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Introduction

In this paper we report the studies done for determining the computational performances required 
by the Trigger CPU   in the framework of the  KM3NeT-Italian 8-Towers detector Trigger and 
Data Acquisition System (TriDAS). 

The work consisted of:

1. Simulation of atmospheric muons events with optical poissonian background in the KM3NeT-
Italian  8-Tower detector.

2. Implementation of the event readout codes and the basic trigger algorithm for the reduction of 
the events.  

3. Tests with benchmarked server at CNAF

1 Simulating the hits
The procedure was started once  the Physics WorkingGroup provided us with a 8-Towers detector 
file [1] . 

                            

Figure 1. left: an excerpt of the 14 floor tower; right: the 3D arrangement of the towers.

It is consistent with  the following detector specs: 8 towers ;    14 floors per tower;  6 PMTs per floor 
(Fig. 1 left).
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The standard NEMO simulation chain was used [2] such as sketched in Figure 2. The aim was to 
simulate events of atmospheric muons + background.

Figure 2. the progressive MonteCarlo processing phases.

1. MUPAGE, the atmospheric muon generator  [3] , [4], which generates a number of muons on 
the surface of a given “can” surrounding the detector.  The following  parameterization was 
used:

physics:     HEMAS-DPM        07.01 
propag:      MUSIC seawater   02.03
simul:       MUPAGE           03.05-100416   130920 1203
seed:        MUPAGE-MT19937   3  1001  0  0
can:         -224.212   330.204   431.260
seabottom:   3430.
cut_in:      1.   500000.   -1.000000   -0.087156
norma:       0     1000000
livetime:    5.66e+03    7                  

Note that the generated events (106 events on the given “can”) correspond to a live-time of 5660 
seconds (about 1 hour and 35 minutes).   

2. KM3, the program which generates the hits on the detector PMTs, according to the detector 
file, and  (must of all)  according to the parameterization of the optical properties of the water 
and of the Optical Modules (i.e. the angular acceptance of the PMTs, the OM’s transparency 
etc.).   

A very important note:  not all the muons generated by MUPAGE give hits on the PMTs. Actually 
this depends on the size of the “can”. The bigger the “can” is, the less percentage of muons  give hits 
in the detector.  

The output file produced by KM3 will contain 2 kinds of events: 

- good events with direct Cherenkov hits, i.e.  coming from the muon;
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-  fake events, practically empty. For sure without the direct Cherenkov hits; indeed with a possible 
set of hits from scattered photons or from secondary particles. 

The production of fake events can be toggled on/off in KM3. In this case we decided to keep them, 
since they were  used to produce  with the application of  GENBKG program  the “background” 
events. 

  

3. GENBKG, the program which adds the optical background to  each event (good or fake) 
determined by KM3. It applies a poissonian background related to a  constant  single rate νbkg 

properly tuned to simulate the convolution of the optical contribution of  40K decays and 
bioluminescence.  

As it will be reported further in the text we considered two kind of νbkg  : 50 kHz and 110 kHZ.

4. FEMSIM, the program which simulates the electronic sampling.

 We left the default settings, in particular a s.p.e is rated  8 pC.  It produces an output file with the 
hits written according to a format  similar to what used in the real online DAQ.

2 Five approaches to prepare the TimeSlices
The hits contained at the FEMSIM level are organized into a  discrete number of events. There is 
not any continuous flow of hits, as it is in the real case of the online DAQ. This difference is crucial . 
In order to  estimate the necessary resources to manipulate the hits and to apply the trigger 
algorithms we need to prepare the available data in a way that is as much similar as the real case.  
Moreover, in the  online DAQ we don’t know when a muon event occurs. It is the  very trigger 
algorithm to cut out events from the continuous data-stream.   In the following we explain how we 
manipulated the FEMSIM events in order to prepare a more realistic set of data.

