CPV in charm and b decays at LHCb

Brian Meadows

For the LHCb collaboration

- 1. CP violation (CPV) and neutral meson mixing
- 2. Measurement of $-2\beta_s$ from $B_s \rightarrow J/\psi \pi \pi$ (3 fb⁻¹)
- 3. CKM γ modes
- 4. Polarization amplitudes and direct CPV in $B_s \rightarrow \phi K^*$
- 5. **CPV** in D^0 mixing and decays

3 CKM Unitarity Triangles

 $\frac{B_{d} \text{ decays}}{\beta = 22.01 \pm 0.86^{0} \text{ (UTFIT)}} \\ \gamma = 70 \pm 15^{0}$

Well studied by B factories $\sigma(\beta) \sim 0.9^{0}$ $\sigma(\gamma) \sim 15^{0}$

 $\frac{B_{s} \text{ decays}}{\beta_{s}} = 1.073 \pm 0.042^{0} \text{ (UTFIT)}$

LHC precision approaching required range

 $\frac{D \text{ decays}}{\beta_c \sim 0.035^0 \text{ (UTFIT)}}$ $\gamma_c = \gamma$

 β_c very small but penguin phase(γ) ~70⁰

M⁰ Mixing

- Flavour oscillations in the neutral "M" system arise from the propagation of two mass eigen-states M_1 and M_2 that comprise the flavour states

Eigen-values are $m_{1,2}+i\Gamma_{1,2}/2$ with means: $M=(m_1+m_2)/2$ $\Gamma=(\Gamma_1+\Gamma_2)/2$

• It is usual to define four mixing parameters:

 $\begin{array}{ll} \Delta m=m_2-m_1 \; ; \; \; \Delta \Gamma=\Gamma_2-\Gamma_1 \; ; \\ \mathsf{D0} \; \mathsf{decays:} \; \; x=\Delta m/\Gamma \; ; \; \; y=\Delta \Gamma/(2\Gamma) \end{array} \left| \begin{array}{c} q\\ p \end{array} \right| \; ; \; \; \phi_{\scriptscriptstyle M}=\mathrm{Arg} \left\{ \begin{array}{c} q\\ p \end{array} \right\} \quad \begin{array}{c} \mathsf{CPV} \; \mathsf{signalled} \\ \mathsf{by} \; \; p\neq q \end{array} \right| \\ \mathsf{by} \; \; p\neq q \end{array} \right|$

Decays *M* and *M* to state "f" are characterised by quantity λ_f Define decay amplitudes: $\begin{array}{c} \mathcal{A}_f(D^0 \to f) \\ \overline{\mathcal{A}}_f(\overline{D}^0 \to f) \end{array}$ $\lambda_f = \frac{q\overline{\mathcal{A}}_f}{p\mathcal{A}_f} \propto e^{i(\phi_M - 2\phi_f + \delta_f)} \\ Mixing \quad Weak \quad Strong \\ decay \quad decay \end{array}$

Mixing-induced CPV

• For decays where final state f is accessible to both M and \overline{M} (e.g. f is *CP* eigenstate, hadronic, etc.) mixing brings M and \overline{M} into interference

• *t*-dependence for *M* and \overline{M} differ - induces oscillatory *CP* asymmetry $A^{CP}(t) = \frac{|\bar{\mathcal{A}}_f|^2 - |\mathcal{A}_f|^2}{|\bar{\mathcal{A}}_f|^2 + |\mathcal{A}_f|^2} = \eta_f \frac{-C_f \cos(\Delta m t) + S_f \sin(\Delta m t)}{\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \mathcal{A}_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma}{2}t\right)}$

• This allows λ_f (and thus ϕ) to be measured:

$$\begin{split} C_f &= \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}, \quad S_f = \frac{2 \Im \lambda_f}{1 + |\lambda_f|^2}, \quad \mathcal{A}_f^{\Delta \Gamma} = \frac{2 \Re \lambda_f}{1 + |\lambda_f|^2} \\ \text{Direct CPV} & \text{Mixing-induced CPV} \end{split}$$

5th Workshop on Theory, Phenomenology and Experiments..., Capri, May 23-25, 2014

4

The LHCb Detector

New Measurement of β_s

 β_s from B_s → $J/ψ π^+π^-$ decays ★ New result Arxiv: 1405.4140 (3 fb⁻¹)

