}$$

 $A_{D^0 \to \ell^+ \ell^-} = 0 \qquad B_{D^0 \to \ell^+ \ell^-} = \lambda_{uc} \frac{G_F f_{\mathrm{D}} m_{\mu}}{2}$ 

 $\mathcal{H}_{2/3} = rac{g^2}{8\cos^2 heta_w M_z^2} \lambda_{uc}^2 Q_1 = rac{G_F \lambda_{uc}^2}{\sqrt{2}} Q_1$ 

Rare decay:

## Mixing vs rare decays

#### $\star$ Correlation between mixing/rare decays

- possible for tree-level NP amplitudes
- some relations possible for loop-dominated transitions

#### $\star$ Consider several popular models

| Model                       | ${\cal B}_{D^0 	o \mu^+ \mu^-}$                       |
|-----------------------------|-------------------------------------------------------|
| Standard Model (SD)         | $\sim 10^{-18}$                                       |
| Standard Model (LD)         | $\sim {\rm several} \times 10^{-13}$                  |
| Q = +2/3 Vectorlike Singlet | $4.3 	imes 10^{-11}$                                  |
| Q = -1/3 Vectorlike Singlet | $1\times 10^{-11} \ (m_S/500 \ {\rm GeV})^2$          |
| Q = -1/3 Fourth Family      | $1\times 10^{-11}\ (m_S/500\ {\rm GeV})^2$            |
| Z' Standard Model (LD)      | $2.4 \times 10^{-12} / (M_{Z'}(\text{TeV}))^2$        |
| Family Symmetry             | $0.7 \ 10^{-18} \ (\text{Case A})$                    |
| RPV-SUSY                    | $1.7\times 10^{-9}~(500~{\rm GeV}/m_{\tilde{d}_k})^2$ |

Obtained upper limits on rare decay branching ratios.

Same idea can be employed to relate D-mixing to K-mixing Blum, Grossman, Nir, Perez (09)

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. (09)



These decays also proceed at one loop in the SM; GIM is very effective
 SM rates are expected to be small

★ Rare decays D → M e<sup>+</sup>e<sup>-</sup>/ $\mu^+\mu^-$  just like D → e<sup>+</sup>e<sup>-</sup>/ $\mu^+\mu^-$  are mediated by c→u II

$$\mathcal{L}_{\text{eff}}^{\text{SD}} = \frac{G_F}{\sqrt{2}} V_{cb}^* V_{ub} \sum_{i=7,9,10} C_i Q_i,$$

$$Q_9 = \frac{e^2}{16\pi^2} \bar{u}_L \gamma_\mu c_L \bar{\ell} \gamma^\mu \ell, \quad Q_{10} = \frac{e^2}{16\pi^2} \bar{u}_L \gamma_\mu c_L \bar{\ell} \gamma^\mu \gamma_5 \ell,$$

- SM contribution is dominated by LD effects
- could be used to study NP effects

| Burdman, Golowich, Hewett, Pakvasa | ; |
|------------------------------------|---|
| Fajfer, Prelovsek, Singer          |   |

| Mode                                                                      | LD                                           | Extra heavy $q$                              | LD + extra heavy q                         |
|---------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------|
| $\frac{D^+ \rightarrow \pi^+ e^+ e^-}{D^+ \rightarrow \pi^+ \mu^+ \mu^-}$ | $2.0 \times 10^{-6}$<br>$2.0 \times 10^{-6}$ | $1.3 \times 10^{-9}$<br>$1.6 \times 10^{-9}$ | $2.0 	imes 10^{-6}$<br>$2.0 	imes 10^{-6}$ |
| Mode                                                                      | MSSMK                                        | LD + MSSM                                    |                                            |
| $\frac{D^+ \rightarrow \pi^+ e^+ e^-}{D^+ \rightarrow \pi^+ \mu^+ \mu^-}$ | $2.1 \times 10^{-7}$<br>$6.5 \times 10^{-6}$ | $2.3 \times 10^{-6}$<br>$8.8 \times 10^{-6}$ |                                            |



Alexey A Petrov (WSU & MCTP)

15

### CP-violation in charmed mesons (general)

 $\star$  Fundamental problem: observation of CP-violation in up-quark sector!

