Status and Prospects of the Higgs Sector Physics in ATLAS

Luca Fiorini@cern.ch (IFIC - U. of Valencia - CERN) 22nd Nov 2013

Outline

- LHC and Run1 data-taking
- Experimental performances
- The Higgs Mechanism
- Individual SM Higgs results:
- $H \to ~\gamma\gamma$
- $H \rightarrow WW(2l2v)$
- $H \rightarrow ZZ(4l)$
- $H \to \ \tau\tau$
- $H \rightarrow \ bb$ and $\ ttH$
- $H \to \mu \mu$
- Property measurements
 - Mass
 - Couplings
 - Spin and Parity
- Future Prospects at LHC and beyond

Not covered in this talk:

- High mass Higgs searches
- BSM Searches (H \rightarrow Z γ H \rightarrow invis., MSSM Higgs, ...)
- TeVatron results
- EW Fit

LHC Luminosity

Higgs Results based on 2011+2012 data

Luminosity is measured with forward detectors and calibrated with beam separation scans

- Luminosity during data-taking:
- Peak Luminosity [cm⁻²s⁻¹]:
- Max. average int. per b.c. :
- ATLAS Luminosity uncert.:

ATLAS L1/HLT rates: 75 kHz/400 Hz^{*} *: promptly reconstructed, ATLAS has 200 Hz more of deferred data.

~29 fb⁻¹ of data delivered during Run 1

Thanks to the LHC for the exceptional Run 1 performance!

ATLAS Detector

Magnetic field	2 T solenoid + toroid: 0.5 T (barrel), 1 T (endcap)
Tracker	Silicon pixels and strips + transition radiation tracker $\sigma/p_T \approx 5 \cdot 10^{-4} p_T + 0.01$
EM calorimeter	Liquid argon + Pb absorbers $\sigma/E \approx 10\%/\sqrt{E} + 0.007$
Hadronic calorimeter	Fe + scintillator / Cu+LAr (10 λ) $\sigma/E \approx 50\%/\sqrt{E} + 0.03 \text{ GeV}$
Muon	σ/p _T ≈ 2% @ 50GeV to 10% @ 1TeV (Inner Tracker + muon system)
Trigger	L1 + HLT (L2+EF)

24 m

	ATLAS Collaboration	
38	Countries	
169	Institutions	
3000	Scientific Authors total	
(~2000 with a PhD)		

- ATLAS data-taking efficiency for 2012 (2011) was 93.1% (93.0%)
- The ATLAS good quality data was 95.8% (90.0%) of the recorded data
 - High DQ partly due to eff. recovery from large data reprocessing
 - Given the high DQ efficiency, we use a common set of "good quality data" across all analyses

Overall 88% of delivered luminosity is used for ATLAS physics analysis.

Computing and Simulation

The fast duty cycle of the LHC analyses is possible thanks to the Tier0 and GRID resources

Just in 2012, ATLAS experiment produced >3 billions of MC events on the GRID and processed ~3 billions of data events at Tier0 (of these 2 billions have been reprocessed at Tiers1).

On a single machine, it would require more than 15 thousands years (without considering user and group analyses, calibrations, reprocessings, ...).

Pileup conditions in 2011 and 2012

• 2012 data-taking was a high pileup environment (~factor 2 higher than in 2011) with sizable impact on physics, jets, E_T^{miss} and tau reconstruction, as well as on trigger rates and computing...

Pileup Performance

 $Z \to \mu \mu$ event with Npv= 25

- The pileup affects the physics object reconstruction and degrades the performance.
- ATLAS optimized the reconstruction in 2012 to reduce the dependence vs the number of interactions per bunch crossing.
- The pileup dependence of the MET is reduced by weighting the objects contribution by the fraction of momentum associated to the primary vertex of the hard scattering.

Jets and Leptons performance

Leading jet pT of 1.12 TeV

- Precise knowledge of the Jet Energy scale and its uncertainties has been achieved.
- Isolation requirements are frequently applied to leptons to reduce the fake rate.
- •The experiment succeeded in obtaining a low dependence wrt pileup observables.

Tau and Flavor-tagging performance

ATLAS employs Multivariate techniques for τ identification and heavy flavor jet idenification.
Heavy flavor jets identification combines both the 3D IP significance of the tracks as well as the informations on the tracks associated to the secondary vertex.