- In the SM, β_s = 18.2 ± 0.8 mrad is precisely predicted
 Good test for NP
- For decay to $J/\psi \pi^+\pi^-$, final state is sum of $CP(\eta)$ eigenstates
 - So strong phases in direct decay or decay through mixing cancel.
 - Mixing induces weak phase difference $Arg(\lambda) = \phi_s = -2\beta_s$

• *t*-dependence is fn. of *CP* structure in the $J/\psi\pi^+\pi^-$ Dalitz plot

Improved time-integrated isobar model fit

arXiv:1402.6248v1 Phys. Rev. D. 89, 092006 (2014)

Decays were fit to a sum of isobar model transversity amplitudes $(A_{\parallel}, A_{\perp}, A_0, A_s)$, each a *CP* eigenstate with characteristic distribution of the decay angles Ω and a function of $m_{\pi\pi}$.

<u>Helicity angles</u>

 $arOmega \equiv (heta_{hh}, heta_{J/\psi}, \chi)$

Improved time-integrated isobar model fit

 (3 fb^{-1})

Phys. Rev. D. 89, 092006 (2014)

Component	Solution I	Solution II	
$f_0(980)$	$70.3 \pm 1.5^{+0.4}_{-5.1}$	$92.4 \pm 2.0^{+0.8}_{-16.0}$	_
$f_0(1500)$	$10.1 \pm 0.8^{+1.1}_{-0.3}$	$9.1\pm0.9\pm0.3$	Two models of the form:
$f_0(1790)$	$2.4 \pm 0.4^{+5.0}_{-0.2}$	$0.9\pm0.3^{+2.5}_{-0.1}$	$B_{z} \rightarrow J/\psi + (resonance)$
$f_2(1270)_0$	$0.36 \pm 0.07 \pm 0.03$	$0.42 \pm 0.07 \pm 0.04$	were found to describe
$f_2(1270)_{\parallel}$	$0.52 \pm 0.15 \substack{+0.05 \\ -0.02}$	$0.42 \pm 0.13^{+0.11}_{-0.02}$	the data well
$f_2(1270)_{\perp}$	$0.63 \pm 0.34^{+0.16}_{-0.08}$	$0.60 \pm 0.36^{+0.12}_{-0.09}$	
$f_2'(1525)_0$	$0.51 \pm 0.09^{+0.05}_{-0.04}$	$0.52 \pm 0.09^{+0.05}_{-0.04}$	
$f_2'(1525)_{\parallel}$	$0.06^{+0.13}_{-0.04} \pm 0.01$	$0.11_{-0.07-0.04}^{+0.16+0.03}$	
$f'_2(1525)_{\perp}$	$0.26 \pm 0.18^{+0.06}_{-0.04}$	$0.26 \pm 0.22^{+0.06}_{-0.05}$	For each model, two CP-
NR	-	$5.9 \pm 1.4^{+0.7}_{-4.6}$	even states were found to
Sum	85.2	110.6	be present though their
$-\mathrm{ln}\mathcal{L}$	-93738	-93739	fractions were very small
χ^2/ndf	2005/1822	2008/1820	
		0.000/	_

Sum of CP-even: 0.89%

0.86%

Event-by-event time resolution ($<\sigma_t > \sim 40.3 \text{ fs}$) is folded in. and backgrounds added.

LHCb Preliminary (3 fb⁻¹)

11

Results (PRELIMINARY)

Preliminary result: (3 fb⁻¹)

No direct CPV	Direct CPV allowed	
$-2eta_s=75\pm68\pm8\mathrm{mrad}$	$-2eta_s=70\pm68\pm8\mathrm{mrad}$	Preliminar
$ \boldsymbol{\lambda} = 1(\text{fixed})$	$ \lambda =0.89\pm0.05\pm0.01$	

This result supercedes the previous measurement:

 $-2\beta_s = -19^{+173+4}_{-174-4} \text{ mrad}$

Phys.Rev. D87 (2013) 11, 112010

This result is consistent with the SM.