★ Possible sources of CP violation in charm transitions:

★ CPV in  $\Delta c = 1$  decay amplitudes ("direct" CPV)  $\Gamma(D \rightarrow f) \neq \Gamma(CP[D] \rightarrow CP[f])$ 

\* CPV in  $D^0 - \overline{D^0}$  mixing matrix ( $\Delta c = 2$ ):

$$\begin{split} \left| D_{1,2} \right\rangle &= p \left| D^0 \right\rangle \pm q \left| \overline{D^0} \right\rangle \ \Rightarrow \left| D_{CP\pm} \right\rangle = \frac{1}{\sqrt{2}} \left( \left| D^0 \right\rangle \pm \left| \overline{D}^0 \right\rangle \right) \\ R_m^2 &= \left| q/p \right|^2 = \left| \frac{2M_{12}^* - i\Gamma_{12}^*}{\Delta m - (i/2)\Delta\Gamma} \right|^2 = 1 + A_m \neq 1 \end{split}$$

\* CPV in the interference of decays with and without mixing

$$\lambda_f = \frac{q}{p} \frac{A_f}{A_f} = R_m e^{i(\phi+\delta)} \left| \frac{A_f}{A_f} \right|$$

\* One can separate various sources of CPV by customizing observables

### **CP-violation I: indirect**

 $\star$  Indirect CP-violation manifests itself in DD-oscillations

- see time development of a D-system:

$$i\frac{d}{dt}|D(t)\rangle = \left(M - \frac{i}{2}\Gamma\right)|D(t)\rangle$$

$$\langle D^{0}|\mathcal{H}|\overline{D^{0}}\rangle = M_{12} - \frac{i}{2}\Gamma_{12} \qquad \langle \overline{D^{0}}|\mathcal{H}|D^{0}\rangle = M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*}$$

 $\star$  Define mixing parameters

$$y_{12} \equiv |\Gamma_{12}|/\Gamma, \quad x_{12} \equiv 2|M_{12}|/\Gamma, \quad \phi_{12} \equiv \arg(M_{12}/\Gamma_{12})$$

Note: can be calculated in a given model

★ Assume that direct CP-violation is absent (Im  $(\Gamma_{12}^*\bar{A}_f/A_f) = 0$ ,  $|\bar{A}_f/A_f| = 1$ ) - can relate x, y,  $\varphi$ , |q/p| to x<sub>12</sub>, y<sub>12</sub> and  $\varphi_{12}$ 

$$\begin{aligned} xy &= x_{12}y_{12}\cos\phi_{12}, \qquad x^2 - y^2 = x_{12}^2 - y_{12}^2, \\ (x^2 + y^2)|q/p|^2 &= x_{12}^2 + y_{12}^2 + 2x_{12}y_{12}\sin\phi_{12}, \\ x^2\cos^2\phi - y^2\sin^2\phi &= x_{12}^2\cos^2\phi_{12}. \end{aligned}$$

★ Four "experimental" parameters related to three "theoretical" ones
 – a "constraint" equation is possible

Alexey A Petrov (WSU & MCTP)

### **CP-violation I: indirect**

\* Assume that direct CP-violation is absent (Im  $(\Gamma_{12}^* \bar{A}_f / A_f) = 0$ ,  $|\bar{A}_f / A_f| = 1$ )

- experimental constraints on x, y,  $\varphi$ , |q/p| exist
- can obtain generic constraints on Im parts of Wilson coefficients

$$\mathcal{H}_{NP}^{\Delta C=2} = \frac{1}{\Lambda_{NP}^2} \sum_{i=1}^8 z_i(\mu) Q_i'$$

or

 $\star$  In particular, from  $x_{12}^{
m NP}\sin\phi_{12}^{
m NP}\lesssim 0.0022$ 

$$\begin{split} \mathcal{I}m(z_1) &\lesssim 1.1 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ \mathcal{I}m(z_2) &\lesssim 2.9 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ \mathcal{I}m(z_3) &\lesssim 1.1 \times 10^{-7} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ \mathcal{I}m(z_4) &\lesssim 1.1 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2, \\ \mathcal{I}m(z_5) &\lesssim 3.0 \times 10^{-8} \left(\frac{\Lambda_{\rm NP}}{1 \ TeV}\right)^2. \end{split}$$