The online TriDAS operates thanks to the concept of TimeSlice. The  TimeSlice abstractly refers 
to  a particular set of hits, all from the whole detector and all occurred during a certain interval of 
time of a given duration. According to this, before that TCPUs could apply the trigger algorithms, 
the continuity of time-flow is sliced into a series of subsequent TimeSlices. This is done inside the 
HitManager servers.  Refer to  [5] for a detailed description of TriDAS. It is enough to  know here 
that all the  TriggerCPU processes  act  individually  on   different  TimeSlices.  In the present 
context of the off-line analysis reported in this paper, as a preamble for the application of the trigger 
algorithm, we needed to reassemble  the FEMSIM file. All the events  were opportunely combined 
into groups, each one with the following characteristics:

a)  good (muons) a fake (background) events were mixed together according to a prefixed balance 
(see paragraph 2.1);

b)  the summation of the event durations  was approximatively equal to the TimeSlices duration  
(200 ms).  From the FEMSIM file, considering both good and fake events,  the average event 
duration  turned out to be of about 6.2 µs. Being the total number of events produced by 
MUPAGE equal to  1o6 ,  we reassembled the good and fake events within 31 TimeSlices, each of 
the duration of  200 ms.

Such reassembling of the events lead to writing  different files, called “TimeSlice files”.
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2.1 BALANCING MUONS AND BACKGROUND

We produced 5 kind of  TimeSlice files from the simulated data, each one according to the following 
approach:

1. the “Condensed” approach (an extremely high 25 kHz muon rate and a realistic νbkg   = 50 kHz 
background rate per PMT); 

2. the “Realistic” approach  ( a realistic νbkg = 50 kHz background rate per PMT and a 27 Hz muon 
rate).

3. the “Hardly Realistic”  approach (a realistic νbkg  = 50 kHz background rate per PMT and a hard 
270 Hz muon rate);

4. the “Heavy Background” approach (a heavy νbkg = 110 kHz single rate background per PMT and 
realistic 27 Hz muon rate);

5. the “Heavy Background + Hardly Realistic” approach (a νbkg = 110 kHz background per PMT 
and a 270 Hz muon rate)

2.2  CONSIDERATIONS ABOUT  REASSEMBLING THE FEMSIM FILE 

Let’s follow the scheme sketched in Figure 3.  In the topmost box you find  some muons/muon 
bundle events (black dots) displaced along time (the right-arrow).  Note that MUPAGE does not 
estimate  the correct progressive occurring time  for any of the muons/muon bundles it simulates. 
All the muons/muon bundle determine a stand alone event. The development of each event is 
independent with respect to the others. In any case, MUPAGE gives back a live-time estimation for 
the requested number of events. So we could retrieve an averaged muon event rate by dividing the 
number of generated events by the corresponding amount of live-time. In the present case it is  
about νg = 177 Hz. Please, note once more that νg  increases with the “can” size.  

As mentioned above, not all the  muons give signals in the detector, when processed by KM3. Table  
1 shows that good events release detected signals  with a rate of νd = 27 Hz. Note again that νd  does 
not increase with the size of the “can”. Indeed, with the size of the can,   the KM3 processing time to 
find out the detected events is enhanced.

In Figure 3 - middle box, blue dots represent those muons that produced good events after KM3, 
while with red dots the muons that  produced “fake” events. The green and yellow bars represent the 
event duration, for good and fake events, respectively. There is a minimum requested duration of 6 
µs for all events. The duration of good events could result larger due to the fact that GENBKG 
adds the background hits along a  time  window built in the following way:  starting from the 
effective duration of the muon signals inside the detector (~ 1 µs)   as it is simulated by KM3 , the 
total event window is  retro-extended   by 3 µs in the past (starting from the first muon hit) and 
forward-extended by  3 µs in the future (starting form the event last muon hit). For  fake events, 
being empty of muon hits, the event duration is just  6 µs instead.  It is apparent from Figure 3 that 
the summation of all the time intervals represented by the yellow and green bars doesn’t cover the 
full extension of time. Indeed there are time-gaps  which depend to chosen global event duration. 
Finally note, again from the middle box, that the good events  (blue dots) occurred in a TimeSlice 
interval is  2. 
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Figure 3. From the muon generation to the condensed case:  the  detected muon rate is enhanced due the shrinking of 
the events  to cover a TimeSlice time interval  (see text for details).

2.2.1 CONDENSED APPROACH

The bottommost box shows how we setup a “condensed” TimeSlice. We simply concatenated all 
the present events, good and fake, as they were listed in the FEMSIM output file. The progressive 
time of all the hits is computed  as following: the time of the  first hit of the next event is obtained by 
adding the relative hit time in the event to the time of the last hit of the previous event.

This turned out into a shrinking of the data flow, enhancing the rate of good events inside each 
TimeSlice. In the  bottommost box of Figure 3 this effect is clearly visible with the good events 
occurring in a TimeSlice being now equal to 3. 

