# Thermodynamical and transport properties of sQGP from hQCD

### Mei HUANG



Institute of High Energy Physics, CAS



**Theoretical Physics Center for Science Facilities, CAS** 

**QCD@Work, Bari, June 16-19, 2014** 

#### I. Motivation

- II. The dynamical hQCD model
- **III. Phase transition**
- **IV. Transport properties**
- V. Conclusion and discussion

D.N.Li, S.He, M.H. in preparation D.N. Li, J.F. Liao, M.H., PRD in press, arXiv:1401.2035 D.N. Li, M.H., JHEP2013, arXiv:1303.6929 D.N, Li, S. He, M. H., Q. S. Yan, JHEP2011, arXiv:1103.5389

## I. Motivation

### QCD





UV (Weak coupling):

Asymptotic freedom

Asymptotically conformal



**IR (Strong coupling)**: **Chiral symmetry breaking** 

& Confinement



### **Strong QCD**



Holographic Duality: Gravity/QFT

AdS/CFT : Original discovery of duality

J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

Supersymmetry and conformality are required for AdS/CFT.

In general, supersymmetry and conformality are not necessary

**General Gravity/QFT:** 



#### Holographic QCD or gravity dual of QCD



#### **Real QCD world:**

**Rich experimental data and lattice data** 

A systematic framework: Graviton-dilaton system

$$S_G = \frac{1}{16\pi G_5} \int d^5 x \sqrt{g_s} e^{-2\Phi} \left( R_s + 4\partial_M \Phi \partial^M \Phi - V_G^s(\Phi) \right)$$

N=4 Super YM conformal

#### **QCD** nonconformal

#### deformed AdS<sub>5</sub>

$$ds^{2} = \frac{L^{2}}{z^{2}} \left( dt^{2} + d\vec{x}^{2} + dz^{2} \right)$$

 $V_E(\phi) = -\frac{12}{L^2}$ 

AdS<sub>5</sub>

$$ds^{2} = \underbrace{\frac{h(z)L^{2}}{z^{2}}}_{z^{2}} \left(dt^{2} + d\vec{x}^{2} + dz^{2}\right)$$

**Dilaton field breaks conformal symmetry** 

The goal is to describe

Hadron spectra chiral symmetry breaking & linear confinement

Phase transitions equation of state

**Transport properties** 

in the same systematic framework

### II. The dynamical hQCD model

#### **Holography & Emergent critical phenomena:**

When system is strongly coupled, new weakly-coupled degrees of freedom dynamically emerge.

The emergent fields live in a dynamical spacetime with an extra spatial dimension.

The extra dimension plays the role of energy scale in QFT, with motion along the extra dimension representing a change of scale, or renormalization group (RG) flow.



Allan Adams,<sup>1</sup> Lincoln D. Carr,<sup>2,3</sup> Thomas Schäfer,<sup>4</sup> Peter Steinberg<sup>5</sup> and John E. Thomas<sup>4</sup>

#### **Holographic Duality & RG flow**

#### **Coarse graining spins on a lattice: Kadanoff and Wilson**

 $H = \sum_{x,i} J_i(x) \mathcal{O}^i(x) \qquad \qquad \mathsf{J}(\mathsf{x}): \text{ coupling constant or source for the operator}$ 









$$H = \sum_{i} J_i(x, 2a) \mathcal{O}^i(x)$$

$$H = \sum_{i} J_i(x, 4a) \mathcal{O}^i(x)$$

 $u\frac{\partial}{\partial u}J_i(x,u) = \beta_i(J_j(x,u),u)$ 

arXiv:1205.5180

#### **Holographic Duality & RG flow**

QFT on lattice equivalent to GR problem from Gravity



#### **Holographic Duality: Dictionary**

#### **Boundary QFT**

#### **Bulk Gravity**

Local operator  $\ \mathcal{O}_i(x)$   $\begin{aligned} & \mbox{Bulk field} \ \ \Phi_i(x,r) \\ & \ \Delta(d-\Delta) = m^2 L^2 \end{aligned}$ 

**Strongly coupled** 

**Semi-classical** 

14

$$Z_{\rm QFT}[J_i] = Z_{\rm QG}[\Phi[J_i]]$$

$$Z_{\rm QFT}[J] \simeq e^{-I_{\rm GR}[\Phi[J]]}$$

$$\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle = \frac{\delta^n I_{\text{GR}}[\Phi[J_i]]}{\delta J_1(x_1) \dots \delta J_n(x_n)} \Big|_{J_i=0}$$