Measurements of γ

Measurements of γ

■ Exploit interference between $B^{-} \rightarrow (D^{0} \rightarrow f)K^{-}$ and $B^{-} \rightarrow (\overline{D}^{0} \rightarrow f)K^{-}$ decays where flavour neutral *f* is accessible to both D^{0} and \overline{D}^{0} .

- No penguin diagram for these modes theoretically clean !
- □ Many analyses also use $B^{-} \rightarrow (D^{0} \rightarrow f)\pi^{-}$ decays for control purposes.

Measure γ from $B \rightarrow D(\rightarrow K_{s}K^{\pm}\pi^{\mp})h$

Phys.Lett. B733 (2014) 36-45 (3 fb⁻¹)

 D^{0} decay information comes from coherence factor κ and average strong phase δ_{D} from CLEO in 2 regions of Dalitz plot:

- Divide *B* signals into <u>8 sub-samples</u>:
 a. *B*⁺ and *B*⁻
 - b. $B \rightarrow DK$ and $B \rightarrow D\pi$
 - c. "SS" and "OS" (Charge of *K* from *D*⁰ is of same or opposite sign to the *B*)

Form 3 ratios and 4 CP asymmetries

Results

- Scan r_B vs. γ space computing χ² probability for the 7 observables to be described by (r_B, γ) values at each point. INCLUDE:
 - Statistical and systematic uncertainties and their correlations
 - Effects of mixing, but NOT *CP* violation in *D*⁰ system.

- Results are consistent with current LHCb average in both Dalitz plot ranges. Also consistent with zero.
- NOTE: The 2σ range is more restrictive for the K^{*}(892) region

$B \rightarrow VV$ Decays

Polarization Amplitudes in $B^0 \rightarrow \phi K^*$

Recent result (1 fb-1: arXiv:1403.2888

- Decays are dominated by a gluonic penguin
 - $BF = (9.8 \pm 0.6) \times 10^{-6}$ (First observed by CLEO)
 - Open to influence from NP effects in the loop.
- Direct CPV should be very small.

- Angular analysis of $B \rightarrow V V$ decays is interesting:
 - At Tree level, longitudinal helicity component dominates (*f_L*~1). Verified in B_d→ρρ decays.
 - For penguin decay, equal transverse components are found (*f_L*~0.5)

Angular Analysis

Results:	
$f_{\scriptscriptstyle L}$	$0.497 \pm 0.019 \pm 0.015$
f_{\perp}	$0.221 \pm 0.016 \pm 0.013$
$f_{\scriptscriptstyle S}(K\pi)$	$0.143 \pm 0.013 \pm 0.012$
$f_{\scriptscriptstyle S}(KK)$	$0.122 \pm 0.013 \pm 0.008$

- Longitudinal polarization ~0.5, in agreement with BaBar and Belle (PRD 78(2008)092008, PRD 88(2013)072004)
- Significant S-wave contribution.

Direct *CPV* in $B^0 \rightarrow \phi K^*$

- The B^0 flavour is self-tagged by the charge of the K from K^*
- The raw asymmetry comes from fits to mass distributions

$$A^{\text{RAW}} = \frac{N[\bar{B}^0 \rightarrow \phi K^*] - N[B^0 \rightarrow \phi K^*]}{N[\bar{B}^0 \rightarrow \phi K^*] + N[B^0 \rightarrow \phi K^*]}$$

This is corrected for production asymmetry A_P by subtracting the observed asymmetry in $B^0 \rightarrow J/\psi K^*$ decays to obtain

 $egin{aligned} A^{CP} &= (+1.5 \pm 3.2(ext{stat}) \pm 0.5(ext{syst}))\% \ (+1 \ \pm \ 6(ext{stat}) \ \pm \ 3(ext{syst}))\% \ (-0.7 \pm 4.8(ext{stat}) \ \pm 2.1(ext{syst}))\% \end{aligned}$

Babar [Phys.Rev.D 78, 092008(2008)]

Belle [Phys.Rev.D 88, 072004(2013)]

Asymmetries in $|A_{L}|^{2}$ and $|A_{\perp}|^{2}$ are also computed:

 $A_{L}^{CP} = -0.003 \pm 0.038 \pm 0.005$

 $A_{\perp}^{\scriptscriptstyle CP} = +0.047 \pm 0.072 \pm 0.009$

All *CP* asymmetries consistent with zero.

