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1. Introduction



Current hot subject in cosmology: B-mode signal in CMB

• BICEP2 announced the discovery of r ∼ 0.2

r: tensor-to-scalar ratio

• PLANCK (and other) results will come out soon

Implications of the discovery of the B-mode signal

• Evidence of inflationary gravitational waves (IGWs)

• Discovery of the B-mode signal provides information about
the amplitude of IGW (at the CMB scale)

ΩIGW ≡ 1

ρcrit

[
dρIGW

d ln k

]
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0.1

)



The history of our universe is imprinted in IGWs

• We may probe the early universe with IGWs

Photon

Neutrinos

Gravitational Waves

• The IGW spectrum may be measured in (far) future by
space-based GW detectors (like BBO / DECIGO)



Today, I will talk about:

• How the IGWs behave

• What kind of information is imprinted in IGWs

• What we may learn with space-based GW detectors
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2. IGWs: Basic Properties



Gravitational wave: Fluctuation of the metric

ds2 = −dt2 + a2(t)(δij + 2hij)dxidxj

hij(t, ~x) =
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∑
λ=+,×
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ij ei~k~x

ε
(λ)
ij : polarization tensor (transverse & traceless)

Quantum fluctuation generated during inflation
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⇒ The amplitude of the IGW is proportional to Hinf



Wave equation for GWs
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Evolution of IGWs: after inflation

• k . aH: h̃~k ∼ const. ⇒ dρGW

d ln k
∝ a−2
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The IGW spectrum depends on the epoch of horizon re-entry

ΩIGW(k) ≡ 1

ρcrit

[
dρIGW

d ln k

]
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• ΩIGW(k) ∼ const, for k . kR

• ΩIGW(k) ∝ k−2, for k & kR



The IGW spectrum (rCMB = 0.15, parabolic chaotic inflation)

TR ≡
(

10

g∗π2

)1/4

× M
1/2
Pl Γ

1/2
inf

f ' 2.7 Hz ×
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)
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We may determine TR, if the IGW spectrum is measured
[Nakayama, Saito, Suwa & Yokoyama (’08)]



3. Determination of the Reheating Temperature
[Jinno, TM & Takahashi, work in progress]



With space-based GW detectors, IGWs may be detected
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TR=10
7
GeV

10
8

10
9

TR=∞

~ 10  m7
10

-18

10
-17

10
-16

10
-15

10
-14

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Ω
IG

W

f[Hz]

BBO grand

BBO std

Expected sensitivity (10years, Δf=f/10)

δχ2 '
∑
fi

[Ωobs(fi) − ΩIGW(fi)]
2

∆Ω2(fi)

∆Ω2 depends on detector parameters (noise, shape, ...)



Case with TR = 107 GeV (tobs = 1, 3, and 10 yr from outside)
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[Jinno, TM & Takahashi (preliminary)]

• Precise determination of ΩIGW is possible at BBO

• TR is well constrained if TR . 107 − 108 GeV



Case with TR = 109 GeV (tobs = 1, 3, and 10 yr from outside)
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[Jinno, TM & Takahashi (preliminary)]

• TR is bounded only from below, if TR & 108 GeV



4. Case with Cosmic Phase Transition
[Jinno, TM & Nakayama]



If something happens after reheating, ΩGW(k) is deformed

• Cosmic phase transition

• Domination by extra matter

• · · ·
S
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Physical Wavelength = a/k

⇒ ΩGW(k) at k ∼ k∗ is affected



Case 1: Phase transition (short thermal inflation)

Example: Peccei-Quinn symmetry breaking

Potential with thermal effects:

V (φ) =
g

24
(φ2 − v2

φ)
2 +

h

24
T 2φ2

〈φ〉 '
{

0 : T > Tc

vφ: T < Tc

⇒ The universe may be once dominated by the potential
energy of φ (like thermal inflation)
[Lyth & Stewart]



Case 2: Temporary matter domination

• Scalar condensations (like saxion in SUSY PQ model)

• Other exotic particles

A matter field once dominates the universe, then decays

• ρrad ∝ a−4

• ρmatter ∝ a−3
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IGW spectrum for two cases:

Phase Transition Particle Decay

g = 0.001

g = 0.0001

R = 0.77

R = 0.25

Important parameter:

R ≡ ΩGW(k)
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Information in the IGW spectrum

• f∗ ⇒ Temperature of the event

• R ⇒ Energy injection

• dΩGW/d ln k ⇒ Time scale of the event

ΩGW

Frequency

f
*

R

Slope

Oscillation (?)
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5. Summary



The B-mode signal is a strong evidence of the IGWs

ΩIGW ≡ 1

ρcrit

[
dρIGW

d ln k

]
NOW

' 3 × 10−16 ×
( r

0.1

)
IGW contains rich information about the thermal history

⇒ Direct detection of the IGW is attractive

Possible scenario in the future

• Confirmation of r > 0

• Establish the technology with ground-based GW experi-
ments (Advanced LIGO / KAGRA)

• If these are done, the space-based experiment to detect
IGW is an interesting possibility



Backups



Case 3: Production of “dark radiation (DR)”

DR: Relativistic particle with large free-streaming length

• Candidates of dark radiation: NG bosons, like axion, · · ·

⇒ They can be produced in association with phase tran-
sition, for example

⇒ They may decay, or may be diluted afterwards

• Non-vanishing anisotropy inertia shows up

⇒ ¨̃h
(λ)
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+ 3H ˙̃h
(λ)
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+
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(λ)
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=
1

M 2
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× (anisotropic inertia)

DR changes the shape of the IGW spectrum
[Weinberg]

⇒ Suppression of low frequency mode of the IGW spectrum



Example 1: Phase transition with DR production

1. Phase transition, which produces DR

2. Decay of (some fraction of) “DR”
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Example 2: Freeze-out of DR

1. Phase transition, which produces dark-sector particles

2. Particles in the dark sector freeze-out
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Example 3: DR domination in the early epoch

1. Universe was once dominated by DR

2. DR decays and reheats the SM sector
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