Summary of ATLAS SM results

 Good agreement with SM expectations within uncertainties. • Experimental uncertainties are in some cases at the level of the theor.

predictions

Preliminary measurements of the cross-sections down to few pb (~tens of fb in some cases if we include also the BR). Comparable to Higgs production σ_{total}

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*

F. Englert and R. Brout Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium (Received 26 June 1964)

BROKEN SYMMETRIES, MASSLESS PARTICLES AND GAUGE FIELDS

P.W. HIGGS Tuit Institute of Mathematical Physics, University of Edinburgh, Scotland

Received 27 July 1964

VOLUME 13, NUMBER 16

PHYSICAL REVIEW LETTERS

19 October 1964

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*

G. S. Guralnik,[†] C. R. Hagen,[‡] and T. W. B. Kibble Department of Physics, Imperial College, London, England (Received 12 October 1964)

 Model is capable of very precise predictions, but it has one free parameter not predicted by the theory: the mass of the Higgs boson.

J. Ellis et al. A Phenomenological Profile of the Higgs Boson(1976):

"[...] We apologize to experimentalists for having no idea what is the mass of the Higgs boson..."

- EW Gauge bosons in previous formulation of the SM were massless.
- Four seminal papers in 1964 proposed a spontaneous symmetry breaking mechanism in relativistic gauge theory.
- The introduction of a complex scalar doublet allow to give mass to the W and Z bosons after symmetry breaking.
- Remaining d.o.f. is a new scalar particle \rightarrow the Higgs boson

• The SSB mechanism introduces a new potential in the Lagrangian, which is symmetric, but its minima are not ("mexican hat").

• The symmetry of the lagrangian is broken when a ground state is chosen \rightarrow the symmetry is not evident in the ground state.

• 3 of the 4 degrees of freedom of the complex scalar doublet mix with the W[±] and Z bosons, giving mass to them, while the photon stays massless.

• Remaining degree of freedom is the a new scalar particle: only scalar particle of the Standard Model.

• Particles couples to the field proportionally to their mass (Yukawa coupling)

Symmetric, Local Maximum

Asymmetric, Minimum

Huge progress also in the theoretical predictions of numerous and complex backgrounds Excellent achievements of the theory community; very fruitful discussions with the experiments (e.g. through LHC Higgs Cross Section WG, LPCC, etc.)

SM Higgs decays modes

SM Higgs coupling: $\Gamma_{Hff} \sim m_f^2$ $\Gamma_{HVV} \sim m_V^4$

To establish its nature it is important to measure the couplings to SM particles (bosons, quarks, leptons) through its decays and production modes.

For a mass of 125 GeV, the following SM Higgs decays are accessible: $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ$, $H \rightarrow WW$, $H \rightarrow bb$, $H \rightarrow \tau\tau$

 σ xBR: Experimentally most sensitive channels vs mH

SM Higgs search channels

Depending on Higgs mass different channels are relevant.

Experimentally, experimental acceptance, background rejections and resolution are important factors.

 $\mathcal{H} \rightarrow \gamma \gamma$

Run Number: 204769, Event Number: 24947130

Date: 2012-06-10 08:17:12 UTC

Features:

- Data sample divided in exclusive final states and the analysis is further optimized to sub-leading production modes (VBF and VH).
- Robust cut-based selection is used to define the categories.

The main backgrounds:

- Irreducible: Di-photon γγ
- **Reducible**: Photon + jets, di-jets (jet is misidentified as γ), EW

Main Discriminant variable:

 $m_{_{
m yy}}$, narrow resonance on a steep falling background. $m_{\gamma\gamma}=\sqrt{E_1^{\,\gamma}E_2^{\,\gamma}(1-\coslpha_{12})}$

$\mathcal{H} \rightarrow \gamma \gamma \ results$

- Clear single channel discovery
- ATLAS 7+8 TeV σ/σ_{SM} (@ 126.8 GeV) = 1.65 ±0.24 (stat.) +0.25 (syst.)

• New ATLAS results are inline with previous results and are compatible with SM within 2 sigmas.

$\mathcal{H} \rightarrow \underline{Z} \underline{Z} \rightarrow 4\ell$

Run: 182796 Event: 74566644 2011-05-30 07:54:29 CEST

$\mathcal{H} \rightarrow \mathbb{Z}\mathbb{Z} \rightarrow 4\ell$

"Golden channel"

- Three different channels: 4e, 4µ, 2e2µ
- Very high S/B
- ATLAS applies tight cuts
- Number of Higgs events under the peak is ${\sim}20$
- Low stat channel @125 GeV

Main backgrounds:

- ZZ* (irreducible)
- ttbar, Z+jets

•Signal Extraction:

 1D fit of m4l is performed Additional lepton-tag category (VH-like)

 $\mathcal{H} \rightarrow \mathbb{Z}\mathbb{Z} \rightarrow 4l p$ -value

Run 214680, Event 271333760 17 Nov 2012 07:42:05 CET

 $\mathcal{H} \rightarrow \mathcal{W} \mathcal{W}$

Features:

- ATLAS divides the data in 0jet and 1jet and 2jet (VBF) categories.
- High production rate, but poor mass resolution
- Signal is extracted from a 2D fit techniques of $m_{_{\rm I\!I}}\,vs\;m_{_{\rm T}}$

The main backgrounds:

- Irreducible: WW
- Reducible: top, Z+jets, W+jets

Significance m_H=125 GeV: 3.7 σ (expected 3.8) VBF-only Significance: 2.5 σ (expected 1.6)

ATLAS: 7+8 TeV σ/σ_{SM} @ 125 GeV = 1.01± 0.31

$\mathcal{H} \rightarrow \mathcal{W} \mathcal{W} \rightarrow 2\ell \mathcal{V}$ couplings

• Result are compatible with SM within 1 sigma.

$\mathcal{H} \rightarrow \tau \tau \mathcal{A}$ nalysis

Features:

- Events are separated in 0-jet, 1-jet and 2-jets (VBF) categories.
- ATLAS exploits the $\tau_{_{lep}}\tau_{_{lep}}, \tau_{_{lep}}\tau_{_{had}}, \tau_{_{had}}\tau_{_{had}}$ final states
- Signal is extracted from a binned fit of the $m_{_{\tau\tau}}$ mass.
- ATLAS results with full 2012 statistics will be available soon

- Results are updated to full Run 1 statistics
- Signal region defined by the presence of 2 b-tagged jets and large MET or 1 or 2 leptons. 0-tag, 1-tag used as CRs.
- Main backgrounds are VZ and ttbar
- Poor mass resolution and low purity

- ttH (H \rightarrow bb) results still based on 2011 data.
- Multiple categories are defined based on the jet and b-tagged jets multiplicity. Final states with 1 lepton are considered.
- Waiting for 2012 results. $\sqrt{s}=8$ TeV already gives a gain of ~50% in rate.
- ttH (H $\rightarrow \gamma \gamma$) results based on 2012 data.
- Robust channel, but it requires more statistics
- ttH (H \rightarrow WW, $\tau\tau$) under study.

- Search for a small resonance on top of Drell-Yan background.
- Events split in central/non-central muons Background modelled with Breit-Wigner+exponential
- Limit @ m_H=125 GeV: 9.8xSM (8.2 expected)

Mass

Couplings

Spin/Parity

Why we can call the new particle a Higgs Boson with high C.L.

Higgs Mass measurement

- Why the measurement of the Higgs (and top) mass is not an idle matter.
- EW Vacuum stability up to Planck scaled excluded @ 95 C.L. G.Degrassi, S. Di Vita, J. Elias-Miró, J. Espinosa, G.F. Giudice, G. Isidori, A. Strumia. [hep-ph/1205.6497]

- The two signal strengths are treated as independent nuisance parameters and allowed to vary independently.
- ATLAS Council Dec 2012 result was : $m_{H} = 125.2 \pm 0.3$ (stat) ± 0.6 (sys) GeV

- ATLAS mass difference is reduced: $\Delta m_{H} = 2.3 + 0.6 0.7 \text{ (stat)} \pm 0.6 \text{ (sys)} \text{ GeV}$, 2.4 σ from $\Delta m_{H} = 0$ (p = 1.5%). Δm_{H} was 3.0 GeV and 2.8 σ in Dec. 2012
- \bullet m_, sysematics dominated by the photon energy scale.
- m₄₁ mainly from muon momentum scale.

Luca Fiorini

μ=0 no Higgs μ=1 SM Higgs

 $\mu = \sigma / \sigma_{SM}$

- The best fit of the signal strength is compatible with the SM.
- H \rightarrow bb and H $\rightarrow \tau\tau$ to be added soon

- Sensitivity of each channel to different production modes
- H $\rightarrow\gamma\gamma$ and ATLAS H \rightarrow WW provide good sensitivity to VBF production mode. ATLAS excluded μ_{VBF} / $\mu_{ggF+ttH}=0~at~3.1\sigma$

- Couplings are grouped: $\kappa_v = \kappa_w = \kappa_z$; $\kappa_F = \kappa_t = \kappa_b = \kappa_T$
- Assumptions:
- gg \rightarrow H and H \rightarrow $\gamma\gamma$ only through SM particles
- \rightarrow only SM particles contribute to decay
- With current data, sensitivity to κ_F is mostly through top in loops. It will improve with more precise $\tau\tau$ measurement