New Physics is either at a very high scales

| have highly sup | pressed couplings to charm!                       |
|-----------------|---------------------------------------------------|
| loop level:     | $\Lambda_{NP} \ge (1-3) \times 10^2 \text{ TeV}$  |
| tree level:     | $\Lambda_{NP} \ge (4-10) \times 10^3 \text{ TeV}$ |

Gedalia, Grossman, Nir, Perez Phys.Rev.D80, 055024, 2009

Bigi, Blanke, Buras, Recksiegel, JHEP 0907:097, 2009

#### ★ Constraints on particular NP models possible as well

12

Alexey A Petrov (WSU & MCTP)

## **CP-violation I: indirect**

#### ★ Relation; data from HFAG's compilation

$$\frac{x}{y} = \frac{1 - |q/p|}{\tan\phi} = -\frac{1}{2}\frac{A_m}{\tan\phi}$$

- CPV in mixing is comparable to CPV in the interference of decays with and w/out mixing



$$\phi \;=\; - \; 2 \left| M_{12} / \Gamma_{12} \right|^2 \sin 2 \phi_{12}.$$



Note: CPV is suppressed even if M<sub>12</sub> is all NP!!!

Bergmann, Grossman, Ligeti, Nir, AAP PL B486 (2000) 418

 $\star$  With available experimental constraints on x, y, and q/p, one can bound WCs of a generic NP Lagrangian -- bound any high-scale model of NP

11

Alexey A Petrov (WSU & MCTP)

### **CP-violation II:** direct

\* IDEA: consider the DIFFERENCE of decay rate asymmetries:  $D \rightarrow \pi\pi \text{ vs } D \rightarrow \text{KK}!$ For each final state the asymmetry  $D^0$ : no neutrals in the final state!

$$a_{f} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} \longrightarrow a_{f} = a_{f}^{d} + a_{f}^{m} + a_{f}^{i}$$

direct mixing interference

\* A reason:  $a^{m}_{KK}=a^{m}_{\pi\pi}$  and  $a^{i}_{KK}=a^{i}_{\pi\pi}$  (for CP-eigenstate final states), so, ideally, mixing asymmetries cancel!

$$a_f^d = 2r_f \sin\phi_f \sin\delta_f$$

 $\star$  ... and the resulting DCPV asymmetry is  $\Delta a_{CP} = a^d_{KK} - a^d_{\pi\pi} \approx 2a^d_{KK}$  (double!)

$$A_{KK} = \frac{G_F}{\sqrt{2}} \lambda \left[ (T + E + P_{sd}) + a\lambda^4 e^{-i\gamma} P_{bd} \right]$$
$$A_{\pi\pi} = \frac{G_F}{\sqrt{2}} \lambda \left[ (-(T + E) + P_{sd}) + a\lambda^4 e^{-i\gamma} P_{bd} \right]$$

 $\star$  ... so it is doubled in the limit of SU(3)<sub>F</sub> symmetry

SU(3) is badly broken in D-decays e.g.  $Br(D \rightarrow KK) \sim 3 Br(D \rightarrow \pi\pi)$ 

Alexey A Petrov (WSU & MCTP)

## Experiment?

**★** Experiment: the difference of CP-asymmetries:  $\Delta a_{CP} = a_{CP,KK} - a_{CP,\pi\pi}$ 

★ Earlier results (before 2013):

| Experiment             | $\Delta A_{CP}$               |
|------------------------|-------------------------------|
| LHCb                   | $(-0.82 \pm 0.21 \pm 0.11)\%$ |
| $\operatorname{CDF}$   | $(-0.62\pm0.21\pm0.10)\%$     |
| Belle                  | $(-0.87 \pm 0.41 \pm 0.06)\%$ |
| $\operatorname{BaBar}$ | $(+0.24 \pm 0.62 \pm 0.26)\%$ |

Looks like CP is broken in charm transitions! Now what?