CP Violation in D decays

t-Integrated *CP* asymmetry in $D^0 \rightarrow h^+h^-$ decays

★ New result Arxiv:1405.2797v1 (3 fb⁻¹)

- Evidence for CPV in the charm sector is yet absent, though the SM could accommodate asymmetries at the few per mille level.
 - This is experimentally within the reach of LHCb.
- Study triggers on $\overline{B} \rightarrow D^0 \mu^- \nu X$ -- the μ charge labels the D^0 flavour.
 - Approx. signals: $D^0 \rightarrow K^+ K^-$ (2M), $D^0 \rightarrow \pi^+ \pi^-$ (0.7M),
 - Approx. control: $D^0 \rightarrow K^-\pi^+$ (9M), $D^+ \rightarrow K^-\pi^+\pi^+$. etc. (45M),

Experimental asymmetries

• The raw asymmetry is related to that due to *CP*:

$$A_{\text{raw}} \equiv \frac{N(D \to f) - N(\overline{D} \to \overline{f})}{N(D \to f) + N(\overline{D} \to \overline{f})} = \underbrace{A_{CP}}_{\mathcal{I}} + \underbrace{A_D(\mu^-)}_{\mathcal{K}} + \underbrace{A_P(\overline{B})}_{\mathcal{K}}$$

We want μ detect. B Production

• $A_D(m-)$ and $A_P(\overline{B})$ are ~same for both K^+K^- and $\pi^+\pi^-$ (modulo kinematic corrections) so:

$$\Delta A_{CP} = A_{\text{raw}}(K^-K^+) - A_{\text{raw}}(\pi^-\pi^+) = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$$

- Then to obtain $A_{CP}(K^-K^+)$
 - Measure raw asymmetries in CF modes $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow \overline{K^0}\pi^+ \& D^+ \rightarrow \overline{K^-}\pi^+\pi^+$ for which we expect that $A_{CP} = 0$.

Preliminary Results

• The 3 fb⁻¹ sample has been used to select D^0 decays tagged by the charge of the μ from $\bar{B} \to D^0 \mu^- \nu_\mu X$ decays and to measure

 $\Delta A_{CP} = (+0.14 \pm 0.16 \,(\text{stat}) \pm 0.08 \,(\text{syst}))\%$ $A_{CP}(K^-K^+) = (-0.06 \pm 0.15 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%$

These are correlated with correlation coefficient 0.28.

• From this result, the asymmetry for $\pi\pi$ decays is extracted:

 $A_{CP}(\pi^{-}\pi^{+}) = (-0.20 \pm 0.19 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%$

Preliminary

These results supercede our earlier ones from semi-leptonic *B* decays.
 Most precise *CPV* limit in these decays from a single experiment.

Asymmetry levels in parts per mille should remain measurable.

CPV in mixing from *WS* $D^{\circ} \rightarrow K^{+}\pi^{-}$ decays

 $\begin{aligned} CPV \text{ in mixing from } WS \ D^{\scriptscriptstyle 0} &\xrightarrow{} K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -} \text{ decays} \\ R^{\pm}(t) &\equiv \frac{WS(t)}{RS(t)} = R_D^{\pm} + \sqrt{R_D^{\pm}}y'^{\pm} \left(\frac{t}{\tau}\right) + \left(\frac{x'^{2\pm} + y'^{2\pm}}{4}\right) \left(\frac{t}{\tau}\right)^2 \end{aligned}$

- Measure the WS/RS ratio in each of 13 decay time bins, separately for D^0 and \overline{D}^0 .
- Fit the WS/RS ratio as a function of decay time under three hypotheses:
 - No CPV
 - No direct CPV $(R_D^+ = R_D^-)$
 - Full CPV allowed
- Account for relative reconstr. efficiency $\varepsilon_R = \varepsilon(K^-\pi^+)/\varepsilon(K^+\pi^-)$

 $R^+/\epsilon^+ - R^-/\epsilon^- \sim 1 - |q/p|^2$ is very small Drives HFAG - CPV results.

