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Solving QCD (or its SUSY cousin, n=1 SUSY QCD) at 
large-N is a long standing difficult problem

An easier problem is to solve them only asymptotically in 
the UV

In a sense we already have an asymptotic solution:
It is standard perturbation theory

But solving the large-N theory, even only asymptotically, is 
much more interesting:

This solution would replace QCD as a theory of gluons and 
quarks, that is strongly coupled in the infrared in 

perturbation theory, with a theory of glueballs and mesons 
that is weakly coupled at all scales
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We have found an asymptotic solution of massless QCD at 
large-N (and of n=1SUSY QCD) in a sense specified later, 

by a new purely field-theoretical method, based on 
fundamental principles, that we call the Asymptotically-Free 

Bootstrap

It expresses uniquely 2 and 3 point correlators 
of any spin (explicitly for lower spins) in terms of glueball and 

meson propagators, in such a way that the result is 
asymptotic in the UV to RG-improved perturbation theory

It extends to certain primitive r-point correlators and S-
matrix amplitudes to all 1/N orders
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First and foremost, an asymptotic solution of this kind is a 
guide to find out an actual solution by other methods, either 

field theoretical or string theoretical

It an easy way to check forthcoming proposed exact 
solutions (easy because based only on fundamental principles 

of field theory)

It has a number of physical applications,
e.g. the pion charged and neutral form factors,  light by light 

scattering amplitudes relevant for QCD corrections to muon 
anomalous magnetic moment ... and so on, that we will not 

discuss in this talk

Why is it interesting ? (Should we really answer this 
rhetoric question ?)
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Besides, it provides a quantitative understanding of how 
much accurate (approximate or would-be exact) solutions 

proposed in the past years are

In the past years several different proposals have been 
advanced for the glueball propagators of QCD-like theories 
based on the the AdS-String /Large-N Gauge Theory 
Correspondence  by the Princetonians (Witten, Klebanov-
Strassler, Maldacena-Nunez, Polchinski-Strassler, and many 
followers . . .) 

and more recently on aTopological Field Theory underlying 
large-N YM (M. B.)
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Based on the asymptotic solution we will show that:

None of the proposals for the scalar glueball 
propagators based on the AdS String/Large-N Gauge 

Theories correspondence agrees with 
the universal RG estimate in the UV for
 any asymptotically free gauge theory 

(perhaps as expected, because the AdS models in the 
supergravity approximation are in fact strongly coupled in the 

UV)

but the TFT does
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But the most fundamental consequence of the 
asymptotically-free bootstrap is the explicit structure of the 

asymptotic  S-matrix 

 This puts the strongest constraints on any (string ?) solution 
for the S-matrix of large-N QCD and of n=1 SUSY QCD

so explicit, and so strong constraints, that we conjecture that 
they determine uniquely the large-N QCD  S-matrix on the 

string side

 as we will see 
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What makes possible the Asymptotically-Free 
Bootstrap is a recently-proved 

Asymptotic Theorem
 for large-N two-point correlators

M.B.  Glueball and meson propagators of any 
spin in large-N QCD

Nucl. Phys. B 875 (2013) 621[hep-th/1305.0273] 
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two-point correlators are an infinite sum of free fields 
satisfying the the Kallen-Lehmann representation                 

(A. Migdal, 1977):

At next to leading 1/N order, because 
of the vanishing of the interaction 
associated to 3 and multi-point 
correlators,
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   Let me start with the following 

                              simple

                  but fundamental question
What is the large momentum behavior of two-point 
correlators of any integer spin s in pure Yang-Mills, in QCD 
and in n=1 SUSY QCD with massless quarks, or in any 
confining asymptotically free gauge theory massless in 
perturbation theory ?

For example: 
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The answer is simple but not completely trivial, as we will 
see momentarily. We have found it by standard methods:
Perturbation Theory +
Asymptotic Freedom +
Renormalization Group +
Some non-trivial subtlety . . . 

up to a polynomial in momentum, i.e. a contact term, i.e. a 
distribution supported at x=0 in coordinate space (this is the 
first subtlety) that must be subtracted;
            is the projector obtained substituting 
in the massive projector of spin s              (this is the second 
subtlety)
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up to contact terms                                      
Fundamental question:

Therefore, at the leading large-N order it must hold:

Which are the constraints on the residues and the poles 
that follow from this asymptotic equality ?