In the end,  the condensed approach consists of producing TimeSlices with a muon rate much  
larger than in the  realistic case.  As it will be shown further in this note, such data sample  stressed 
the trigger algorithm more than a normal realistic data sample.   Table 1 reports a summary of the 
events statistics and the relative rates computed with respect to a certain live-time.   

N. ev live-time (s) rate (Hz)

MUPAGE 1000000 5660 177

KM3 - Good 150894 5660 27

KM3 - Fake 849106 5660 150.0

condensed TS signal 5066 0.2 25330

Table 1.
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By simply considering the atmospheric muon rate in the shrunk TS  of Table 1, the “conservative” 
approach could appear  fairly unrealistic: we have 25 kHz in   the shrunk TS against 27 Hz expected 
in the real life.  

In any case it is worthy to note that  good   and background events contain similar averaged number 
of hits. For the presented simulation,  from all  5066 good events we get 1071856 hits, and so the 
averaged  muon hit number per event is 212.  Assuming 50 kHz of single rate per PMT, the 
averaged background hit number per event is 204.  This imply the same   processing load necessary 
to handle muon and background hits in the TCPU. The crucial point is that searching for   
causality correlations  will stress more  the TCPU performances when a larger fraction of  muon 
events is present.  This fact will become more clear in the section concerning the report from the 
trigger application. In any case we can anticipate that the larger stress is caused by the larger 
number of trigger seed that the trigger program must take into account.

2.2.2 REALISTIC  AND HARDLY REALISTIC APPROACHES

 Apart from the “condensed” approach, the other approaches needed a more complex data 
manipulation in order to mix the generated optical background with the wanted muon rate.  For 
building-up  the correct data-stream compliant with  a  requested  number of muon events in each 
TimeSlice we followed the following steps:

• for each TimeSlice of duration ΔT ,  the number of present muons  Nµ is extracted by the 
Poisson probability distribution    P(Nµ, νd  ΔT  ) = (1/Nµ!)  exp(-νd  ΔT) (νd  ΔT)Nµ  .

Note that the duration of the TimeSlice is much more bigger than the duration of a muon event (i.e. 
about few µs). This allow us to neglect the occurrence of muon events which are split by the end of a 
TimeSlice and the beginning of the subsequent one.

• (Nµ - 1 ) time intervals   Δt are randomly extracted  by mean of the exponential law exp(- νg Δt ).

In this way we can compose the TimeSlice content by opportunely adding background events as to 
fill the Δt gap between two muon events.  It is that  even doing so, the number of TimeSlices won’t 
cover the original live time corresponding to the generated muons at the MUPAGE level. In the 
pure “realistic” case the muon rate at the detector  νd = 27 Hz is preserved in the TimeSlice data-
stream; in the “hardly” realistic approach νd was enhanced by a factor 10 (νd

’ = 270 Hz). 

Figures 4 and 5  show some statistical information about the reassembled events according to the 
“Realistic” and “Hardly Realistic” approaches. Refer to the figure caption for details.  Note that the 
tails of the left plots of Figure 4, present in both distribution for muon and background only events, 
are due to the presence of hits from secondary  particles and scattered photons which extend the 
event duration.  Finally note in Figure 5, right plot, that  the average number of hits per TimeSlice  
for both the two approaches is the same.

2.2.3 HEAVY BACKGROUND APPROACH

 GENBKG was re-run getting an alternative simulation of  background: the random optical noise 
single rate was enhanced  up to 110 kHz  per PMT. The intention of this simulation set was to have 
a TimeSlice richer of hits, so to stress the memory allocation feature of the trigger programs.  Also 
in this case, similarly to the “realistic” line-up,  we prepared two set of TimeSlices: one with a 
realistic muon rate of νd = 27 Hz  (“Heavy Background”),  the second with 10 x  νd   = 270 Hz 
(Heavy Background and Hardly Realistic) .  Figures 6 and 7 shows the above discussed statistical 
observables. We note that the number of hits per event, and  so per TimeSlice, is about a factor 2.2 
larger than for the “Realistic” and “Hardly Realistic” approaches, as expected.  
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Figure 4.  “Realistic” and “Hardly Realistic” ( νbkg  : 50 kHz ).   Muon events in blue,  background only events in red; 
top plots according to muon rate νd = 27 Hz, bottom plots according to muon rate νd = 270 Hz.. Left column: 

distribution  of event duration. Right column: distribution of the number of hits per event.