5th Workshop on Theory, Phenomenology and Experiments..., Capri, May 23-25, 2014

Brian Meadows

$D^{o} \rightarrow K\pi$ Mixing and CPV Results

Results are consistent with no CPV

HFAG - April → September, 2013

Conclusions

- □ In *B* decays, LHCb has covered many of the *CPV* studies made in the B factories with competitive precision and large, clean samples. With data in hand, measurement of CKM γ will exceed the precision achieved in the B factories
- Since establishing *CPV* in B_s decays LHCb is pursuing a program to study the patterns in these decays and is well on track to measure β_s with precision ~0.5^o before the upgrade.
- LHCb has provided much improved limits on CPV in *D* meson mixing. The precision required for finding CPV in *D* and *D_s* decays is unlikely to reach systematic uncertainty levels for some time.

Back-up Slides

It all began ...

the ONION

"America's finest News source"

LHCb results from the 1 fb⁻¹ sample

Two-body decays:

 $f = K^+K^-$, $\pi^+\pi^-$ (GLW) and $K\pi$ (ADS)

Multi-body decays:

 $f = K \pi \pi \pi$ (ADS)

- Similar to the two-body ADS modes BUT
- Use coherence factor (κ =0.33) and mean δ_D from CLEO
- NEW information used by LHCb.

 $f = K^{0}_{s}\pi\pi, K^{0}_{s}KK$ (GGSZ)

- Fit K⁰_shh Dalitz plots from B decays to a coherent sum of Dalitz plot models from D^{*}-tagged D⁰ decays.
- Use bins (16 for $\pi\pi$ and 4 for *KK*) and strong phases δ_D from CLEO

5th Workshop on Theory, Phenomenology and Experiments..., Capri, May 23-25, 2014

PLB 712 (2012) 203

PLB 723 (2012) 44

PRD 80 (2009) 031105

PLB 718 (2012) 43

LHCb 1 fb⁻¹ Results

- Best $(r_{\rm B}, \delta_{\rm B}, \gamma)$ values are fit to these 1 fb⁻¹ results, including systematic uncertainties).
- Frequentist confidence intervals are evaluated.

68.3% confidence level: $\gamma = 72.0^{+14.7^\circ}_{-15.6}$ LHCb: BABAR: $\gamma = 69.0^{+17^{\circ}}_{-16}$

 $\gamma = 68.0^{+15^\circ}_{-14}$ Belle:

LHCb PRELIMINARY

- Fits to B mass plots (two shown here) provide eight decay rates:
 - SS or OS (Same or Opposite Sign charge for B^{\pm} and K^{\pm} from D decay)
 - Charge of *B*[±]
 - $B^{\pm} \rightarrow D^0 K^{\pm}$ or $B^{\pm} \rightarrow D^0 \pi^{\pm}$
- These are efficiency corrected and combined into 7 observables (3 ratios and 4 CP asymmetries) that are related to the parameters $(r_{B}, \delta_{B}, \gamma)$.
- Major systematic uncertainty is $B \rightarrow DK / B \rightarrow D\pi$ efficiency ratio.

Indirect *CPV* in $D^0 \rightarrow K^+K^-$ and $\pi^+\pi^-$

PRL112,041801 (2014) (1 fb⁻¹)

• The asymmetry in effective lifetimes to *CP* eigen-states:

$$A_{\Gamma} = rac{\hat{ au}(\overline{D}^0) - \hat{ au}(D^0)}{\hat{ au}(\overline{D}^0) + \hat{ au}(D^0)} pprox \eta_{CP} \left(rac{A_m + A_d}{2}y\cos\phi - x\sin\phi
ight)$$

where
Direct *CPV* (v. small)

$$A_{d} = \frac{|\mathcal{A}_{f}|^{2} - ||\overline{\mathcal{A}}_{f}|^{2}}{|\mathcal{A}_{f}|^{2} - ||\overline{\mathcal{A}}_{f}|^{2}}; \quad A_{m} = \frac{|q/p|^{2} - |p/q|^{2}}{|q/p|^{2} + |p/q|^{2}}; \quad \phi = \arg \frac{q}{p}$$
is sensitive mostly to *CP* in mixing parameters *q/p*

• Total of 3.11×10^6 KK and $1.03 \times 10^6 \pi \pi$ decays used from the 1 fb⁻¹ data sample.

