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Motivation

J

+

-

Magnetic Field

Net chirality

Electric current

[Kharzeev, McLarren, Warringa],
[Fukushima, Kharzeev, Warringa]

[Newman, Son]

parity violating currents: [Vilenkin ’80],  [Giovannini, Shaposhnikov ’98], 
[Alekseev, Chaianov, Fröhlich] ’98] [Newman, Son] 
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Kubo Formulas

Chiral Magnetic Effect :   

�JiJj� = iσB�ijkpk

�J = σB �B

Kubo formula:   

  (general frequency and momentum dependence : see E. Megias’ talk)

ω = 0, lim pk → 0

Transport coefficients   Correlation functions   

Kinematic regime:   
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More general symmetry :   

�
JA
i JB

j

�
= iσBB

AB�ijkpk

[TA, TB ] = ifABCTC

q

q + kJA
i (k)

JB
j (−k)

Gas of free chiral fermions at finite temperature and density:   

σAB
B =

dABC

4π2
µC

Kubo Formulas

dABC = str
�
TATBTC

�
R
− str

�
TATBTC

�
L
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Triangle Anomalies:

∼ dABC

TA

TB TC

AμA  pure gauge

AνB AρC
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q

q + k

JA
i (k) T0j(−k)

Kubo Formulas

Chemical potential: δE = µ δQ

Energy current: δ �J� = µ δ �J

Kubo formula:
�
T0iJ

A
j

�
= σA,�

B �ijkipk

�J� = T0i = σ�
B
�B

σ�,A
B =

dABC

8π2
µBµC +

bA

24
T 2

bA = tr
�
TA

�
R
− tr

�
TA

�
L
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∼ Tr(TA) = bA

TA

gμν gλρ

AμA  pure gauge

“Mixed gauge gravitational anomaly”

Triangle Anomalies:
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Chiral Vortical Effect via Kubo formula

ds2 = −dt2 + �Agdtd�x+ d�x2

Rotation via frame dragging (Thirring-Lense effect):     gravito-magnetic field 

�J iT 0k� = ipj�
ijkσVChange order of operators:

what sort of conductivity?

Rotation in fluid: vorticity

σA,�
V = σ�,A

B

σ�
V =

dABC

12π2
µAµBµC +

bA
12

µAT
2

�ω =
1

2
∇× �v
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CME and CVE via Kubo formulae

General symmetry generated by Ta

�Ja = σB
ab
�Bb + 2σV

a �ω

�J� = σB
�,a

�Ba + 2σV
� �ω

σB
ab =

1

4π2
dabcµc

σV
a =

1

8π2
dabcµbµc +

T 2

24
ba = σB

�

σV
� =

1

12π2
dabcµaµbµc +

T 2

24
baµa

dabc = str (TaTbTc)

ba = tr (Ta)Anomaly coefficients:
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CME and CVE

Interplay of vector and axial symmtries

µ5 =
µR − µL

2

µ =
µR + µL

2

�J =
µ5

2π2
�B

�J5 =
µ

2π2
�B

�J5 =

�
µ2 + µ2

5

2π2
+

T 2

6

�
�ω

�J =
µµ5

π2
�ω

Chiral Magnetic Effect (CME)

Chiral Separation Effect (CSE)
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Some comments on CME and CVE

Ohmic transport �J = σ �E

Work done:
dE

dt
= �J. �E = σ �E2 ∂µT

µν = F νλJλ( )

CME (similar for CVE),   

absence of electric field : 
no work done on system dissipationless currents

�J =
µ5

2π2
�B
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String Theory as spherical cow of sQGP
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String Theory as spherical cow of sQGP

=

=
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SEM =
1

16πG

�
d5x

√
−g

�
R+ 2Λ− 1

4
FMNFMN

�

SCS =
1

16πG

�
d5x �MNPQRAM

�κ
3
FNPFQR + λRA

BNPR
B

AQR

�

SGH =
1

8πG

�

∂
d4x

√
−hK

SCSK = − 1

2πG

�

∂
d4x

√
−hλnM �MNPQRANKPLDQK

L
R

S = SME + SCS + SGH + SCSK

Holography

mixed gauge gravitational Chern Simons term

[Newman], [Banerjee et al.], [Erdmenger et al.] [Yee] [Rebhan, Schmitt, Stricker] 
[Khalaydzyan, Kirsch], [Hoyos, Nishioka, OBannon] [Gynther, K.L., Rebhan]

[E. Megias, K.L., L. Melgar, F. Pena-Benitez]