Figure 5. “Realistic” and “Hardly Realistic” ( νbkg  : 50 kHz ).  Muon rate νd = 27 Hz in blue; muon rate νd = 270 Hz in 
red. Left: distribution of number of muon events per TimeSlice. Center: distribution of number of  background only 

events per TimeSlice. Right: distribution of hits (from muon and background events) per TimeSlices
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Figure 6. “Heavy Bkg” and “Heavy Bkg +Hardly Real.” ( νbkg  : 110 kHz ) . Muon events in blue,  background only 
events in red; top plots according to muon rate νd = 27 Hz, bottom plots according to muon rate νd = 270 Hz. Left 

column: distribution  of event duration. Right column: distribution of the number of hits per event.

Figure 7. “Heavy Bkg” and “Heavy Bkg +Hardly Real.” ( νbkg  : 110 kHz ).  Muon rate νd = 27 Hz in blue; muon rate 
νd = 270 Hz in red.  Left: distribution of number of muon events per TimeSlice. Center: distribution of number of  

background only events per TimeSlice. Right: distribution of hits (from muon and background events) per TimeSlices
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3 Data manipulation strategy 
Three layers of  data handling were set as shown in Figure 8. Starting from the FEMSIM output 
file the events were separated into 2 files: the good event (muons) file   and the  fake event 
(background only) file.  

3.1  WRITING THE TIMESLICE FILES 

The TimeSlices were formed by properly mixing  the background events with the wanted amount 
of muon.  For each one of the 5 approaches described in the previous section one final output file 
was dumped with the collection of all the 33 TimeSlices.   

The production of such 5 TimeSlice files was completed on a commodity PC, running SL6, which 
was a different resource from the one used for the benchmark test ( see  further in Section 5).  On the 
contrary the next two steps described in the following text represented the core of the benchmarked 
code.

3.2  PARSING DATA AND MEMORY ALLOCATION 

The second step consisted of  parsing the TimeSlice file, reading  the  TimeSlice groups one by one. 
The  parsed data were allocated into the RAM in a way useful to handle all the hits from all the 
PMTs belonging to a given TimeSlice. 

For this purpose, the events were decomposed: all the hits related to one PMT were pushed back 
into  a STL vector, the so call PMT vector.   All the PMT vectors were then pushed back into a  
second STL vector, which was called the TimeSlice vector.

3.3  TIME SORTING, HIT CALIBRATING AND EVENT TRIGGERING

The third step was itself subdivided into three parts:

- all the  hits of the parsed TimeSlice were  “calibrated”.  Actually, such a calibration was necessarily 
a fake one, since neither time offsets between PMTs neither charge pedestals were included in the  
detector simulation. A fake constant correction  was then added the hit timestamp and charge with 
the aim to introduce time-consuming operations. It is worthy to note that the hit timestamp was  
represented according to the online data format (a fine timing in units of  5 ns  thanks to a simulated 
parity flag and a coarse timing in units of 500 µs), while the charge was measured in pC.

- first of all we  created a time-sorted array containing all the hits of the TimeSlice. For quickly 
completing this task, a supplementary STL vector of vectors  was composed, similar to the 
TimeSlice vector, but containing only those information  of a hit used by the sorting and the trigger 
algorithms (i.e. the hit time and a pointer to the effective area of the memory where all the rest of 
information reside ).

- the last action consisted of applying the 2 trigger levels, which are described in the next section.  

The actions described in paragraphs 3.2 and 3.3 were implemented in the single threading program 
called “TCPUSimu”  which  underwent the  benchmarking tests, as reported in Section 5.
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Figure 8. The data manipulation: from the FEMSIM output file to the trigger levels.
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4 Trigger Levels
The Level 1 trigger consisted of a  logic OR of the following conditions:

-  Simple Coincidences: i.e. topological time-like trigger conditions involving hits occurring on near 
PMTs  within a time-window of 20 ns.  The circles  in Figure 9 indicate the  pairs  of PMTs  of each 
floor that can trigger Simple Coincidences L1 events. 

Figure 9.  The circles groups PMTs in pairs: each pair could trigger a Simple Coincidence.

- Charge over threshold: when a hit charge is above a certain threshold (here set to 20 pC - note that 
1 single photon electron hit charge is about 8 pC).