#### ★ Recent results (after 2013):

 $D^{*+}$  tag (this analysis): Semileptonic analysis: Combination:

$$\Delta A_{CP} = (-0.34 \pm 0.15 \text{ (stat.)} \pm 0.10 \text{ (syst.)})\%$$
  
$$\Delta A_{CP} = (+0.49 \pm 0.30 \text{ (stat.)} \pm 0.14 \text{ (syst.)})\%$$
  
$$\Delta A_{CP} = (-0.15 \pm 0.16)\%$$

LHCb-CONF-2013-003

#### Not so sure anymore...

### Is it Standard Model or New Physics??

★ Is it Standard Model or New Physics? Theorists used to say...

Naively, any CP-violating signal in the SM will be small, at most  $O(V_{ub}V_{cb}^*/V_{us}V_{cs}^*) \sim 10^{-3}$ Thus, O(1%) CP-violating signal can provide a "smoking gun" signature of New Physics

...what do you say now?

★ assuming SU(3) symmetry,  $a_{CP}(\pi\pi) \sim a_{CP}(KK) \sim 0.15\%$ . Looks more or less 0.1%... ★ let us try Standard Model

- need to estimate size of penguin/penguin contractions vs. tree





Broad et al 1203.6659; Bhattacharya et al PRD 85 (2012) 054014; Cheng & Chiang 1205.0580

### New Physics: operator analysis

★ Factorizing decay amplitudes, e.g.

$$\begin{aligned} \mathcal{H}_{|\Delta c|=1}^{\text{eff}-\text{NP}} &= \frac{G_F}{\sqrt{2}} \sum_{i=1,2,5,6} \sum_q (C_i^q Q_i^q + C_i^{q'} Q_i^{q'}) + \frac{G_F}{\sqrt{2}} \sum_{i=7,8} (C_i Q_i + C_i' Q_i') + \text{H.c.} \\ Q_1^q &= (\bar{u}q)_{V-A} (\bar{q}c)_{V-A} \\ Q_2^q &= (\bar{u}_\alpha q_\beta)_{V-A} (\bar{q}_\beta c_\alpha)_{V-A} \\ Q_5^q &= (\bar{u}c)_{V-A} (\bar{q}q)_{V+A} \\ Q_6^q &= (\bar{u}_\alpha c_\beta)_{V-A} (\bar{q}_\beta q_\alpha)_{V+A} \\ Q_7 &= -\frac{e}{8\pi^2} m_c \, \bar{u}\sigma_{\mu\nu} (1+\gamma_5) F^{\mu\nu} c \\ Q_8 &= -\frac{g_s}{8\pi^2} m_c \, \bar{u}\sigma_{\mu\nu} (1+\gamma_5) T^a G_a^{\mu\nu} c \end{aligned}$$

#### $\star$ one can fit to $\epsilon'/\epsilon$ and mass difference in D-anti-D-mixing

- LL are ruled out
- LR are borderline
- RR and dipoles are possible

Constraints from particular models also available

Allowed Disfavored Ajar  $Q_{1,2}^{(c-u,8d,b,0)}$  $Q_{7,8}\,,\,Q_{7,8}'\,,$  $Q_{5.6}^{(c-u,b,0)\prime}$  $Q_{5,6}^{s-d,c-u,8d,b}$  $Q_{5.6}^{(8d)\prime}$ 

Alexey A Petrov (WSU & MCTP)

7

EWSB, Dark Matter & Flavor Workshop, Capri 23-25 May 2014

Gedalia, et al, arXiv:1202.5038

## Future: lattice to the rescue\*?

★ There are methods to compute decays on the lattice (Lellouch-Lüscher)

- calculation of scattering of final state particles in a finite box
- matching resulting discrete energy levels to decaying particle
- reasonably well developed for a single-channel problems (e.g. kaon decays)

#### ★ Can these methods be generalized to D-decays?

- make D-meson slightly lighter,  $m_D < 4 m_{\pi}$
- assume G-parity and consider scattering of two pions and two kaons in a box with SM scattering energy

$$2m_{\pi} < 2m_K < E^* < 4m_{\pi}$$
 Hansen, Sharpe PRD86, 016007 (2012)

- only four possible scattering events:  $\pi\pi \rightarrow \pi\pi$ ,  $\pi\pi \rightarrow KK$ ,  $KK \rightarrow \pi\pi$ ,  $KK \rightarrow KK$
- couple the two by adding weak part to the strong Hamiltonian  $\mathcal{H}(x) \rightarrow \mathcal{H}(x) + \lambda \mathcal{H}_W(x)$

#### \* Application of this approach to calculate lifetime difference is not trivial!!!

- need to consider other members of SU(3) octet
- need to consider  $4\pi$  states that mix with  $\pi\pi$  + others

6

- need to consider 3-body and excited light-quark states

\* See "**panacea**": In <u>Greek mythology</u>, **Panacea** (Greek Πανάκεια, **Panakeia**) was a goddess of Universal remedy.