Monday, June 16, 2014



�JJ� = −ikz

�
µ

4π2
− β

12π2

�

�JT � = −ikz

�
µ2

8π2
+

T 2

24

�

�TT � = −ikz

�
µ3

12π2
+

µT 2

12

�

Holography
Holography (String Theory): 
5 dim gravity (Anti de Sitter) dual to strongly coupled quantum 
field theory

background: charged AdS black hole

correlators are 
same as weak coupling!
non-renormalization
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Holography
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CME and CVE in Hydrodynamics

• Entropy current fixes anomalous transport coeffs 
up to temperature dependence
• Mismatch in derivative counting
• Non-hydro arguments necessary 

∇µJ
µ
a = �µνρλ

�
dabc
32π2

Fb,µνFc,ρλ +
ba

768π2
Rα

βµνR
β

αρλ

�

[Son,Surowka],[Neiman,Oz],[Jensen, Loganayagam, Yarom]

Tµν = (�+ p)uµuν + pgµν − ηΣµν − ζΘ+Qµuν +Qνuµ

Jµ = ρuµ + σΩ

�
Eµ − TPµν∇ν(

µ

T
)
�
+ σBB

µ + 2σV ω
µ

Qµ = σB
� Bµ + 2σV

� ωµ

Jµ
s = suµ − µ

jdiss
T

∇µJ
µ
s ≥ 0
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what’s this?

�JJ� = −ikz

�
µ

4π2
− β

12π2

�

�JT � = −ikz

�
µ2

8π2
+

T 2

24

�

�TT � = −ikz

�
µ3

12π2
+

µT 2

12

�

Holography
Holography (String Theory): 
5 dim gravity (Anti de Sitter) dual to strongly coupled quantum 
field theory

background: charged AdS black hole

correlators are 
same as weak coupling!
non-renormalization
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Consistent vs. Covariant Anomaly

Anomalous Transport from Kubo Formulae 15

The anomalous transport phenomena therefore do no work on the system, first they

take place at zero frequency and second they are not contained in the spectral func-

tion ρ = −i

2
(Gr −G

†
r
).

2.3 Contributions to the Kubo formulae

Now we want to give a detailed analysis of the different Feynman graphs that con-

tribute to the Kubo formulae in the different formalisms for the chemical potentials.

The simplest and most economic formalism is certainly the one labeled (B) in which

we introduce the chemical potentials via twisted boundary conditions. The Hamilto-

nian is simply the microscopic Hamiltonian H. Relevant contributions arise only at

first order in the momentum and at zero frequency and in this kinematic limit only

the Kubo formulae for the chiral magnetic conductivity is affected. In the figure (2)

we summarize the different contributions to the Kubo’s formulas in the three ways

to introduce the chemical potential.

(A)

A0 = µ

vacuum loop

(A�)

A0 = µ

vacuum loop

Θ

coupling to spurious Θ field

finite T, µ loop

finite T, µ loop

(B)

finite T, µ loop

Fig. 2 Contributions to the Kubo’s formula for the chiral magnetic conductivity in the different

formalisms for the chemical potential.

The first of the Feynman graphs is the same in all formalisms. It is the genuine

finite temperature and finite density one-loop contribution. This graph is finite be-

cause the Fermi-Dirac distributions cutoff the UV momentum modes in the loop. In

the formalism (A) we need to take into account that there is also a contribution from

the triangle graph with the fermions going around the loop in vacuum, i.e. without

the Fermi-Dirac distributions in the loop integrals. For a non-anomalous symmetry

this graph vanishes simply because on the upper vertex of the triangle sits a field

configuration that is a pure gauge. If the symmetry under consideration is however

anomalous the triangle diagram picks up just the anomaly. Even pure gauge field

�B

�B

�J

�J

1 chiral fermion:

covariant regularization: put all the 
anomaly into the vertex with current, 
triangle vanishes

∂µJ
µ =

1

4π2
�E �B

�J =
µ

4π2
�B

Hydro: covariant current
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The first of the Feynman graphs is the same in all formalisms. It is the genuine

finite temperature and finite density one-loop contribution. This graph is finite be-

cause the Fermi-Dirac distributions cutoff the UV momentum modes in the loop. In

the formalism (A) we need to take into account that there is also a contribution from

the triangle graph with the fermions going around the loop in vacuum, i.e. without

the Fermi-Dirac distributions in the loop integrals. For a non-anomalous symmetry

this graph vanishes simply because on the upper vertex of the triangle sits a field

configuration that is a pure gauge. If the symmetry under consideration is however

anomalous the triangle diagram picks up just the anomaly. Even pure gauge field

�B

�B

�J

�J

1 chiral fermion:

consistent regularization: distribute the anomaly 
equally among all three vertices of the triangle,  

∂µJ
µ =

1

12π2
�E �B

�J =
µ

4π2
�B − A0

12π2
�B

Jµ =
δWeff [A]