When a trigger seed was found in the stream of one TimeSlice, a L1 event was cut, saving all the hits 
from all the PMTs within ± 3 µs from the trigger seed occurrence. If a new seed had occurred 
before the end of the event, the event window was extended by  counting additional 3 µs from the 
last found seed. 

 The Level 2 trigger consisted into a causality filter [6]. Only  L1 events containing a number of L1 
seeds ≥ 5  were considered.  The strategy consisted of testing the causality among the hits of the L1 
seeds  assuming being originated by a muon coming from  a guess direction out of a collection of 210 
ones which  cover the full solid angle 4π (see Figure 10). 

Figure 10.  Hammer-Aitoff projection of the default grid of 210 directions used in the standard trigger algorithm
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The L2 algorithm proceeded as the following: given the direction, the detector frame is rotated till 
the chosen direction becomes the vertical one.  Then the causality relation was tested with equation 
(1)  for all the pairs of  L1 hits (refer also  to Figure 11 ):

|( ti -tj )c - (zi - zj ) |  ≤  tanθc  √[(xi - xj )2+(yi - yj )2] = tanθc | Ri j |          (1)

 where    i and j  represent two hits of  the L1 seeds,     c is the speed of light in vacuum,  θc

is the Cherenkov angle in water (about 43˚ ) and (x,y,z,t) are the spatial-time coordinate of the PMT 
that recorded the hit. 

When the number of hits satisfying equation (1) was equal or larger than 5, the trigger was set.

Figure 11.  Schematic view of a muon transversing a  part of the  instrumented volume of the detector.  

The application of the L1 + L2 trigger levels determined a trigger efficiency ranging 3-5%. It is a 
reasonable efficiency  considering that the triggered good events are, for this simulation, downward 
going atmospheric muons, and being the NEMO-like towers optimized for the detection of upward 
going particles. 

Moreover, approximatively  the same trigger efficiency  is found for the ANTARES detector [7], 
which has almost the same instrumented volume. 

We conclude that we didn’t implemented any kind of optimization of the trigger algorithms, since 
for the scope of this study, the dimensioning of the TCPU farm, we wanted to keep a conservative 
profile.
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5 Benchmark set-up and results
We analyzed the TimeSlice files, produced according to the 5 approaches described in Section 2.2 , 
by  running the TCPUSimu program on a HEPSPEC-06 benchmarked CNAF worker node, 
having the following characteristics:

Hostname: wn-204-03-25-02-b.cr.cnaf.infn.it

OS: Scientific Linux release 6.4 (Carbon)

Kernel: 2.6.32-358.18.1.el6.x86_64

CPU type: Intel(R) Xeon(R) CPU E5520  @ 2.27GHz

Cores: 8 x 2

CPU MHz: 2268.000

Cache size: 8192 KB

Memory: 24 GB

HEPSPEC version: hs06 sl6-32bit (hyperthreading on)

HEPSPEC score: 128.12

Note that the effective physical cores are 8, which are enhanced to 16 by the “hyperthreading”, which 
is turned ON. We recall that the hyperthreading enhance of about 40%  maximum the performances 
of the machine. 

5.1  TIMING THE  HIT MANIPULATION   (8  PROCESSES / 8 CORES)

The main goal of this work is to determine the CPU power required to handle the collected hits 
and to apply the trigger algorithm. The result of this study is to output a CPU power quantity  in  
HEPSPEC-06 units, so that it is spendable for planning the TCPU farm. For this reason, in order 
to better distribute the CPU load to the benchmarking worker node, we decided to run as many 
TCPUSimu program as the effective number of  effective physical cores.

So for the principal purpose of this note, we made the main benchmark by running simultaneously 8 
versions of the program TCPUSimu, compiled with 

  c++ (GCC) 4.4.7 20120313 (Red Hat 4.4.7-3) 

with option  -O2,  analyzing  the same TimeSlice file.  We took profit of the  multiple running for   
gathering  statistics in order to present more reliable results. 

Tables 2 summarizes, for all the 5 approaches, the averaged measures of  time needed to complete  
the hit manipulation sequence implemented in the  TCPUSimu code.   The various timings are 
referring to the following actions:

-  parsing data from the TimeSlice file and allocating the necessary memory   (Tp  + Tma ) to host all 
the hits in a TimeSlice.