#### **Dynamical hQCD & RG**



#### **Pure gluon system:**

D.N. Li, M.H., JHEP2013, arXiv:1303.6929

$$\mathscr{L}_G = -\frac{1}{4} G^a_{\mu\nu}(x) G^{\mu\nu,a}(x),$$

Gluon condensate at IR:  $Tr\langle G^2 \rangle$ 

**5D action: graviton-dilaton** 

$$S_G = \frac{1}{16\pi G_5} \int d^5 x \sqrt{g_s} e^{-2\Phi} \left( R_s + 4\partial_M \Phi \partial^M \Phi - V_G^s(\Phi) \right)$$

$$\operatorname{Tr}\langle G^2
angle$$
 dual to  $\Phi(z)$ 

#### **Graviton-dilaton system**



**5D action for scalar glueball:** 

$$S_{\mathscr{G}} = \int d^5 x \sqrt{g_s} \frac{1}{2} e^{-\Phi} \left[ \partial_M \mathscr{G} \partial^M \mathscr{G} + M_{\mathscr{G},5}^2 \mathscr{G}^2 \right]$$

scalar glueball:  $\mathscr{G}$  dual to  $tr(G_{\mu\nu}G^{\mu\nu})$   $M^2_{\mathscr{G},5} = 0$ 

$$-\mathscr{G}_n'' + V_{\mathscr{G}}\mathscr{G}_n = m_{\mathscr{G},n}^2 \mathscr{G}_n,$$

$$V_{\mathscr{G}} = \frac{3A_{s}^{''} - \Phi^{''}}{2} + \frac{(3A_{s}^{'} - \Phi^{'})^{2}}{4}$$

#### Dilaton field: quartic at UV and quadratic at IR D.N. Li, M.H., JHEP2013, arXiv:1303.6929





Linear confinement: linear Regge and linear potential

#### **Glueball spectra:**

| $n(0^{++})$ | Lat1           | Lat2      | Lat3             | Lat4           | Lat5         |
|-------------|----------------|-----------|------------------|----------------|--------------|
|             | $N_c = 3$      | $N_c = 3$ | $N_c \to \infty$ | $N_c = 3$      | $N_c = 3$    |
| 1           | 1475(30)(65)   | 1580(11)  | 1480(07)         | 1730(50)(80)   | 1710(50)(80) |
| 2           | 2755(70)(120)  | 2750(35)  | 2830(22)         | 2670(180)(130) |              |
| 3           | 3370(100)(150) |           |                  |                |              |
| 4           | 3990(210)(180) |           |                  |                |              |

hep-lat/0508002 [hep-lat/0103027].

 $[\mathrm{hep}\text{-}\mathrm{lat}/9901004]$ 

 $[\mathrm{hep-lat}/0510074]$ 

## Light flavor system: Graviton-dilaton-scalar D.N. Li, M.H., JHEP2013, arXiv:1303.6929

Action for pure gluon system: Graviton-dilaton coupling

$$S_G = \frac{1}{16\pi G_5} \int d^5 x \sqrt{g_s} e^{-2\Phi} \left( R + 4\partial_M \Phi \partial^M \Phi - V_G(\Phi) \right)$$

Action for light hadrons: KKSS model

$$S_{KKSS} = -\int d^5x \sqrt{g_s} e^{-\Phi} Tr(|DX|^2 + V_X(X^+X, \Phi) + \frac{1}{4g_5^2}(F_L^2 + F_R^2))$$

Total action:

$$S = S_G + \frac{N_f}{N_c} S_{KKSS}$$

21

#### Background with gluon condensate $\Phi(z)$

and quark-antiquark condensate  $\langle X \rangle = \frac{\chi(z)}{2}$ 

$$S_{vac} = S_{G,vac} + \frac{N_f}{N_c} S_{KKSS,vac}$$

 $dS_s^2 = B_s^2 (-dt^2 + d\vec{x}^2 + dz^2) \qquad B_s^2 \equiv e^{2A_s} \equiv L^2 b_s^2.$ 

$$\begin{split} & -A_{s}^{''} + A_{s}^{'2} + \frac{2}{3}\Phi^{''} - \frac{4}{3}A_{s}^{'}\Phi^{'} - \frac{\lambda}{6}e^{\Phi}\chi^{'2} = 0, \\ & \Phi^{''} + (3A_{s}^{'} - 2\Phi^{'})\Phi^{'} - \frac{3\lambda}{16}e^{\Phi}\chi^{'2} - \frac{3}{8}e^{2A_{s} - \frac{4}{3}\Phi}\partial_{\Phi}\left(V_{G}(\Phi) + \lambda e^{\frac{7}{3}\Phi}V_{C}(\chi, \Phi)\right) = 0, \\ & \chi^{''} + (3A_{s}^{'} - \Phi^{'})\chi^{'} - e^{2A_{s}}V_{C,\chi}(\chi, \Phi) = 0. \end{split}$$