Oddly, neither Migdal nor other people found any answer
(for deep reasons in the case of Migdal, that I will discuss 

possibly at the end of the talk)
We will answer this question today, after 37 years !
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The answer to the fundamental question  is the following 
Asymptotic Theorem:
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We now look for a vast generalization of the Asymptotic 
Theorem to r-point correlators 

that we call the Asymptotically-Free Bootstrap
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The Asymptotically-Free Bootstrap (for any spin)

1. Conformal invariance of correlators at lowest order of 
perturbation theory. For 2 an 3 point correlators structure is 

fixed uniquely by conformal invariance
2. RG improvement by Callan-Symanzik + asymptyotic 
freedom ; 1+2 imply that 3 point correlators factorize 

asymptotically on products of certain coefficients of OPE
3. Kallen-Lehmann representation of coefficients of OPE;
This is the new crucial feature, that extends to OPE the

aforementioned asymptotic theorem for 2 point correlators 
4.          1+2+3          fix uniquely the glueball and meson 3-

point correlators asymptotically in the UV
5.        primitive r-point correlators follow by iterating the 

OPE
Monday, June 16, 14



< O(x1)O(x2) >conn

= G(2)(x1 � x2)

< O(x1)O(x2)O(x3) >conn

= G(3)(x1 � x2, x2 � x3, x3 � x1)

 
i=2X

i=1

xi ·
@

@xi
+ �(g)

@

@g

+ 2(D + �(g))

!
G

(2)(x1 � x2) = 0

The asymptotically-free bootstrap (scalar case, positive 
charge conjugation)

 
i=3X

i=1

xi ·
@

@xi
+ �(g)

@

@g

+ 3(D + �(g))

!
G

(3)(x1 � x2, x2 � x3, x3 � x1) = 0

Monday, June 16, 14



 
i=2X

i=1

xi ·
@

@xi
+ 2D

!
G

(2)(x1 � x2) = 0

 
i=3X

i=1

xi ·
@

@xi
+ 3D

!
G

(3)(x1 � x2, x2 � x3, x3 � x1) = 0

1. Conformal invariance of correlators at lowest order 
of perturbation theory. For 2 an 3 point correlators
 structure is fixed uniquely by conformal invariance
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1+2 imply that 3 point correlators
 factorize asymptotically on products of certain 

coefficients of OPE
O(x)O(0) ⇠ C(x)O(0) + · · ·
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3. Kallen-Lehmann (KL) representation of coefficients of OPE;  
This is the new crucial feature, that extends to OPE the

aforementioned asymptotic theorem for 2 point correlators
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4.          1+2+3   fix uniquely the glueball and 
meson 3-point vertices asymptotically in the UV
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5.        primitive r-point asymptotic correlators follow 
by iterating the OPE

and so on . . .
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But this is not the whole story !

We want to find the asymptotic effective action and 
asymptotic S-matrix

i.e.     we want to go from

 propagators and correlators

to

 kinetic terms and vertices

(this requires some more not-completely-trivial work that 
we skip, writing only the final answer)

as a result we find some surprises for the S-matrix
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Text
The generating functional of scalar correlation functions in 

massless large-N QCD and n=1 SUSY QCD 
asymptotically in the UV 
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The generating functional of scalar S-matrix amplitudes in 
massless large-N QCD and n=1 SUSY QCD 

asymptotically in the UV 
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The S-matrix depends only on the spectrum but not on the 
anomalous dimensions ! No conventional string theory has 

this S-matrix, since vertices are non-local but very much field 
theoretical (as in super-renormalizable field theories).
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+ the 1PI 4-point amplitude

We suggest a possible string candidate that
has chances to reproduce these amplitudes at the end of 

the talk
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In fact, in the pure glue sector with positive 
charge conjugation the generating functional of 

the S-matrix can be resummed

We conjecture that this structure fixes 
uniquely the string theory that solves 

QCD, and we suggest a possible candidate 
at the end of the talk
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Specialize the RG estimate to scalar and pseudoscalar 
glueball propagators
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Perturbative check:  the 3-loop computation by Chetyrkin et 
al.
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 UV test for glueball propagators: AdS String/ Gauge 
Theory correspondence versus the TFT

TFT (QCD), Polchinski-Strassler or Hard Wall (QCD), Soft 
Wall (QCD), Klebanov-Strassler background (n=1 

cascading SUSY QCD)