δAµ

Consistent vs. Covariant Anomaly
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The consistent theory of a Dirac fermion

Jµ
el = Jµ

V − 1

4π2
�µνρλA5

νFρλ

∂µJ
µ
el = 0

�Jel =
µ5

2π2
�B − A5

0

2π2
�B

ΨD �= ΨL ⊕ΨR

Γ�[Aµ, A
5
µ] = Γ[Aµ, A

5
µ] +

�
�µνρλAµA

5
ν

�
c1Fρλ + c2F

5
ρλ

�

[Bardeen],
[Bardeen,Zumino]Jµ

el =
δΓ

δAµ
:

L = Ψ̄γµ(∂µ − iAµ − iA5
µγ5)Ψ
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Physical Interpretation of CS current

where does the current come from?

µ

Λ
Jµ
CS = − 1

4π2
�µνρλA5

νFρλ

• CS current stems from states beyond (or at) the cutoff

A5
0

RL
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Application: QGP
topological charge

axial anomaly (QCD)

topologically non trivial gauge field

effective: axial chemical potential

No axial gauge field at fundamental level in 
nature

∂µjµ
5 = 2mf �ψ̄f iγ5ψf � −

Nfg2

16π2
F a

µνF̃µν
a

∆Q5 = 2NfQw

Qw =
g2

32π2

�
d4x F a

µνF̃µν
a

E

nw
-1 0 1

µ5

A5
µ = 0

[Kharzeev, McLarren, Warringa]

Monday, June 16, 2014



A5
µ = 1/2(ER − EL,�kR − �kL)

Weyl Semi-metals
4

We can take the symmetries to be U(1)R×U(1)L under which the two Weyl cones have the charges (1,0)

and (0,−1). It follows that relevant anomaly coefficients dRRR = bR = −dLLL = −bL = 1. The magnetic

field �B acts the same on both Weyl cones, i.e. �B = �BR = �BL.

non−relativistic electrons

E

µ

kRkL

ER

EL

k

E1

E0

Figure 1: Schematic depiction of the electronic structure of a Weyl semi-metal. Two Weyl cones of opposite handed-

ness are located at (EL,kL) and (ER,kR). The filling level (chemical potential) is given by µ and in equilibrium must

be the same for both cones. Below the level denoted by E0 the description in terms of Weyl fermions is not valid.

This provides a natural IR cutoff. From the point of view of the physics of the excitations near the Fermi surface

this is however better thought of as an UV cutoff since in order to probe it one needs to create holes (=anti-particles)

of energy ω ∼ µ −E0. In this sense the low energy effective theory near the Fermi surface is the one of two Weyl

fermions with chemical potentials µR,L = µ −ER,L. The Dirac seas below the tips of the cones is however not of

infinite depth but reaches down only to E = E0.

Now from the figure 1 it is clear that the validity of the description of the dynamics of the band electrons

by the Weyl Hamiltonian in equation (9) is limited to a certain energy range. We take E0 to be the lower

cut-off at which the band electrons stop being Weyl fermions and the upper cut-off to be E1. Note that from

Text

Conduction band

Valence band

Textbook normal
ordered vacuum
of a Weyl fermion

Physical, finite
Dirac - sea !

Text

[K.L. PRB(!)]
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Text

Conduction band

Valence band

Textbook normal
ordered vacuum
of a Weyl fermion

Physical, finite
Dirac - sea !

Text

!"#$%&%'(%
%

F igure 4: Test of bulk Dirac fermion stability and EF tuning by surface doping. (A) Illustration of 

the in-situ surface K-doping. (B) Core level photoemission spectra before and after the K-doping 

show the rise of the K3p core level peak (which can be used to monitor the dosage level). (C) 

Stacking plot of constant energy contours shows the upper Dirac cone after the in-situ K-doping. 

White dashed lines are the guides to the eye that trace the Dirac dispersions. (D-F) ARPES 

intensity plots show the rising of the EF position with K-dosage. (D): Before in-situ K-doping; (E) 

precise K-doping to bring EF to the bulk Dirac point; (F): further K-doping drive the system into 

n-type. Note the surface state band (SSB) in (D) is destroyed by the K-doping, thus does not show 

in (E) and (F). 

 

 

 

% %

[Liu et al. Na3Bi]

[Neupane et al. 
Cd3As2]
[Borisenko et al. 
Cd3As2]

[K.L. PRB(!)]
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a) b) 

FIG. 3: (Color online) Sketch of the proposed setup to mea-
sure the rotation described in the text. A Weyl semi-metal
will rotate under heating or cooling through the axial mag-
netic effect.

explicit T 2 coefficient coming from the axial magnetic
effect.