#### **Graviton-dilaton-scalar system**



23

| $Dilaton \ in \ Mod \ I:$  | $\Phi(z) = \mu_G^2 z^2$                                  |
|----------------------------|----------------------------------------------------------|
| $Dilaton \ in \ Mod \ II:$ | $\Phi(z) = \mu_G^2 z^2 \tanh(\mu_{G^2}^4 z^2 / \mu_G^2)$ |

|                         | MadIA  | MadID  | MadIIA  | MadIID  |
|-------------------------|--------|--------|---------|---------|
|                         | Mod IA | Mod IB | Mod IIA | Mod IIB |
| $G_5/L^3$               | 0.75   | 0.75   | 0.75    | 0.75    |
| $m_q \; ({\rm MeV})$    | 5.8    | 5.0    | 8.4     | 6.2     |
| $\sigma^{1/3} \; (MeV)$ | 180    | 240    | 165     | 226     |
| $\mu_G$                 | 0.43   | 0.43   | 0.43    | 0.43    |
| $\mu_{G^2}$             | -      | -      | 0.43    | 0.43    |

 Table 7. Two sets of parameters.

#### Produced hadron spectra compared with data





Ground states: chiral symmetry breaking Excitation states: linear confinemnt

## **III. HQCD for**

## **Phase transitions**

## Color electric deconfinement phase transition

**5D graviton action:** 

$$S_{5D} = \frac{1}{16\pi G_5} \int d^5 x \sqrt{-g^E} \left( R - \frac{4}{3} \partial_\mu \phi \partial^\mu \phi - V_E(\phi) \right)$$
$$ds_S^2 = \frac{L^2 e^{2A_s}}{z^2} \left( -f(z) dt^2 + \frac{dz^2}{f(z)} + dx^i dx^i \right),$$

Experiences in constructing holographic QCD model tells us that: a quadratic correction in the deformed warp factor is responsible for the linear confinement.

$$A_s(z) = ck^2 z^2$$

$$\begin{split} \phi(z) &= \phi_0 + \phi_1 \int_0^z \frac{e^{2A_s(x)}}{x^2} \, dx + \frac{3A_s(z)}{2} \\ &+ \frac{3}{2} \int_0^z \frac{e^{2A_s(x)} \int_0^x y^2 e^{-2A_s(y)} A_s'(y)^2 dy}{x^2} \, dx, \\ f(z) &= f_0 + f_1 \left( \int_0^z x^3 e^{2\phi(x) - 3A_s(x)} \, dx \right), \\ V_E(\phi) &= \frac{e^{\frac{4\phi(z)}{3} - 2A_s(z)}}{L^2} \\ &\left( z^2 f''(z) - 4f(z) \left( 3z^2 A_s''(z) - 2z^2 \phi''(z) + z^2 \phi'(z)^2 + 3 \right) \right) \end{split}$$

#### D.N, Li, S. He, M. H., Q. S. Yan, arXiv:1103.5389, JHEP2011



D.N. Li, S. He, M.H., Q. S. Yan, arXiv:1103.5389, JHEP2011

29



D.N. Li, S. He, M.H., Q. S. Yan, arXiv:1103.5389, JHEP2011 30

#### **Trace anomaly**

$$c_s^2 = \frac{d\log T}{d\log s} = \frac{s}{Tds/dT},$$



D.N. Li, S. He, M.H., Q. S. Yan, arXiv:1103.5389, JHEP2011 31

#### **Electric screening**

#### Heavy quark potential



#### Magnetic screening and magnetic confinement



#### spatial Wilson loop

#### spatial string tension

D.N. Li, S. He, M.H., Q. S. Yan, arXiv:1103.5389, JHEP2011

#### **EOS from dynamical hQCD**



34

#### **EOS from dynamical hQCD** Non-conformal around Tc

Danning Li, Jinfeng Liao, M.H. arXiv:1401.2035



## **IV. Transport properties**

#### Jet quenching parameter, shear viscosity and bulk viscosity

## What do we know about jet quenching parameter?



## Parton energy loss in QGP



The dominant effect of the medium on a high energy parton is medium-induced Bremsstrahlung.