-  calibrating the hits  (Tcal )

-  time-sorting all the the hits of each TimeSlice ( Tsort )

-  applying the L1 and L2 trigger level  ( TL1 and TL2 , respectively )
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approach Tp  + Tma   (ms) Tca (ms) Tsort (ms) TL1 (ms) TL2  (ms)

realistic 11280 ± 123 61 ± 1 1176 ± 12 596 ± 7 171 ± 2

hardly realistic 11251 ± 118 57 ± 1 1167 ± 12 588 ± 7 174 ± 2

condensed 11318 ± 111 57 ± 1 1146 ±11 579 ± 6 400 ± 4

heavy background 24792 ± 227 134 ± 2 2626 ± 24 1693 ± 18 5526 ± 49

heavy background 
hardly realistic

24904 ± 212 139 ± 2 2624 ± 21 1685 ± 17 5529 ± 46

Table 2.

Let’s present some consideration on the results  obtained so far.

 First of all, let’s recall from  Figure 5 right   that the number of hits per TimeSlice is more or less the 
same for both  the “Realistic” and  the “Hardly Realistic” approaches.  This is true also for the 
“Condensed” approach.  The explanation is because the contribution of direct Cherenkov hits in 
muon events is estimated to  be of the order of 7 or 12 on top the additional background hits.  Given 
the assumption of  νbkg  = 50 kHz, the pure background events have  an averaged number of  hits 
equal to 201 (= νbkg   ×  NPMTs  × ΔTTS) , and this is confirmed by Figure 4, right.  So the 
enhancement of hits in the “Hardly Realistic case”

Now,  from Table 2  we note that the time needed for applying the L2 trigger (TL2) increases with 
the number of muon events (i.e. passing from “Realistic” to “Hardly Realistic” and finally to  
“Condensed”): this is due to the fact that more seeds are found which need to be handled.

When considering the “Heavy Background” and “Heavy Background + Hardly Realistic” 
approaches, the numbers tell us that we are strongly dominated by the background, and the 
variations  due to different muon rates  νd  = 27 Hz or  270 Hz  are suppressed. 

5.2 MEASURING THE COMPUTING POWER IN  HEPSPEC-06 UNITS

In order to evaluate the effective  computing resources  needed  by the TriDAS,  we need to use the 
data reported in Table 2. However  we need to  consider also that real TCPU processes won’t parse 
any file,  since the TimeSlices will be received from the HitManagers through 10 GbE connections. 
What really matters in the  (Tp  + Tma ) measures is only the memory allocation time  (i.e. Tma ).  
With independent tests,  we measured that  Tma = 1700 ms   for   the approaches  with νbkg = 50 
kHz, and  about  Tma = 3700 ms   for   the approaches  with νbkg = 110 kHz.

In addition to this, to be more conservative, we considered an additional time contribution from the 
time-overhead necessary to receive a full TimeSlice from the HitManager through a 10 GbE point-
to-point connections, which was estimated as   THM = 175 ms   with νbkg = 50 kHz  (size of one 
TimeSlice: 180 MB)  and   THM = 386 ms   with νbkg = 110 kHz (size of one TimeSlice: 395 MB). 

We computed the estimated total amount of time required by a TCPU to process a TimeSlice  with 
the following equation:

Ttot = THM +  Tma + Tca + Tsort + TL1 + TL2                    (2)
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Finally, the  required HEPSPEC-06  power is obtained  with   the following relation:

HEPSPEC-06  =   HEPSPEC-06SCORE  ×  Ttot   × (ΔTTS)-1      (3)

where  HEPSPEC-06SCORE is the score of the used server, 128.12 HEPSPEC-06. 

The final results are reported in Table 3, where last column shows the computed number of 
estimated TCPU processes running.

approach Ttot (ms) HEPSPEC-06 N. TCPU processes

realistic 3880 ± 23 2483 ± 15 20

hardly realistic 3862 ± 22 2472 ± 14 20

condensed 4058 ± 21 2597 ± 13 21

heavy background 12064 ± 60 7721 ± 38 61

heavy background + hardly 
realistic

12062 ± 56 7720 ± 36 61

Table 3.

Note that the in Table 3, the number of requested processes is obtained by dividing Ttot by the 
TimeSlice duration (200 ms). Obviously the shown number  must always be linked to the worker-
node CPU power used for this benchmark. That’s why is preferable use the HEPSPEC value. 