### Future: CP-violation in charmed baryons

Other observables can be constructed for baryons, e.g.

$$A(\Lambda_{c} \rightarrow N\pi) = \overline{u}_{N}(p,s) [A_{S} + A_{P}\gamma_{5}] u_{\Lambda_{c}}(p_{\Lambda},s_{\Lambda})$$

These amplitudes can be related to "asymmetry parameter"  $\alpha_{\Lambda_c} = \frac{2 \operatorname{Re}(A_s^* A_P)}{|A|^2 + |A|^2}$ 

... which can be extracted from

$$\frac{dW}{d\cos\vartheta} = \frac{1}{2} \left( 1 + P\alpha_{\Lambda_c} \cos\vartheta \right)$$

Same is true for  $\overline{\Lambda}_c$ -decay

If CP is conserved  $\alpha_{\Lambda_c} \stackrel{CP}{\Rightarrow} - \overline{\alpha}_{\Lambda_c}$ , thus CP-violating observable is

$$A_f = \frac{\alpha_{\Lambda_c} + \overline{\alpha}_{\Lambda_c}}{\alpha_{\Lambda_c} - \overline{\alpha}_{\Lambda_c}}$$

5

FOCUS[2006]: A<sub>λπ</sub>=-0.07±0.19±0.24

### Transitions forbidden w/out CP-violation

#### $\tau$ -charm factory

★ Recall that CP of the states in  $D^0\overline{D^0} \to (F_1)(F_2)$  are anti-correlated at  $\psi(3770)$ : ★ a simple signal of CP violation:  $\psi(3770) \to D^0\overline{D^0} \to (CP_{\pm})(CP_{\pm})$ 

> I. Bigi, A. Sanda; H. Yamamoto; Z.Z. Xing; D. Atwood, AAP

$$CP[F_{1}] = CP[F_{2}] \qquad \overline{f}_{2} \qquad CP \text{ eigenstate } F_{2}$$

$$\left\{ \begin{array}{c} \overline{f}_{1} \qquad & f_{2} \\ f_{1} \qquad & f_{2} \end{array} \right\} \qquad CP \text{ eigenstate } F_{2} \qquad \\ \left| D^{0}\overline{D}^{0} \right\rangle_{L} = \frac{1}{\sqrt{2}} \left[ \left| D^{0}(k_{1})\overline{D}^{0}(k_{2}) \right\rangle + (-1)^{L} \left| D^{0}(k_{2})\overline{D}^{0}(k_{1}) \right\rangle \right]$$

$$\Gamma_{F_1F_2} = \frac{\Gamma_{F_1}\Gamma_{F_2}}{R_m^2} \left[ \left( 2 + x^2 + y^2 \right) |\lambda_{F_1} - \lambda_{F_2}|^2 + \left( x^2 + y^2 \right) |1 - \lambda_{F_1}\lambda_{F_2}|^2 \right]$$

 $\star$  CP-violation in the <u>rate</u>  $\rightarrow$  of the second order in CP-violating parameters.

★ Cleanest measurement of CP-violation!

AAP, Nucl. Phys. PS 142 (2005) 333 hep-ph/0409130

 $\lambda_f = \frac{1}{p} \frac{f}{A_f}$ 

EWSB, Dark Matter & Flavor Workshop, Capri 23-25 May 2014

### Better observables: untagged asymmetries?

#### ★ Look for CPV signals that are

A.A.P., PRD69, 111901(R), 2004

- first order in CPV parameters
- do not require flavor tagging (for  $D^0$ )

 $\star$  Consider the final states that can be reached by both D<sup>0</sup> and  $\overline{D^0}$ ,

but are <u>not</u> CP eigenstates ( $\pi\rho$ ,  $KK^*$ ,  $K\pi$ ,  $K\rho$ , ...)