To be specific we will focus on the physical realization
of a Weyl semi-metal proposed in Refs. 9, 25 discussed
above. It has two Weyl modes, although our proposal
is extensible to other possible realizations of this phase
with a larger number of Weyl nodes. In Ref. 26 it was
shown that the low energy action of the model in real
space is the action (2) which reduces to (1).
Consider the cylinder in isolation and suspended as
sketched in Fig. 3.

If the system initially at a given temperature Ti, is
heated to Tf = Ti + ∆T the angular momentum due
to the AME will increase. Since the total angular mo-
mentum is conserved, the cylinder has to rotate in the
opposite direction to compensate. The change in angu-
lar velocity is given by the change in angular momentum
∆Lz = I∆ωz through

∆ωz = −Nfbz
3ρa2

(2T∆T +∆T 2), (9)

where we used that the moment of inertia of the cylinder
of mass M is I = 1

2Ma2.
The magnitude of b is determined by the expectation

value of the magnetization of the induced dopants and
can be estimated to be of order 0.01− 0.1 eV. Restoring
the appropriate constants � and vF ∼ 10−3c and for con-
servative values of the magnitudes a = 1mm, T=10K,
ρ=10 g/cc, we get an estimate of the angular velocity
of ω ∼ 10−13 − 10−11s−1. Although small, this rota-
tion can in principle be detected by standard optical de-
vices [45] or torque experiments. The angular velocity
can increase considerably by increasing the temperature
interval but this is bound by the magnetic structure of
the Weyl semimetal. Insulating ferromagnets such as the
rare earth oxide EuO have Curie temperatures of 60-70
K however, a recent a recent publication [46] showed that

antiferro or ferrimagnetic materials can also be used to
obtain the Weyl semimetal what would allow to increase
the values up to room temperature. It is also to be no-
ticed that the Fermi velocity will play the role of the
speed of light in the conversion factors. A lower value
of vF greatly enlarges the angular velocity . This is ex-
pected since the present effect is of thermal origin. Thus,
for small values of vF it is easier to thermally populate
states with higher momentum p. Since p determines the
energy current and thus the angular momentum it is rea-
sonable to expect that the effect gets enhanced as vF
becomes smaller simply because it costs less energy to
populate states with higher p.
The spontaneous generation of angular momentum and

an edge current are typical phenomena in parity-violating
physics as occurs for instance in the A phase of helium-
3 [4] (see also [47]). Our model adds a great versatil-
ity to these cases since in the Weyl semimetal case one
can construct a lattice model with a spatially dependent
bi vector in real space, without any need to invoke dis-
tance between Fermi-points [9]. The space variation of
the axial field is linked to the distribution of the mag-
netic impurityes and can be easily manipulated to design
an experiment.
A similar energy current with temperature scaling T 2

as the one described in this work was obtained in [44] in
a two dimensional model but this is intrinsically formu-
lated as an edge current while ours is a bulk effect. Al-
though we have chosen for simplicity an example where
the effective axial magnetic field only exists at the edge
of the sample, in our case any spacial variation of bi will
give rise to an energy current with support in the region
where the axial magnetic field is non zero. On a more
formal level it is worth noticing that the existence of an
energy current in [44] is traced back to the presence of
a 2-dimensional pure gravitational anomaly whereas in
our work the current is due to the 4-dimensional mixed
gauge-gravitational anomaly, which is the deeper reason
why the axial magnetic effect is essentially a bulk phe-
nomenon.
The anomaly related responses discussed in this work

are very hard to measure in the context of the quark-
gluon plasma. Although there are indirect indications of
the observation of the chiral magnetic effect, for instance
in the ALICE detector of the LHC [48], at the moment
there are no proposals for experiments that can directly
observe the axial magnetic effect [49]. This is due to
the absence of axial magnetic fields in the high energy
experiments. In this sense it is interesting to note that
these are quite common in the effective low energy mod-
els of condensed matter systems. An axial magnetic field
arises from lattice deformations in graphene in (2+1) di-
mensions from which a mixed gravitational–deformation
anomaly effect has been proposed recently [50].
A nonzero angular momentum density has been de-

scribed recently in a three dimensional conformal field
theory [51] within a holographic model. A dimensional
reduction of the system proposed here will probably give

3

ψL ψR

BL

BR

+ +

p p p p

s

s s

s

FIG. 2: (Color online) The lowest Landau level picture

of the axial magnetic effect. Here, L and R represent the

two different chiralities, ± indicate the charge of the parti-

cle/antiparticle with momentum p. The vector s shows the

direction of spin for each type of particle.