- Each decay mode split into 8 sub-samples
 - Magnet UP/DOWN
 - Two run periods with well-known calibrations and alignments
 - D^0 and \overline{D}^0 using slow pion π_s^{\pm} from $D^* \rightarrow D^0 \pi$
- Fits to each of the eight subsets were made in two steps:
 - Two-dim. fit to $M(KK \text{ or } \pi\pi)$ invariant mass vs. $\Delta M \equiv M(hh\pi^{\pm}) M(hh)$

 \rightarrow Extracts signal yield

 Two-dimensional fit to decay time vs. "point-back" criterion for D* to be "prompt" i.e. to come from primary vertex rather than from a b quark decay.

Results

□ No evidence for indirect *CPV*, nor any dependence on *t*.

CPV in Mixing

Flavour-specific CP asymmetry a_{sl}

The asymmetry for decays to <u>flavor-specific</u> states (e.g. semi-leptonic) probes CPV in mixing:

$$a_{sl} = rac{\Gamma_{\overline{B}{}^0 o f}(t) - \Gamma_{B^0 o f}(t)}{\Gamma_{\overline{B}{}^0 o f}(t) + \Gamma_{B^0 o f}(t)} \simeq rac{\Delta\Gamma}{\Delta m} an \phi_M$$

Individual rates depend on time *t* but *a_{sl}* is not *t*-dependent

Here, ϕ_M is the *CP*-violating weak mixing phase and Δm , $\Delta \Gamma$ are differences in mass and width of the two *B* mass eigenstates.

□ In the SM, $\phi_M \sim 0.2^0$ so a_{sl} is expected to be small:

Lenz & Nierst arXiv:1102.4274

 $B_s: a_{sl}^s = (+1.9 \pm 0.3) imes 10^{-5}$ $B^0: a_{sl}^d = (-4.1 \pm 0.6) imes 10^{-4}$

• The D0 collaboration has reported, for a combination of neutral semileptonic *B* decays, an asymmetry of $A_{sl}^b = (-0.787 \pm 0.172 \pm 0.093)\%$ some way beyond these expectations. This has not been confirmed.

"Flavour-specific" CP asymmetry a_{sl}

- Measure *raw* time-integrated asymmetry in reconstructed $B_s \rightarrow D_s^+ \mu^- \nu_{\mu} X$ and $\overline{B}_s \rightarrow D_s^- \mu^+ \overline{\nu}_{\mu} X$ decays:
 - Identify and reconstruct $D_s \rightarrow \phi \pi$ decay mode
 - Find good vertex for D_s with a μ .

- Semi-Leptonic modes are "<u>flavour-specific</u>"
- Make corrections for μ , *K* and π charge asymmetry
- For B_s decays, effect of production asymmetry a_P is a factor 2 :

$$A_{\text{meas}} = \frac{\Gamma[D_s^-\mu^+] - \Gamma[D_s^+\mu^-]}{\Gamma[D_s^-\mu^+] + \Gamma[D_s^+\mu^-]} = \frac{a_{sl}^s}{2} + \begin{bmatrix} a_P - \frac{a_{sl}^s}{2} \end{bmatrix} \frac{\int_{t=0}^{\infty} e^{-\Gamma_s t} \cos\left(\Delta m_s t\right) \epsilon(t) dt}{\int_{t=0}^{\infty} e^{-\Gamma_s t} \cosh\left(\frac{\Delta \Gamma_s t}{2}\right) \epsilon(t) dt}$$
$$\sim a_P (\sim 5\%) \times \begin{array}{c} \text{Rapid oscillations make} \\ \text{integral term 0.2\%} \end{array} \sim 10^{-4} \\ \text{So } A_{\text{meas}} \sim a_{sl}^{s}/2 \end{array}$$

5th Workshop on Theory, Phenomenology and Experiments..., Capri, May 23-25, 2014

Result for a_{sl}^s

ArXiv:1308.1048v2

- Systematic uncertainty lies in the limited sample for charge asymmetry calibration.
- We do not confirm the 3σ SM anomaly from D0
- This result is in accord with the SM.