$$A^U_{CP}(f) = \frac{\Sigma_f - \Sigma_{\bar{f}}}{\Sigma_f + \Sigma_{\bar{f}}} \quad \text{ where } \quad \Sigma_f = \Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)$$

 $\star$  For a CF/DCS final state K $\pi$ , the time-integrated asymmetry is simple

$$A_{CP}^{U}\left(K^{+}\pi^{-}\right) = -y\sin\delta_{K\pi}\sin\phi\sqrt{R_{K\pi}} \qquad ((10^{-4} \text{ for NP}))$$

**★** For a SCS final state  $\rho\pi$ , neglecting direct CPV contribution,

$$A_{CP}^{U}\left(\rho^{+}\pi^{-}\right) = -y\sin\delta_{\rho\pi}\sin\phi\sqrt{R_{\rho\pi}} \qquad ((10^{-2} \text{ for NP}))$$

#### Note: a "theory-free" relation!

# "I'm looking for a lot of men who have an infinite capacity to not know what can't be done."

Henry Ford



### Things to take home

Computation of charm mixing amplitudes is a difficult task

- no dominant heavy dof, as in beauty decays
- light dofs give no contribution in the flavor SU(3) limit
- D-mixing is a second order effect in SU(3) breaking  $(x, y \sim 1\%)$  in the SM)
- Charm quark is neither heavy nor light enough for a clean application of well-established techniques
  - "heavy-quark" techniques miss threshold effects
  - "heavy-quark" techniques give numerically leading contribution that is parametrically suppressed by 1/m<sup>6</sup>
  - "hadronic" techniques need to sum over large number of intermediate states, AND cannot use current experimental data on D-decays
  - "hadronic" techniques currently neglect some sources of SU(3) breaking
- > Calculations of New Physics contributions to mixing are in better shape
  - contributions of NP in  $\Delta c$ =2 operators are local and well-behaved
  - $\Delta\Gamma_D$  can have large (even dominant) contribution from NP

1

Lattice calculations can, in principle, provide a result for exclusive y<sub>D</sub>!



\* In principle, can extract mixing (x,y) and CP-violating parameters ( $A_m$ ,  $\varphi$ ) See talk by S. Stone

**★** In particular, time-dependent  $D^0(t) \rightarrow K^+\pi^-$  analysis

$$\Gamma[D^{0}(t) \to K^{+}\pi^{-}] = e^{-\Gamma t} |A_{K^{+}\pi^{-}}|^{2} \left[ R + \sqrt{R}R_{m} \left( y'\cos\phi - x'\sin\phi \right) \Gamma t + \frac{R_{m}^{2}}{4} \left( x^{2} + y^{2} \right) \left(\Gamma t\right)^{2} \right]$$

$$\int R_{m}^{2} = \left| \frac{q}{p} \right|^{2}, \ x' = x\cos\delta + y\sin\delta, \ y' = y\cos\delta - x\sin\delta$$

★ The expansion can be continued to see how well it converges for large t

$$\begin{split} \Gamma[D^{0}(t) \to K^{+}\pi^{-}] \left| A_{\mathrm{K}\pi} \right|^{-2} e^{\Gamma t} &= R - \sqrt{R} R_{m} (x \sin(\delta + \phi) - y \cos(\delta + \phi)) \left( \Gamma t \right) \\ &+ \frac{1}{4} \left( \left( R_{m} - R \right) x^{2} + \left( R + R_{m} \right) y^{2} \right) \left( \Gamma t \right)^{2} \\ &+ \frac{1}{6} \sqrt{R} R_{m} \left( x^{3} \sin(\delta + \phi) + y^{3} \cos(\delta + \phi) \right) \left( \Gamma t \right)^{3} \\ &- \frac{1}{48} R_{m} \left( x^{4} - y^{4} \right) \left( \Gamma t \right)^{4} \end{split}$$

Alexey A Petrov (WSU & MCTP)

▶)

 $\langle 0|\overline{s}\gamma^{\mu}\gamma_{5}c|D_{s}\rangle = if_{D} p_{D}^{\mu}$ 

