On the " ΔA_{CP} saga"

Pietro Santorelli

Dipartimento di Fisica Università degli Studi di Napoli Federico II

QCD@Work 2014 Giovinazzo (Bari), 16-19 June 2014

Pietro Santorelli (Università di Napoli)

About the Title

The phrase " ΔA_{CP} saga" was used by G. Wilkinson and then by A. Lenz to indicate the contention between the proponents of large CP violating effects in D decays within the Standard Model and their opponents.

What is exactly the bone of contention?

About the Title

The phrase " ΔA_{CP} saga" was used by G. Wilkinson and then by A. Lenz to indicate the contention between the proponents of large CP violating effects in D decays within the Standard Model and their opponents.

What is exactly the bone of contention?

How large can be the direct CP violation in non-leptonic Singly Cabibbo Suppressed D-decays in the Standard Model?

About the Title

The phrase " ΔA_{CP} saga" was used by G. Wilkinson and then by A. Lenz to indicate the contention between the proponents of large CP violating effects in D decays within the Standard Model and their opponents.

What is exactly the bone of contention?

How large can be the direct CP violation in non-leptonic Singly Cabibbo Suppressed D-decays in the Standard Model?

The question arose because LHCb collaboration, at the end of 2011, measured LHCb Coll. PRL 108, 11602 (2012)

$$\Delta A_{\rm CP} = a_{CP}(K^+K^-) - a_{\rm CP}(\pi^+\pi^-)$$

 $\Delta A_{\rm CP} = (-0.82 \pm 0.21 \pm 0.11)\%$

 $\Delta A_{\rm CP} \approx -1\%$

Is this value compatible with the Standard Model? Is this a signal of New Physics?

Pietro Santorelli (Università di Napoli)

On the " ΔA_{CP} saga'

ΔA_{CP} Measurements and HFAG world average

• CDF arXiv:1207.2158 [hep-ex] $\Delta A_{CP} = (-0.62 \pm 0.21 \pm 0.10)\%$ • Belle arXiv:1212.1975 [hep-ex] $\Delta A_{CP} = (-0.87 \pm 0.41 \pm 0.06)\%$ • LHCb LHCb-CONF-2013-003 $\Delta A_{CP} = (-0.34 \pm 0.15 \pm 0.10)\%$ • LHCb arXiv:1405.2797 [hep-ex] $\Delta A_{CP} = (+0.14 \pm 0.16 \pm 0.08)\%$

Including also Babar and Belle individual measurements HFAG (in May 2014) obtained (J. Brod @ FPCP 2014)

$$\Delta A_{CP} = (-0.253 \pm 0.104)\%$$

Last HFAG (11 June 2014) uses only latest LHCb results (by putting together the individual measurements):

$$\Delta A_{CP} = (-0.21 \pm 0.19)\%$$

Pietro Santorelli (Università di Napoli)

On the " ΔA_{CP} saga"

Outline

- Non-leptonic Decays of D Mesons
- CP Violation and ΔA_{CP}
- A Model for Cabibbo Suppressed Decays

Conclusions

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - \iota\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ \langle A\lambda^3(1 - \rho - \iota\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

We classify the decay processes into three classes

CF Cabibbo Favoured: $|V_{cs}V_{ud}^*| \approx 1$ as, for example, $D^0 \to K^-\pi^+$

We classify the decay processes into three classes

CF Cabibbo Favoured: $|V_{cs}V_{ud}^*| \approx 1$ as, for example, $D^0 \to K^-\pi^+$

SCS Singly Cabibbo Suppressed: $|V_{cd}V_{ud}^*| \approx \lambda$ ($D^0 \rightarrow \pi^+\pi^-$),

We classify the decay processes into three classes

CF Cabibbo Favoured: $|V_{cs}V_{ud}^*| \approx 1$ as, for example, $D^0 \to K^-\pi^+$

 $\begin{array}{|c|c|c|c|c|} \hline SCS & Singly \ Cabibbo \ Suppressed: & |V_{cd} V_{ud}^*| \approx \lambda \ (D^0 \to \pi^+ \pi^-), \\ \hline |V_{cs} V_{us}^*| \approx \lambda \ (D^0 \to K^+ K^-, D^0 \to K^0 \bar{K}^0) \end{array}$