Three types of CPV

In the mixing ("indirect CPV") 1.

$$rac{q}{p}=r_{\scriptscriptstyle M}e^{i\phi_{\scriptscriptstyle M}}
eq 1 \qquad (r_{\scriptscriptstyle M}\equiv \left|rac{q}{p}
ight|).$$

In interference between mixing and decay ("indirect CPV" – 2. a.k.a. "mixing-induced CPV")

$$\lambda_f = rac{q}{p} rac{ar{\mathcal{A}}_f}{\mathcal{A}_f}
eq 1$$

In the decay ("direct CPV") 3.

 $|\bar{\mathcal{A}}_f| \neq |\mathcal{A}_{\overline{f}}|$ (requires two amplitudes with different weak AND different strong phases).

In the last two, CP asymmetry can depend on decay mode

Similar analysis but

- The K^+K^- mass m_{KK} is taken in 6 slices within ±30 MeV of the ϕ Each has different magnitude and phase.
- A S-wave K^+K^- amplitude is included with $\|, \perp$ and 0 components in P-wave.

Measuring β_{s} in $B^{0} \rightarrow J/\psi K^{+}K^{-}(\pi^{+}\pi^{-})$ decays

Interference between mixing and decay

The phase ϕ_{s} is determined from time-dependent *CP* asymmetry:

Standard model (CKM fitter): $\beta_s = -0.0182 \pm 0.0008$

5th Workshop on Theory, Phenomenology and Experiments..., Capri, May 23-25, 2014

Brian Meadows

- □ The K^+K^- mass m_{KK} is taken in 6 slices within ±30 MeV of the ϕ Each has different magnitude and phase in each m_{KK} bin.
- Angular structure of decays described by 4 helicity amplitudes:

 $egin{array}{c} A_{\scriptscriptstyle S} e^{i\delta_{\scriptscriptstyle S}} \ A_{\perp} e^{i\delta_{\perp}} \end{array} \Big\} \eta_{CP} = -1 \qquad ext{and} \qquad egin{array}{c} A_{\parallel} e^{i\delta_{\parallel}} \ A_{0} e^{i\delta_{0}} \end{array} \Big\} \eta_{CP} = +1 \end{array}$

• To measure ϕ_s , an angular analysis to separate *CP* states is necessary.

Decay time and angular dependence

- The decay rate for each m_{KK} slice depends on 4 variables, (Ω, t)
- Angular terms of the same CP are grouped with the appropriate decay time distributions:

$$\underbrace{ \begin{array}{c} \text{Helicity angles } \Omega \\ & & \\ &$$

 $\frac{d^4\Gamma}{dtd\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega) \qquad [\Omega \equiv (\theta_k, \theta_\mu, \phi_k)]$

with 10 pairings of the four K^+K^- helicity amplitudes and $h_k(t) = N_k e^{-\Gamma_s t} [a_k \cosh(\Delta \Gamma_s t/2) + b_k \sinh(\Delta \Gamma_s t/2) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t)]$ $+c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t)]$ with coefficients $a_{k'} \dots d_k$ that are functions of $\lambda = \frac{q}{r} \frac{\bar{A}}{A}$.

The B_s flavor is tagged at production

From U. Uwer

Results for $B_s \rightarrow J/\psi KK$ fit

Candidates / (0.274 ps)

10

10

• Sign ambiguity for $\Delta \Gamma_s$

Invariance: $(\phi_s, \Delta\Gamma_s, \delta_0, \delta_{\parallel}, \delta_{\perp}, \delta_s) \Leftrightarrow (\pi - \phi_s, -\Delta\Gamma_s, -\delta_0, -\delta_{\parallel}, \pi - \delta_{\perp}, -\delta_s)$

Candidates / 0.067

1200

1000

800 600

400

200

LHCb

0.5

 $\cos\theta_{\rm m}$

LHCb

10

Decay time [ps]

by the ϕ meson.