 $\star$  In the Standard Model probes meson decay constant/CKM matrix element

$$\Gamma(D_q \to \ell \nu) = \frac{G_F^2}{8\pi} f_{D_q}^2 m_\ell^2 M_{D_q} \left(1 - \frac{m_\ell^2}{M_{D_q}^2}\right)^2 |V_{cq}|^2$$



see Artuso, Meadows, AAP

... so theory can be compared to experiment by comparing  $|f_{Dq} V_{cq}|$ 





Alexey A Petrov (WSU & MCTP)

#### $\star$ Recall that purely leptonic decays are helicity suppressed in the SM

- add photon to the final state to lift helicity suppression

$$\mathcal{A}(D \to \mu \bar{\nu} \gamma) = \langle \mu \bar{\nu} \gamma(k) | H_w(0) | D(p) \rangle \sim \int d^4 x e^{-ikx} \epsilon^{*\alpha} \ell^\beta \langle 0 | T \left[ J^{em}_\alpha(x) J_\beta(0) \right] | D(p) \rangle$$

LSZ reduction + e/m perturbation theory

$$\bigstar \text{ Define } \qquad R_D^\ell = \frac{\Gamma(D \to \ell \nu \gamma)}{\Gamma(D \to \ell \nu)} = \frac{\alpha}{6\pi} \left(\frac{m_D}{m_\ell}\right)^2 \mu_V^2 \ I(\Delta, m_D, \gamma_i)$$

Burdman, Goldman, Wyler

Dudek, Edwards; Dudek, Edwards, Roberts

★ Estimate 
$$R_D^{\mu} \approx (1 - 10) \times 10^{-2} \mu_V^2 \text{ GeV}^2$$
  
- results in B(D → µvy) ~ 10<sup>-5</sup> and B(D<sub>s</sub> → µvy) ~ 10<sup>-4</sup> with B(D → evy) » B(D → ev)  
- for B-mesons QCD-based calculations are possible

Lunghi, Pirjol, Wyler Korchemsky, Prjol, Yan

#### **★** Is lattice prediction for $D \rightarrow \mu v \gamma$ possible?

- charmonium radiative decays
- photon structure functions, pion form-factor, etc. X. Ji, C. Jung



#### Alexey A Petrov (WSU & MCTP)



## 2c. Semileptonic decays of D-mesons

★ In the Standard Model probes meson form factor/CKM matrix element

- direct access to  $V_{\mbox{\scriptsize cs}}$  and  $V_{\mbox{\scriptsize cd}}$
- lattice QCD: exclusive transitions



#### $\star$ Decay rate depend on form factors

- parameterization of  $q^2$  dependence defines a model

$$\frac{d\Gamma(D \to K(\pi)e\nu_e)}{dq^2} = \frac{G_F^2 |V_{cq}|^2}{24\pi^3} p_{K(\pi)}^3 |f_+(q^2)|^2$$

where  $\langle K(\pi) | \bar{q} \Gamma^{\mu} c | D \rangle = f_{+}(q^{2}) P^{\mu} + f_{-}(q^{2}) q^{\mu}$ 

 $\bigstar$  Can success of LQCD calculations of D  $\rightarrow$  K and D  $\rightarrow$   $\pi$  form factors

#### be replicated for other systems?

- calculations of D<sub>s</sub> form factors
- calculations of semileptonic decays of baryons



Alexey A Petrov (WSU & MCTP)



#### \* Rich physics opportunities for studies of QCD in different regimes

- effective theories for charmonium states
- charmonium exotics
- lattice QCD: exclusive transitions

## Charm in heavy ion collisions

#### \* Rich physics opportunities for studies of QCD in different regimes

- charmonium suppression
- do charm quarks flow?
- how do charm quarks loose energy while propagating through a QGP (radiative
- vs. collisional energy loss)?
- how do charm quarks hadronize in a decaying QGP (recombination vs.
- fragmentation)?
- what are the charm quark transport coefficients (e.g. diffusion constant)?
- what QGP properties are charm quarks most sensitive to?



### Rare radiative decays of charm

\* Can radiative charm decays help with  $\Delta a_{CP}$ ?