A Landau level picture of this effect can be obtained by

adapting the derivation of the chiral magnetic effect in

terms of Landau levels done in Ref. 36. Fig. 2 shows a

schematic view of the effect. The spectrum of massless

Dirac fermions in an axial magnetic field is organised into

Landau levels. In the lowest Landau level the spins and

momenta are aligned according to chirality. The chiral

magnetic field acts with a relative sign on right- and left-

handed fields ΨR;L. The particle quanta of the right-

handed field have their spin aligned with the magnetic

field, whereas the anti-particle quanta of ΨR have their

spin anti-aligned. For the quanta of the left-handed field

these relations are reversed as is the sign of the magnetic

field. Therefore in the absence of any imbalance of either

charge or chirality all quanta have their momenta aligned

in the background of an axial magnetic field and create

an energy flux in the direction of the chiral magnetic

field. The energy flow is higher the more quanta are on

shell, i.e. the higher the temperature. The higher Landau

levels are degenerate in spin and therefore their overall

momenta average out to zero.

From Refs. 37, 38 it follows that for a single (mass-

less) Dirac fermion, i.e. one pair of Weyl-cones, the axial

magnetic conductivity is

σAME =
µ2 + µ2

5

4π2
+

T 2

12
, (4)

where T, µ and µ5 are the temperature, chemical poten-

tial and axial chemical potential respectively. Of par-

ticular interest is the fact that this conductivity has a

purely temperature dependent contribution, i.e. even at

zero density and in the absence of a chiral imbalance, the

AME is not zero. The coefficient of the T 2 term can be in-

ferred from purely hydrodynamic arguments [39–41], and

has been computed recently in lattice simulations of QCD

[42, 43]. This temperature dependence is a direct conse-

quence of the presence of the (mixed) axial–gravitational

anomaly [37, 41]:

∂µJ
µ
5 =

1

384π2
�µνρλRα

βµνR
β

αρλ , (5)

where Jµ
5 is the axial current and Rα

βµν is curvature

tensor.

Next we show the generation of a net angular momen-

tum carried by the surface states (the Fermi arcs) of a

Weyl semi-metal due to the AME. The simplest action

capturing the features of a neutral (µ = µ5 = 0) Weyl

semi-metal is (1)

S =

�
d4kψ̄k(γ

µkµ − bµγ
µγ5)ψk, (6)

where bµ acts as a chiral gauge potential. For a Weyl

semi-metal bi is constant in the bulk and goes to zero

sharply at the edge so there will be a strong effective
axial magnetic field B5 = ∇ × b induced there. This

in turn implies that through the AME, T 0i can gen-

erate a finite angular momentum for the states at the

boundary. Consider a cylinder of Weyl semimetal of

height L and basal radius a with the simplest configu-

ration b = ẑbzΘ(a − |r|). The axial magnetic field will

point in the azimuthal direction and be proportional to

Bθ ∼ bzδ(|r| − a). The corresponding energy current

(3) will induce an angular momentum Lk =
�
V εijkxiT0j

along the axis of the cylinder (of volume V):

Lz =

�

V
εzrθ r T0θ = 2πσAMEa

2 Lbz. (7)

Plugging in the expression (4) for σAME it follows that,

at zero density and in the absence of a chiral imbalance

the states at the edge of the cylinder posses an angular

momentum of magnitude

Lz =
Nf

6
T 2bzV, (8)

where Nf is the number of pairs of Weyl cones, and bz
is the effective axial potential proportional to the sepa-

ration of the Weyl cones in momentum space [9].

Notice that, although we have assumed a constant bz
to simplify the formulas, any spacial variation of bi in the

bulk would give rise to an effective axial magnetic field

and to an energy current supported in the bulk. This

is an important difference with previous models [24, 44]

where the current is intrinsically an edge current. In

a physical realisation of the type discussed in [9], the

axial field originates in the magnetization of the induced

dopants and can be easily chosen to be inhomogeneous.

A direct observation of the rotation is hindered by the

fact that only the edge states carry the angular momen-

tum and the dissipationless rotation will not drag with it

the ions of the lattice. As explained below, the distinc-

tive characteristic that might allow its detection is the
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FIG. 2: (Color online) The lowest Landau level picture

of the axial magnetic effect. Here, L and R represent the

two different chiralities, ± indicate the charge of the parti-

cle/antiparticle with momentum p. The vector s shows the

direction of spin for each type of particle.