An interesting aside: In the past years several 
proposals for the glueball propagators have been 

advanced based on AdS String/ Gauge Theory 
correspondence, and more recently on a TFT 

underlying large-N  YM
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All the previous results, disagree with asymptotic freedom 
and RG by powers of logarithms
It means that the would-be glueball propagators differ from 
the correct answer in pure YM or in any AF theory for an 
infinite number of poles and/or residues, 
(a fact that raises well motivated doubts on the correctness 
of the AdS-String spectrum at large-N ... In fact, the  AdS-
String spectrum disagrees even qualitatively with lattice data)
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The main limitation of the asymptotically-free bootstrap is 
that it does not contain spectral information

but we have constructed a TFT underlying large-N Yang-Mills
based on a field theoretical version of Morse-Smale-Floer 

homology, that contains spectral information

M.B. Yang-Mills mass gap, Floer homology, glueball spectrum
and conformal window in large-N QCD 

hep-th/1312.1350
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By means of the TFT,  we have found an answer for the mass 
gap and the ASD glueball propagator

that  is compatible 
with everything that we know presently about large-N  YM, 
both in the infrared numerically by lattice gauge theory and 
more importantly in the ultraviolet by first principles (i.e. it 

agrees with the Asymptotic Theorem)
as we will show momentarily

i.e. the two-point correlator of 
F�
↵� = F↵� � ⇤F↵�

⇤F↵� =
1

2
✏↵���F

��

⇤F↵� =
i

2
✏↵���F

��

in Euclidean or ultra-hyperbolic signature

in Minkowski

OASD =
X

↵�

Tr(F�
↵�F

�↵�)
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The answer 
in Euclidean or ultra-hyperbolic signature in large-N  YM is:
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The main limitation of the asymptotically free bootstrap is 
that it does not contain spectral information

Conclusion and Conjecture

Construct the Topological String Theory dual to the TFT

Check that the corresponding S-matrix is asymptotic to the
answer found by the Asymptotically-Free Bootstrap (likely, 

because the TFT is asymptotically-free with the correct      
2  point correlator)

Then the Topological String Theory would be the string 
solution of QCD for the spectrum and S-matrix
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Why the Topological String Theory has chances to 
work ?

Because S-matrix amplitudes for topological strings 
arise by summing on D-branes, as in Witten  
Topological Twistor String of n=4 SUSY YM

or by summing on world-sheet instantons as in the 
Twistorial A-model that is dual to the TFT (M.B.)

and not by summing on Riemann surfaces, as for 
conventional strings, that in general implies very soft 

behavior in the UV, more soft than in 
super-renormalizable field theories

In Witten case the field theoretical MHV amplitudes 
of n=4 YM are exactly reproduced, i.e. they are hard 

in the UV
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Does the Twistorial A-model dual to the TFT solve QCD
 in ‘t Hooft limit,

perhaps only for the S-matrix  ?

We will see ... 
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The following slides are not part of the talk but contain 
details useful to answer questions or for further discussion
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The ASD correlator in the TFT needs an exact non-
perturbative scheme for the large-N beta function, in 

such a way that the canonical coupling does not diverge 
at the infrared Landau pole of the  Wilsonian or of the 

perturbative coupling 
M.B.  JHEP 05(2009)116
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Euler-MacLaurin formula, in order to extract the large-
momentum asymptotics (Migdal, decades ago ...)
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The answer  in Minkowski in large-N  YM is:

In n=1 SUSY  YM by methods inspired by present work 
Shifman (2011) has shown in Minkowski:Z
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Since the ASD correlator is the sum of the scalar and 
pseudoscalar correlators,  the prediction of the TFT for the 
joint scalar and pseudoscalar glueball spectrum of positive C

in large-N  YM is:

m2
k = k⇤2

QCD; k = 1, 2 · · ·

Exact linearity, as opposed to asymptotic linearity, is as a 
strong statement as it sounds very unlikely

 even at large-N, 
but ...
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The prediction of the TFT agrees sharply with

SU(8) lattice YM computation by Meyer-Teper (2004) on 
the largest lattice (16^3 * 24), presently closest to 

continuum, i.e. with the smallest value of  YM coupling  
(beta=2N/(g_YM)^2=45.5)

rs = rps =
p

2 = 1.4142 · · ·

TFT:

rs =
m0++⇤

m0++

rps =
m0�+

m0++

rs = rps = 1.42(11)
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Proof of the RG estimate in the coordinate representation
using the fact that the operator O is multiplicatively 

renormalizable in the coordinate representation, because 
contact terms do not occur for x away from 0
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Proof of the Asymptotic Theorem in momentum 
representation
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It agrees with Naive RG estimate in momentum  
representation, assuming the operator O to be 

multiplicatively renormalizable, that is technically falseZ
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This is an integral equation of Fredholm type, for which a 
solution exists if and only if it is unique:
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Given the Kallen-Lehmann representation,

 extension of the Asymptotic Theorem to all other 
coefficients of OPE is straightforward, 

taking into account different naive dimensions and anomalous 
dimensions of each coefficient
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