- Critical to establish J^P of the new boson.
 Kinematic distributions are used to distinguish different signal models
 - Probe different amplitude structures.
- Test compatibility of data with distinct simple models.
- ATLAS results from H \rightarrow ZZ and H \rightarrow WW and H $\rightarrow \gamma\gamma$ analyses

JP	Description
0-	CP-odd scalar
0 _h +	CP-even w/ HD operators
1+	Axial-vector
1-	Vector
2 _m + (gg)	gg -> min coupling grav
2 _m ⁺(qq)	qq->min coupling grav

• ATLAS uses BDT and MELA for H \rightarrow ZZ, BDT for H \rightarrow WW and 1D fit for H $\rightarrow \gamma\gamma$

- Compatibility with spin/parity hypothesis is evaluated with a log-likelihood ratio.
 Often based on BDT distributions built from quantities sensitive to spin/parity
- Distributions corresponds to pseudoexperiments.
- Similar studies of spin and parity for $H\to\gamma\gamma$ and $H\to WW$
- Shown in the plots is the $H \rightarrow ZZ^*$ sensitivity to the particle parity.

- •Analyses are re-optimized for spin analysis
- H \rightarrow ZZ analysis disfavour 0⁻, 1⁺ and 1⁻ hypotheses at >2 σ . It is inconclusive for 2_m⁺.
- H \rightarrow WW and H $\rightarrow \gamma\gamma$ are complementary in probing the 2_m⁺ as a function of the qqbar fraction.

Observed results disfavour 2_m^+ hypothesis by more than 3σ .

Luca Fiorini

Higgs Sector Measurements Prospects

2000		\sim 1 HC startup $\sqrt{s} = 900 \text{ GeV}$	
2009		\sim LHC stattup, vs – 900 GeV	L
2010		Run1	
2011		$\sqrt{s}=7\sim8$ TeV, L=6x10 ³³ cm ⁻² s ⁻¹ , bunch spacing 50 ns	
2012		NOW	~20-25 fb ⁻¹
2013	LS1	Go to design energy, nominal luminosity	
2014			
2015		Run2	
2016		$\sqrt{s}=13\sim14$ TeV, L $\sim1x10^{34}$ cm ⁻² s ⁻¹ , bunch spacing 25 ns	
2017			~75-100 fb ⁻¹
2018	LS2	Injector and LHC Phase-1 upgrade to ultimate design luminosity	
2019		Phase1	
2020		$\sqrt{s}=14$ TeV, L~2x10 ³⁴ cm ⁻² s ⁻¹ , bunch spacing 25 ns	
2021			, ∼350 fb ⁻¹
2022	LS3	HL-LHC Phase-2 upgrade, IR, crab cavities?	
2023		DhaaaQ	
2030?		\sqrt{s} =14 TeV, L=5x10 ³⁴ cm ⁻² s ⁻¹ , luminosity levelling	~3000 fb ⁻¹

- In parallel design of ILC, CLIC
- At CERN for >2030: HE-LHC, VHE-LHC, TLEP,...

•Run-2 will give the opportunity to measure more precisely rare production modes (ttH, VH and VBF) and improve the measurement of the mass and couplings.

•Phase-1 and phase-2 will allow to measure rare decays (H $\rightarrow \mu\mu$ and H ->Z γ)

- SM Higgs width for m_{H} =125 GeV is about 4 MeV. Not possible to measure the width directly.
- Interference between signal and background should shift the apparent peak position (Dixon and Li arXiv:1305.3854)

Interference of the H $\rightarrow \gamma \gamma$ with the $\gamma \gamma$ continuum has an effect on the production rate and on the peak position as a function of $p_T^{\gamma \gamma}$, that can be measured comparing results with low and high $p_T^{\gamma \gamma}$.

• Outstanding performance from the LHC team and experiments. majority of the Higgs decay channels have been updated to full Run 1 statistics

- Measurement the properties of the new boson are in progress:
 - ATLAS measured the mass with high accuracy.
 - Signal strength and Fermionic and Bosonic couplings are compatible with the Standard Model Higgs.
 - Spin/Parity: high compatibility with spin-0+
- Many years of Higgs sector measurements are ahead of us

• <u>Physics Nobel Prize 2013 Press Release:</u> "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider."

TeVatron updated their Higgs boson search results with ~10 fb⁻¹ Most sensitive channels are (V)H \rightarrow (V)bb, H \rightarrow WW. Analyses of H $\rightarrow \gamma\gamma$ and H $\rightarrow \tau\tau$ are also included.

The minimum p-value is found to be 3.1σ at mH = 125GeV.