A Landau level picture of this effect can be obtained by

adapting the derivation of the chiral magnetic effect in

terms of Landau levels done in Ref. 36. Fig. 2 shows a

schematic view of the effect. The spectrum of massless

Dirac fermions in an axial magnetic field is organised into

Landau levels. In the lowest Landau level the spins and

momenta are aligned according to chirality. The chiral

magnetic field acts with a relative sign on right- and left-

handed fields ΨR;L. The particle quanta of the right-

handed field have their spin aligned with the magnetic

field, whereas the anti-particle quanta of ΨR have their

spin anti-aligned. For the quanta of the left-handed field

these relations are reversed as is the sign of the magnetic

field. Therefore in the absence of any imbalance of either

charge or chirality all quanta have their momenta aligned

in the background of an axial magnetic field and create

an energy flux in the direction of the chiral magnetic

field. The energy flow is higher the more quanta are on

shell, i.e. the higher the temperature. The higher Landau

levels are degenerate in spin and therefore their overall

momenta average out to zero.

From Refs. 37, 38 it follows that for a single (mass-

less) Dirac fermion, i.e. one pair of Weyl-cones, the axial

magnetic conductivity is

σAME =
µ2 + µ2

5

4π2
+

T 2

12
, (4)

where T, µ and µ5 are the temperature, chemical poten-

tial and axial chemical potential respectively. Of par-

ticular interest is the fact that this conductivity has a

purely temperature dependent contribution, i.e. even at

zero density and in the absence of a chiral imbalance, the

AME is not zero. The coefficient of the T 2 term can be in-

ferred from purely hydrodynamic arguments [39–41], and

has been computed recently in lattice simulations of QCD

[42, 43]. This temperature dependence is a direct conse-

quence of the presence of the (mixed) axial–gravitational

anomaly [37, 41]:

∂µJ
µ
5 =

1

384π2
�µνρλRα

βµνR
β

αρλ , (5)

where Jµ
5 is the axial current and Rα

βµν is curvature

tensor.

Next we show the generation of a net angular momen-

tum carried by the surface states (the Fermi arcs) of a

Weyl semi-metal due to the AME. The simplest action

capturing the features of a neutral (µ = µ5 = 0) Weyl

semi-metal is (1)

S =

�
d4kψ̄k(γ

µkµ − bµγ
µγ5)ψk, (6)

where bµ acts as a chiral gauge potential. For a Weyl

semi-metal bi is constant in the bulk and goes to zero

sharply at the edge so there will be a strong effective
axial magnetic field B5 = ∇ × b induced there. This

in turn implies that through the AME, T 0i can gen-

erate a finite angular momentum for the states at the

boundary. Consider a cylinder of Weyl semimetal of

height L and basal radius a with the simplest configu-

ration b = ẑbzΘ(a − |r|). The axial magnetic field will

point in the azimuthal direction and be proportional to

Bθ ∼ bzδ(|r| − a). The corresponding energy current

(3) will induce an angular momentum Lk =
�
V εijkxiT0j

along the axis of the cylinder (of volume V):

Lz =

�

V
εzrθ r T0θ = 2πσAMEa

2 Lbz. (7)

Plugging in the expression (4) for σAME it follows that,

at zero density and in the absence of a chiral imbalance

the states at the edge of the cylinder posses an angular

momentum of magnitude

Lz =
Nf

6
T 2bzV, (8)

where Nf is the number of pairs of Weyl cones, and bz
is the effective axial potential proportional to the sepa-

ration of the Weyl cones in momentum space [9].

Notice that, although we have assumed a constant bz
to simplify the formulas, any spacial variation of bi in the

bulk would give rise to an effective axial magnetic field

and to an energy current supported in the bulk. This

is an important difference with previous models [24, 44]

where the current is intrinsically an edge current. In

a physical realisation of the type discussed in [9], the

axial field originates in the magnetization of the induced

dopants and can be easily chosen to be inhomogeneous.

A direct observation of the rotation is hindered by the

fact that only the edge states carry the angular momen-

tum and the dissipationless rotation will not drag with it

the ions of the lattice. As explained below, the distinc-

tive characteristic that might allow its detection is the
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late in pairs, the separation in momentum space endows

the nodes with a notion of topological stability. [8, 9]

Experimentally, magnetically doped Bi2Se3 and TlBiSe2

[11–13] can be a feasible route to realize the Weyl semi-

metal phase [14]. Several band structure calculations [15–

18] have predicted band touching to occur in Cd3As2

and A3Bi (A=Na, K, Rb) compounds. Very recently

there has been remarkable experimental evidence [19–21]

of such 3D Dirac semimetal state in this family of materi-

als, which under magnetic doping would potentially host

the Weyl semi-metal phase. In addition, heterostructures

that alternate between trivial and topological insulators

have been realized experimentally [22]. These could be

coated with ferromagnetic insulators as was experimen-

tally demonstrated for a single layer [23], closer in spirit

to the early proposal considered in Ref. 9. This lat-

ter case realizes the minimal number of nodes (two) and

so the characteristics of the Weyl semi-metal phase are

taken into account by the following low energy action

[24–28]