$$\Delta E \approx -\frac{\alpha_s}{2\pi} N_C \hat{q} L^2$$

Baier, Dokshitzer, Mueller, Peigne, Schiff (1996):

 $\hat{q}$  : reflects the ability of the medium to "quench" jets.

$$\hat{q} = \frac{\langle k_T^2 \rangle}{L} \approx \frac{\mu^2}{\lambda}$$
  $\mu$ : Debye mass  $\lambda$ : mean free path 38

#### Fundamental question: What's the property of $\hat{q}$ ?



Chen, Greiner, Wang, XNW, Xu, PRC 81 (2010) 0649 8

#### Assumptions:

#### Temperature dependence of jet quenching parameter [Jet Collaboration] arXiv:1312.5003



40

## Can jet quenching characterizing phase transition?

$$\frac{\eta_{\rm A}}{s} = \frac{8\pi^2}{63} \frac{T^3}{\hat{q}}$$

Majumder, Muller, Wang, PRL 2007



Lacey et al., PRL 98:092301,2007

Naively extend to general case:

$$\eta/s \sim T^3/\hat{q}$$

One can expect a peak of  $\hat{q}/T^3$ 

around phase transition !?



#### How can we calculate jet quenching parameter?

$$\hat{q}_R = \frac{4\pi C_R \alpha_s}{N_c^2 - 1} \int dy^- \left\langle F^{ai+}(0) F_i^{a+}(y^-) \right\rangle e^{i\xi p^+ y^-}$$

1, pQCD: cannot go to phase transition region;

2, LQCD: waiting for temperature dependent result

Majumder, arXiv:1202.5295, Panero et.al., arXiv:1307.5850

- 3, Effective Models: how ???
- 4, AdS/CFT: conformal, constant value
- 5, hQCD model: this work



$$W^{Adj} = \exp(2i(S_1 - S_2))$$

$$S_1 = \frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{g_{\tau\tau}g_{zz}z'(\sigma) + g_{\tau\tau}g_{22}}, \quad S_2 = \frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{g_{\tau\tau}g_{zz}}.$$

$$\hat{q} = \frac{\sqrt{2}\sqrt{\lambda}}{\pi \int_0^{z_h} dz \sqrt{g_{zz}/g_{22}}}, \quad 43$$

#### **Jet quenching from dynamical hQCD**

Danning Li, Jinfeng Liao, M.H. arXiv:1401.2035



#### Jet quenching from dynamical hQCD

Danning Li, Jinfeng Liao, M.H. arXiv:1401.2035



#### **Jet quenching characterizing phase transition!**

Danning Li, Jinfeng Liao, M.H. arXiv:1401.2035



46

#### Jet quenching characterizing phase transition!



Danning Li, Jinfeng Liao, M.H. arXiv:1401.2035

#### Jet quenching characterizing phase transition!

Danning Li, Jinfeng Liao, M.H. arXiv:1401.2035



 $\hat{q}/s$  similar to  $\zeta/s$ 

shear viscosity and bulk viscosity

#### Shear viscosity over entropy density: LQCD + Model

#### minimum near phase transition



#### Csernai et.al. Phys.Rev.Lett.97:152303,2006

Lacey et al., PRL 98:092301,2007

50

## Bulk viscosity over entropy density: LQCD sharply rising near phase transition



**Pure gluodynamics** 

2-flavor case

$$\zeta = \frac{1}{9\,\omega_0} \left\{ T^5 \frac{\partial}{\partial T} \frac{(\epsilon_T - 3p_T)}{T^4} + 16|\epsilon_v| \right\}$$

Dmitri Kharzeev, Kirill Tuchin arXiv:0705.4280 [hep-ph], F.Karsch, Dmitri Kharzeev, Kirill Tuchin arXiv:0711.0914 [hep-ph], Harvey Meyer arXiv:0710.3717 [hep-ph],

#### **Bulk viscosity from dynamical hQCD**

Danning Li, Song He, M.H. work in progress





S.Gubser, et.al PRL101(2008)

Yaresko, Kampfer, arXiv:1306.0214





Danning Li, Song He, M.H. work in progress

Lacey et al., PRL 98:092301,2007

54

## V. Conclusion and discussion

The ambitious goal is to build a standard hQCD model, which can describe hadron spectra, EOS as well as transport properties.

#### **Graviton-dilaton-scalar system**



#### **Glueball and meson spectra**





## **Thanks for your attention!**