 \square Combined fit to $B_s o J/\psi K^+K^-$ and $B_s o J/\psi \pi^+\pi^-$

(The pion channel is simpler – 97% S-wave with $\eta = -1$)

- The interference effects can be enhanced by the choice and number of *D* decay modes *f*.
- Three methods used, differentiated by the (flavouranonymous) D⁰ decay modes:
 - GLW: *f* is *CP* eigen-state (*KK*, $\pi\pi$, $K_S\pi^0$, etc.) $\delta_d = 0$ PLB253, 483 (1991), PLB265, 172 (1991)
 - ADS: *f* is K[±]π[∓] (CF or DCS) and PRL78, 3257 (1997), PRD63, 036005 (2001)

 $\begin{array}{l} \delta_{\text{d}} \text{ from } \psi(\text{3770}) \\ (\text{CLEO or BES3}) \end{array}$

GGSZ: *f* is multi-body, *CP* self conjugate state (*K_sh⁺h⁻*, etc.)
 PRD68, 054018 (2003)

 $\delta_d = 0$ for some modes Measures γ directly

Direct *CPV* in $B^{0}_{s} \rightarrow K^{+}\pi^{-}$ and $B^{0} \rightarrow K^{+}\pi^{-}$

MC PRL 110 (2013) 221601

Penguin and Tree can contribute, so direct CPV is possible.

http://cerncourier.com/cws/article/cern/53407

The "raw" asymmetries A_{raw}, obtained from fits to invariant mass distributions:

$$A_{\rm raw} = \frac{N(K^+\pi^-] - N(K^-\pi^+)}{N(K^+\pi^-] + N(K^-\pi^+)} \qquad \Rightarrow \qquad \begin{array}{l} A_{\rm raw}^{B^0} = -0.091 \pm 0.006 \\ A_{\rm raw}^{B^0_s} = -0.28 \pm 0.04 \end{array}$$

-0

Must be corrected for Detector and Production asymmetry:

Detector asymmetry A_D estimated from D^*/D decays involving $K^-\pi^+$

$$A_{D}(K\pi) = \frac{\overline{\epsilon}(K\pi) - \epsilon(K\pi)}{\overline{\epsilon}(K\pi) + \epsilon(K\pi)} \rightarrow \begin{cases} A_{D}^{B^{0}} = (-1.22 \pm 0.21)\% \\ A_{D}^{B^{0}} = (-1.15 \pm 0.23)\% \end{cases}$$

• A production asymmetry A_P induces oscillations in A_{raw} with the $B(B_s)$ mixing frequency & amplitude A_P

 $A_{\text{raw}}(t) \approx A_{CP} + A_D + A_P \cos(\Delta m t)$

So productions measured to be

$$A_P = rac{\overline{N}_{\scriptscriptstyle P} - N_{\scriptscriptstyle P}}{\overline{N}_{\scriptscriptstyle P} + N_{\scriptscriptstyle P}}$$

$$egin{aligned} &A_{_P}^{B^0}=(+0.1\pm1.0)\%\ &A_{_P}^{B^0_s}=(4\pm8)\% \end{aligned}$$

 Combining these corrections leads to the measured CP asymmetries:

$$\begin{split} A_{CP}(B_s) &= \frac{\Gamma[\bar{B}^0_s \to K^+\pi^-] - \Gamma[B^0_s \to K^-\pi^+]}{\Gamma[\bar{B}^0_s \to K^+\pi^-] + \Gamma[B^0_s \to K^-\pi^+]} = 0.27 \pm 0.04 \pm 0.01 \\ A_{CP}(B) &= \frac{\Gamma[\bar{B}^0 \to K^-\pi^+] - \Gamma[B^0 \to K^+\pi^-]}{\Gamma[\bar{B}^0 \to K^-\pi^+] + \Gamma[B^0 \to K^+\pi^-]} = -0.080 \pm 0.007 \pm 0.003 \end{split}$$

More mixing-induced CPV

First Time-dependent *CPV* in $B_s \rightarrow K^+K^-$

JHEP 10 (2013) 183 (1 fb⁻¹ @ 7 TeV)

• The *time-dependent CP* asymmetry is

5th Workshop on Theory, Phenomenology and Experiments..., Capri, May 23-25, 2014

Brian Meadows

Time-dependent *CPV* in $B_d \rightarrow \pi^+ \pi^-$

JHEP 10 (2013) 183 (1 fb⁻¹ @ 7 TeV)

□ The *time-dependent CP* asymmetry is

5th Workshop on Theory, Phenomenology and Experiments..., Capri, May 23-25, 2014

Brian Meadows

Other decays with direct CPV

Direct CPV in 3-body charmless B decays

Evidence for inclusive *CP* asymmetries in $B \rightarrow 3h$.

CP violation is highly localized