S =

�
d4kψ̄k(γ

µkµ − bµγ
µγ5)ψk, (1)

where kµ = (k0,k) is the momentum four-momentum,

bµ is a constant four-vector and ψk is a four component

spinor. The vector bµ has physical origin; the spatial

part b breaks time-reversal symmetry and preserves in-

version and can be induced by doping the system with

magnetic impurities [9]. The time-like component b0 on

the other hand breaks inversion and preserves time re-

versal and can be originated in a particular spin-orbit

coupling term. [27] As a consequence, the energy spec-

trum for this case results in two Weyl nodes separated

by ∆k = 2b and ∆E = 2b0 in momentum and energy

respectively (∆kµ = 2bµ in a more compact notation).

In this work we will take this action as a starting point

to describe the low energy physics of Weyl semi-metals.

Before doing so, it is important to address the regime

of validity for this action. In real Weyl semi-metal ma-

terials, the two chiralities of the Weyl fermions will mix

at higher energies above some characteristic energy scale

m2
, when b2 ∼ m2

with b2 = b20 − b2
. Above this en-

ergy, a different band structure takes over and one cannot

model the system with isolated Weyl nodes. In that case

a simple extension of (1) can be used to take into account

the new energy scale, in particular [26]

S =

�
d4kψ̄k(γ

µkµ −m− bµγ
µγ5)ψk. (2)

which can be directly derived from microscopic models

[26, 29] and resembles a Lorentz breaking QED action

[26]. Contrary to naive expectation the spectrum of (2)

need not be gapped even when m �= 0, i.e. the attributes

gapless and massless are no longer interchangeable. In

fact, whenever the condition −b2 < m2
is satisfied, the

spectrum is gapped and the system is an insulator [52]. In

the opposite case when −b2 > m2
, the spectrum is gap-

less and contains two nodes separated both in momentum

a) b)

c) d)

FIG. 1: (Color online) Dispersion relation from (2) with
m �= 0 and (a)−b2 < m2, including bµ = 0, (b) bi �= 0 and
b0 = 0 with −b2 > m2, (c) m �= 0, bi = 0 and b0 �= 0. This
case always satisfies −b2 < m2 for any value of b0. (d) b

µ �= 0
with −b2 > m2.

and energy (see Fig. 1). Therefore in the latter case the

material realizes the Weyl semi-metal phase. The sepa-

ration between nodes in the latter case is proportional to

the four-vector ∆kµ ∼ bµ
�

1− m
b .

Both (1) and (2) lead to interesting predictions such as

the presence of surface states in the form of Fermi arcs

[8, 9], a Hall response [9] as well as a current response par-

allel to an external magnetic field [25–28], an analogue of

the the chiral magnetic effect [7], although the realization

of the latter is still under active debate [26–32].

The exact magnitude of m will depend on the par-

ticular realization of the Weyl semi-metal phase. A

way to estimate its magnitude is by realizing the Weyl

semi-metal phase by closing the gap of a topological

insulator simply by adding magnetic impurities which

break time-reversal symmetry [14]. In the process, the

single particle gap of the topological insulator m closes

while interpolating from a situation with −b2 < m2

to the Weyl semi-metal phase with −b2 > m2
. In this

simple picture the value of m is as large as the gap of

the original topological insulator which for Bi2Se3 is

close to ∼ 0.3eV [33–35]. This gives an upper bound

for m although in general one can expect it to be smaller.

We now address the question of how the low energy de-

scription (1) generates a finite AME in a Weyl semimetal.

The axial magnetic effect describes the generation of an

energy current parallel to an axial magnetic field B5 (i. e.

a magnetic field coupling with opposite signs to left and

right fermions) in a system of massless Dirac fermions

in 3+1 dimensions at finite temperature and chemical

potential

T 0i
= J i

� = σAMEB
i
5. (3)

Axial Magnetic Effect in WSM

Gravitational anomaly @ work in the laboratory!
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Summary 

• Non-dissipative transport of charge and energy via 
triangle anomalies!

• Non-renormalization (only for global symmetries)! 

• Applications: QGP,  WSM (table-top experiments!)
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the temporal lattice extension Lt = 4 and larger spa-
tial lattice volumes Ls = 16, 18, 20. We make our sim-
ulations for the physical lattice spacings in the inter-
val a = (0.068 . . . 0.148) fm and the temperature range
T = (330 . . . 720)MeV.