5.3   SCALABILITY-TEST:  SINGLE  RUNNING PROCESS

The same measurements of the previous subsection were repeated with only 1 process runnning on 
the worker-node. The results are reported in the following Tables 4 and 5.

approach Tp  + Tma   (ms) Tca (ms) Tsort (ms) TL1 (ms) TL2  (ms)

realistic 10574 ± 328 43 ± 2 1016 ± 29 506 ± 17 161 ± 5

hardly realistic 10844 ± 324 60 ± 3 1058 ± 28 611 ± 24 163 ± 5

condensed 10516 ± 287 43 ± 1 1015 ±25 501 ± 14 375 ± 10

heavy background 23235 ± 594 95 ± 2 2314 ± 54 1520 ± 43 5205 ± 130

heavy background 
hardly realistic

23706 ± 566 146 ± 5 2350 ± 50 1738 ± 50 5209 ± 121

Table 4.
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approach Ttot (ms) HEPSPEC-06 N. TCPU processes

realistic 3603 ± 62 2306 ± 40 19

hardly realistic 3768 ± 63 2412 ± 40 20

condensed 3811 ± 55 2439 ± 35 20

heavy background 11009 ± 153 7046 ± 98 56

heavy background + hardly 
realistic

11318 ± 146 7243 ± 93 58

Table 5.

The results are compatible with the case when 8 processes were simultaneously running, apart from 
the errors which are larger now because of the lower statistics.

5.4   STRESS-TEST:  16 PROCESSES / 8 ×2 CORES - HYPERTHREADING 

We repeated the same benchmark, this time with  16 processes running simultaneously.  Tables 6 
and 7 show the result of this test.

approach Tp  + Tma   (ms) Tca (ms) Tsort (ms) TL1 (ms) TL2  (ms)

realistic 20459 ± 172 97 ± 1 1641 ± 16 936 ± 9 275 ± 3

hardly realistic 20421 ± 164 94 ± 2 1601 ± 15 915 ± 9 278 ± 2

condensed 20213 ± 149 88 ± 1 1548 ±14 884 ± 7 649 ± 5

heavy background 43002 ± 351 186 ± 2 3514 ± 44 2511 ± 23 8549 ± 80

heavy background 
hardly realistic

44292 ± 304 188 ± 2 3485 ± 27 2541 ± 23 8748 ± 81

Table 6.

approach Ttot (ms) HEPSPEC-06 N. TCPU processes

realistic 4825 ± 24 3088 ± 15 25

hardly realistic 4764 ± 22 3049 ± 14 25

condensed 5044 ± 21 3228 ± 13 26

heavy background 16845 ± 95 10781 ± 61 85

heavy background + hardly 
realistic

17048 ± 90 10910 ± 58 86

Table 7.

In this case we are  running 2 processes per physical core, but instead of measuring double-sized 
timings, the hyperthreadding  comes in our help. In fact, hyperthreading increases the performances 
of about  the expected 40%. However this help  is not sufficient to avoid a worsening of the  
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averaged performances: by  comparing the Ttot  column of Tables 3 and 5 we see that  when running 
16 processes on the same worker-node, each benchmark gives  timings about 24% larger (which 
obviously yield to the larger CPU  power request). This  lead to the following  first  conclusion: for 
optimizing the resources to purchase, we need to limit the number of  independently running 
processes on one server to the number of physical cores.

5.5  TRICKING TIMING ANOMALIES

Given a certain νbkg  ,  one should  generally  expect     Ttot   to increase with the muon rate, since the 
background remains constant with the additional hits from direct Cherenkov photons. We have seen 
that when passing from  a muon rate of νd = 27 Hz to νd = 270 Hz, the number of hits per  
TimeSlice is not sensibly enhanced. This almost true for the two cases of  νbkg  = 50 kHz and  νbkg   = 
110 kHz.  

Nonetheless, looking at Tables 2,  4 and 6 we see that  when  νbkg   = 50 kHz, so for the “Realistic”, “Hardly 
Realistic” and “Condensed”,  there is an unexpected trend of the timings, which indeed decrease with the 
muon rate. Consider for example the   Tsort column of Table 2, related to the run of 8 simultaneous 
processes. The “Realistic” and “Hardly Realistic” timings are compatible within the errors; on the 
other side the “Condensed” timing could be unlikely compatible with  the “Realistic” one, having a 
more significant deviation of  1.8 sigmas,  enough to state that the probability of a statistical 
fluctuation is less then 6.4%.  We find the same in Table 6, related to the run of 16 simultaneous 
processes, supported by the hyperthreading.  Indeed here, the “Condensed” Tsort  is far less than the 
one for the “Realistic”  with a significance of 4 sigmas.