Fit to signal strength (1.4±0.6)xSM @125 GeV

TeVatron Results by experiment

Local p-value distributions as a function of the Higgs mass for D0 and CDF experiments:

- D0: 1.7 $\sigma @ m_{H} = 125 \text{ GeV}$
- CDF: 2.0 σ @ m_H=125 GeV

	Documents		
		ATLAS	CMS
$H \rightarrow \gamma \gamma$		ATLAS-CONF-2013-012 ATLAS-CONF-2013-029	HIG-13-004
$H \rightarrow ZZ$	$\rightarrow 4$	ATLAS-CONF-2013-013	HIG-13-002
$H \rightarrow WV$	$V \rightarrow 2l2n$	ATLAS-CONF-2013-030 ATLAS-CONF-2013-031	HIG-13-001
$H\to\tau\tau$		ATLAS-CONF-2012-160	HIG-13-004 HIG-12-051 HIG-12-053
$H \rightarrow bb$		ATLAS-CONF-2013-079	HIG-12-044
ttH		ATLAS-CONF-2013-080	HIG-12-025
Combina	ation	arXiv:1307.1427 arXiv:1307.1432	HIG-12-045
Upgrade)	ATLAS-PHYS-PUB-2013-014	

 $\mathcal{H} \rightarrow \gamma \gamma$ categories

$\mathcal{H} \rightarrow \mathcal{W} \mathcal{W} \mathcal{V} \mathcal{B} \mathcal{F}$

Custodial Symmetry

Fit prefers λ_{FZ} < 0 minimum. Compatible with λ_{FZ} > 0 at 1.5 σ

-2 ln $\Lambda(\lambda_{WZ})$

Assume all SM vertex couplings ($\kappa_i=1$) and test for invisible or undetectable non-SM decay modes

-2 In A(B_{iu})

B_{i,u}

Mass difference

Parameter measurements are correlated

Spin Models

Table 1: Choice of coupling parameters for the spin-2 model considered in the current analysis. The notation follows the one adopted in [12]. (from JHU)

J^P	Production	Decay	Comments
	configuration	configuration	
2_{m}^{+}	$gg \rightarrow X: g_1 = 1$	$g_1 = g_5 = 1$	Graviton-like tensor with minimal couplings
	$qq \rightarrow X: g_1 = 1$		

General amplitude for spin-2 $H \rightarrow VV$

$$\begin{split} A(X \to VV) &= \Lambda^{-1} \left[2g_1^{(2)} t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2g_2^{(2)} t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*1,\mu\alpha} f^{*2,\nu,\beta} \right. \\ &+ g_3^{(2)} \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} (f^{*1,\mu\nu} f_{\mu\alpha}^{*2} + f^{*2,\mu\nu} f_{\mu\alpha}^{*1}) + g_4^{(2)} \frac{\tilde{q}^\nu \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} f_{\alpha\beta}^{*(2)} \\ &+ m_V^2 \left(2g_5^{(2)} t_{\mu\nu} \epsilon_1^{*\mu} \epsilon_2^{*\nu} + 2g_6^{(2)} \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} (\epsilon_1^{*\nu} \epsilon_2^{*\alpha} - \epsilon_1^{*\alpha} \epsilon_2^{*\nu}) + g_7^{(2)} \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon_1^{*} \epsilon_2^{*} \right) \\ &+ g_8^{(2)} \frac{\tilde{q}_\mu \tilde{q}_\nu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} \tilde{f}_{\alpha\beta}^{*(2)} + g_9^{(2)} t_{\mu\alpha} \tilde{q}^\alpha \epsilon_{\mu\nu\rho\sigma} \epsilon_1^{*\nu} \epsilon_2^{*\rho} q^\sigma + \frac{g_{10}^{(2)} t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma (\epsilon_1^{*\nu} (q\epsilon_2^*) + \epsilon_2^{*\nu} (q\epsilon_1^*)) \right] \end{split}$$

Cannot exclude generic spin-2 with current data set

ATLAS Mass Systematics

• 4 leptons

- Dominated by 4 muons (best resolution, less background)
 - Muon momentum-scale uncertainty : 0.2%

(from Z, $J/\psi \rightarrow \mu\mu$)

– electron E-scale = > see below

- Per category systematic uncertainties:

- method ~ 0.3 % : (mainly from Z \rightarrow ee MC/data)
- material in front of calorimeter: ~ 0.3%, up to 0.7%
- relative calibration presampler/calorimeter : ~ 0.1% In each of the above: extrapolation in E \oplus transfer from e to γ
- Additional (global) syst uncertainties:
 - E1/E2, linearity, lateral leakage, conversion fraction ... 0.32%
- Global mass systematic uncertainty: 0.55% = 0.7 GeV