We use the improved lattice action for the gluon
fields [15]. Due to the identity (11), the axial magnetic
field shares many properties of the usual magnetic field.
For example, the strength of the axial magnetic field is
subjected to quantization due to the periodicity of the
gauge fields in a finite lattice volume:

B5 = k B5,min , eB5,min =
2π

L2
s

. (14)

Here the integer number k = 0, 1, . . . , L2
s/2 determines

the total number of elementary magnetic fluxes thread-
ing each (x1, x2) plane of the lattice. The quantiza-
tion (14) is consistent with the unit charges of the left-
and right-handed quarks (4). In order to avoid ultravi-
olet artifacts, we simulate the lattice at relatively small
values of the flux quanta k ≤ 15 which is much smaller
than the maximal possible value of the quantized flux,
kmax = L2

s/2 ∼ 100. Our typical strongest magnetic
fields are of the order eB5,max ∼ 1.GeV2 while the small-
est possible fields are of the order of eB5,min ∼ 0.1GeV2.

We have numerically checked that the dissipationless
energy flow scales linearly with the strength of the ax-
ial magnetic field B5 for a wide set of temperature and
volumes, in agreement with the theoretical prediction (2)
and our previous numerical calculations [8]. Thus, in or-
der to find the temperature behavior of the conductivity
coefficient,

CAME(T ) =
J�(T, eB5)

eB5T 2
, (15)

it is sufficient to calculate the energy current J� for a
single value of the external axial magnetic field B5 at a
given temperature T .

FIG. 1. The dimensionless conductivity coefficient (15) of the
dissipationless energy flow vs. temperature. The dashed line
represents the best fit by Eq. (16).

In Fig. 1 we show the dimensionless coefficient (15) of
the conductivity (3) as a function of temperature T . In

agreement with our previous results [8], the dissipation-
less energy transfer is absent in the confinement phase.
The conductivity coefficient CAME(T ) raises with tem-
perature at phase transition region, and approaches a
constant value at T ∼ 500MeV [T ∼ 1.5Tc for the SU(2)
gauge theory] implying the T 2 behavior of the conduc-
tivity σ(T ) at higher temperatures.
We find the the temperature behavior of the coefficient

CAME can well be described by the following function,

Cfit
AME(T ) = C∞

AME exp

�
− hT0

T − T0

�
, T > T0 , (16)

with the best fit parameters

C∞
AME = 0.0097(2) , (17)

h = 0.055(7) and T0 = 339(2)MeV. The best fit value for
the temperature scale is quite close to the pseudocritical
temperature of the deconfinement transition of the lattice
SU(2) gauge theory at our lattices. The quality of the
fit (16) is given by χ/d.o.f. = 1.8. The fit is shown in
Fig. 1 by the dashed line.
The quantity (17) corresponds to the AME conduc-

tivity σ(T ) = C∞
AME T 2 in the high-temperature limit.

For a conformal theory with two colors of fermions
and one single flavor, the theoretical proportionality co-
efficient should be an order of magnitude larger (5),
Cth

AME = 1/6 ≈ 0.166. The ratio between the observed
and predicted coefficients is the same as in our previ-
ous study (6). Notice that in lattice simulations of free
fermions the anomalous energy flow agrees very well with
the theoretical predictions [10] while we observe a large
discrepancy between theoretical and numerical results in
the lattice simulations of the interacting gauge theory.
Figure 1 also demonstrates the robustness of the result

with respect to variations of the lattice volume. For ex-
ample, the results at T ≈ 400MeV ≈ 1.3Tc) and T ≈
720MeV ≈ 2.37Tc stay unchanged within the error bars
as the volume changes in the range V = (8 . . . 15) fm3

and V = (1.3 . . . 2.6) fm3, respectively. This behavior is
contrasted with the simulations of the same effect in a
theory with free fermions, where large finite-volume cor-
rections were observed [10]. The energy flow is almost
insensitive to variations of the ultraviolet cutoff given by
inverse lattice spacing [8].
Concluding, we have numerically calculated the tem-

perature behavior of the dissipationless energy flow in-
duced by the background axial magnetic field (the Axial
Magnetic Effect) in the quenched lattice SU(2) gauge
theory. We show that the energy flow is absent in the
confinement phase. In the deconfinement phase the con-
ductivity flow is proportional to the strength of the axial
magnetic field. The AME conductivity raises sharply in
the phase transition region at T ∼ Tc and reaches the
expected T 2 behavior as the temperature increases over
1.5Tc. However, the numerically found conductivity co-
efficient is approximately 17 times smaller than the co-
efficient predicted by the linear response theory at weak
coupling.

�J� = σV
�B5

• Chiral vortical effect in axial current
• No chemical potential necessary
• On Lattice accessible via Axial Magnetic Effect 

Renormalization via dynamical gauge fields
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