Still in the framework of the 16 running processes, we repeated the measurement again for both the 
“Realistic” and the “Hardly realistic” approaches,  with the following similar results: 

approach Tp  + Tma   
(ms)

Tca (ms) Tsort (ms) TL1 

(ms)
TL2  (ms) Ttot HEPSPEC

-06
N. TCPU 
processes

realistic 2 20382 ± 169 89 ± 1 1612 ± 20 901 ± 8 276 ± 3 4753 ± 26 3042 25

h. realistic  2 20297 ± 165 88 ± 1 1551 ± 14 898 ± 9 278 ± 3 4690 ± 22 3001 24

Table 8.

Finally note that the  re-measured global Ttot are a little smaller with respect to the first set of 
measures. This difference is due to the repetition of the benchmarking tests, so biased by 
unpredictable fluctuation of the worker-node performances.   

The possible explanation is that when you enhance the  νd  (stepping from 27 Hz to 270 Hz to the 
extreme 25 kHz of the “Condensed” approach), the number of  Cherenkov hits per muon event is 
enhanced correspondently. For example have a look at Figure 4 - right.  Being the Cherenkov hits 
causally correlated, their sorting is easier. 

5.6  SUPPLEMENTARY TEST:  NOT OPTIMIZED SINGLE PROCESS RUNNING

In order  to get the feeling about the impact of the compile-level optimization on the process  
running, we repeated the same benchmark such as reported in subsection 5.3, with a not optimized 
code. As it is shown in Table 9, the various timings are dramatically larger.  
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approach Tp  + Tma   (ms) Tca (ms) Tsort (ms) TL1 (ms) TL2  (ms)

realistic 12397 ± 339 242 ± 7 3983 ± 100 1311 ± 37 986 ± 27

hardly realistic 12151 ± 379 243 ± 7 3985 ± 53 1252 ± 41 414 ± 13

condensed 12324 ± 363 242 ± 7 3997 ±108 1309 ± 38 423 ± 12

heavy background 27015 ± 693 533 ± 14 9036 ± 215 3895 ± 105 14133 ± 351

heavy background 
hardly realistic

26785 ± 636 534 ± 13 9102 ± 202 3832 ± 100 14172 ± 329

Table 9.

6 Conclusions 

Figure  12 shows the HEPSPEC-06 scoring  for the different approaches and for different number 
of running processes. It was compiled with data taken from HEPSPEC-06 column of Tables 3,5 
and 7.  It is apparent the scalability of the performances in the region when the number of running  
processes is less or equal than the number of physical cores. When the number of running processes 
is larger, the performances are worsened, even though the hyperthreading is providing some speed-
up.  We then  recall the conclusion of  section 5.4, where we stated that it is worthy to  limit the 
maximum running processes to the number of the physical cores (8 in this case). 

We refer to Table  3 , where results are a bit more conservative and statistically reliable, to address  
the conclusions of this work.

Let’s answer to the question: “What is  the required  number of TCPU servers and the number of 
running TCPU processes per server, for the 8 Tower Detector DAQ?

In order to answer this question, we preliminary note that, from the experience of the TriDAS for 
NEMO Phase 2, the TCPU process must handle a TimeSlice FIFO, used for buffering the 
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incoming data from the HitManagers which are sending  frames of the TimeSlices in an 
asynchronous way.

Such a FIFO could be dimensioned up to 20 elements, allowing a circular buffering of  even 4 
seconds of data.  Beside technical motivations, one would like to buffer a macroscopic (~O(1 s))also 
for Physics reasons, like buffering data for GRB triggers and possibly other kind of follow-up 
triggers. 

All this has strong implication for the RAM of the TCPU server, since in the Heavy Background 
case about  8 GB per process could be needed. This puts a further constraint forcing us to  limit 
more the  number of running processes even with respect to the number  of physical core.

We should then assume to run not more than 2 TCPU process per  server.  We  note that this 
conservative assumption accomplishes with the case of multi-threading processes.

 Assuming the conservative approach, i.e. considering the “Heavy Background” result of Table 3, 
this imply to purchase not less than 30 servers.  The safe-proof suggested number is 40 servers. 

 This  choice is fairly conservative and it allows to easily reconfiguring the TCPU computing farm 
by running, on demand,  one or two  TCPU processes on each server, and so being able to 
accomplish even with the most dramatic scenario.
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