★ In many NP models, there is a link between chromomagnetic and electric-dipole operators

 $\mathcal{Q}_8 = \frac{m_c}{4\pi^2} \bar{u}_L \sigma_{\mu\nu} T^a g_s G_a^{\mu\nu} c_R$  $\mathcal{Q}_7 = \frac{m_c}{4\pi^2} \bar{u}_L \sigma_{\mu\nu} Q_u e F^{\mu\nu} c_R$ 

Same is true for operators of opposite chirality as well

★ There are many operators that can generate  $\Delta a_{CP}$  Giudice, Isidori, Paradisi (12)

- one possibility is that NP affects  $Q_8$  the most; the asymmetry then

$$|\Delta a_{CP}^{\rm NP}| \approx -1.8 |{\rm Im}[C_8^{\rm NP}(m_c)]|$$

- e.g. in SUSY, gluino-mediated amplitude satisfies  $C_7^{\text{SUSY}}(m_{\text{SUSY}}) = (4/15)C_8^{\text{SUSY}}(m_{\text{SUSY}})$ 

- then at the charm scale,

$$|\text{Im}[C_7^{\text{NP}}(m_c)]| = (0.2 - 0.8) \times 10^{-2}$$
  
 $|C_7^{\text{SM-eff}}(m_c)| = (0.5 \pm 0.1) \times 10^{-2}$  What about LD effects?

Alexey A Petrov (WSU & MCTP)

### CP-violation in radiative decays of charm

★ Probing  $a_{CP}$  in radiative D-decays can probe Im  $C_7 \rightarrow$  Im  $C_8 \rightarrow \Delta a_{CP}$ 

- problem is, radiative decays are dominated by LD effects

Isidori, Kamenik (12)

$$\Gamma(D \to V\gamma) = \frac{m_D^3}{32\pi} \left(1 - \frac{m_V^2}{m_D^2}\right)^3 \left[|A_{PV}|^2 + |A_{PC}|^2\right]$$

 $\star$  CP-violating asymmetry in radiative transitions would be

$$\begin{split} |a_{(\rho,\omega)\gamma}|^{\max} &= 0.04(1) \left| \frac{\operatorname{Im}[C_7(m_c)]}{0.4 \times 10^{-2}} \right| \times \\ &\times \left[ \frac{10^{-5}}{\mathcal{B}(D \to (\rho,\omega)\gamma)} \right]^{1/2} \lesssim 10\% \; . \end{split}$$

\* Better go off-resonance (consider  $K^{+}K^{-}\gamma$ ) or even  $h^{+}h^{-}\mu^{+}\mu^{-}$  final states

- the LD effects would be smaller, but the rate goes down as well

Isidori, Kamenik (12) Cappiello, Cata, D'Ambrosio (12)

EWSB, Dark Matter & Flavor Workshop, Capri 23-25 May 2014

Alexey A Petrov (WSU & MCTP)

## Do we need full SU(3)?

★ Since ms provides the dominant source for SU(3) breaking, try U-spin

- U-spin interchanges s- and d-quarks
- ... thus, has the same source of breaking
- ... but the formulas could be simpler

$$H_W^{\Delta C = -1} = H_{-1} + H_0 + H_{+1}$$

$$H_{-1} = \frac{G_F C^2}{\sqrt{2}} \left( \bar{s}c \right) (\bar{u}d) \,, \quad H_0 = \frac{G_F CS}{\sqrt{2}} \left[ (\bar{s}c)(\bar{u}s) - (\bar{d}c)(\bar{u}d) \right] \,, \quad H_{+1} = -\frac{G_F S^2}{\sqrt{2}} \left( \bar{d}c \right) (\bar{u}s) \,,$$

-the Hamiltonian has three parts corresponding to three components of U-spin vector

$$\Delta \Gamma = \sum_{S=\mp 1,0} \sum_{f_S^D} \rho(f_S^D) \langle \bar{D}^0 | H_{-S} | f_S^D \rangle \langle f_S^D | H_S | D^0 \rangle + c.c.$$

★ One can follow the same logic as with full SU(3), but tracking U-spin only

- get several sum rules in the U-spin limit
- GR used experimental data to see how much sum rules are violated
- those contributions (esp 4-body) add up to the physical value of  $y_D \sim 1\%$

Alexey A Petrov (WSU & MCTP)

EWSB, Dark Matter & Flavor Workshop, Capri 23-25 May 2014

Gronau, Rosner PRD86, 114029 (2012)