Pietro Santorelli (Università di Napoli)

We classify the decay processes into three classes

CF Cabibbo Favoured: $|V_{cs}V_{ud}^*| \approx 1$ as, for example, $D^0 \to K^-\pi^+$

 $\begin{array}{|c|c|c|c|c|c|} \hline SCS & Singly \ Cabibbo \ Suppressed: & |V_{cd} V_{ud}^*| \approx \lambda \ (D^0 \to \pi^+ \pi^-), \\ \hline |V_{cs} V_{us}^*| \approx \lambda \ (D^0 \to K^+ K^-, \ D^0 \to K^0 \bar{K}^0) \end{array}$

DCS Double Cabibbo Suppressed: $|V_{cd}V_{us}^*| \approx \lambda^2 (D^0 \to K^+\pi^-)$

Weak Effective Hamiltonian

The effective field theory formalism allows to separate the short and long distances and it is easy to include perturbative QCD corrections.

$$\begin{aligned} H_{\rm w}^{\rm SCS} &= \frac{G_F}{\sqrt{2}} V_{ud} \, V_{cd}^* \left[{\color{black} C_1 \, O_1^d + C_2 \, O_2^d} \right] + \frac{G_F}{\sqrt{2}} \, V_{us} \, V_{cs}^* \left[{\color{black} C_1 \, O_1^s + C_2 \, O_2^s} \right] \\ &- \frac{G_F}{\sqrt{2}} \, V_{ub} \, V_{cb}^* \, \sum_{i=3}^6 \, {\color{black} C_i \, O_i} + h.c. \end{aligned}$$

Current-Current Operators

$$O_2 = \left[\bar{q}^{\alpha}\gamma^{\mu}(1-\gamma_5)c_{\alpha}\right]\left[\bar{u}^{\beta}\gamma_{\mu}(1-\gamma_5)q_{\beta}'\right]$$

$$O_{1} = \left[\bar{u}^{\alpha}\gamma^{\mu}(1-\gamma_{5})c_{\beta}\right]\left[\bar{q}^{\beta}\gamma_{\mu}(1-\gamma_{5})q_{\alpha}'\right]$$

$$q = q' \in \{d, s\}$$
 for SCS

Penguin Operators

$$D_{3} = \left[\bar{u}^{\alpha}\gamma^{\mu}(1-\gamma_{5})c_{\alpha}\right]\sum_{p=u,d,s}\left[\bar{p}^{\beta}\gamma_{\mu}(1-\gamma_{5})p_{\beta}\right]$$
$$D_{4} = \left[\bar{u}^{\alpha}\gamma^{\mu}(1-\gamma_{5})c_{\beta}\right]\sum_{p=u,d,s}\left[\bar{p}^{\beta}\gamma_{\mu}(1-\gamma_{5})p_{\alpha}\right]$$
$$D_{5} = \left[\bar{u}^{\alpha}\gamma^{\mu}(1-\gamma_{5})c_{\alpha}\right]\sum_{p=u,d,s}\left[\bar{p}^{\beta}\gamma_{\mu}(1+\gamma_{5})p_{\beta}\right]$$
$$D_{6} = \left[\bar{u}^{\alpha}\gamma^{\mu}(1-\gamma_{5})c_{\beta}\right]\sum_{p=u,d,s}\left[\bar{p}^{\beta}\gamma^{\mu}(1+\gamma_{5})p_{\alpha}\right]$$

Hadronic Matrix Elements

We have to evaluate

$$\langle f | H_{w} | D \rangle = \frac{G_F}{\sqrt{2}} V V^* \frac{C_j}{\langle f | O_j | D \rangle} + \dots$$

• The Wilson coefficients can be computed perturbatively

Hadronic Matrix Elements

We have to evaluate

$$\langle f | H_{\rm w} | D \rangle = \frac{G_F}{\sqrt{2}} V V^* \frac{C_j}{\langle f | O_j | D \rangle} + \dots$$

- The Wilson coefficients can be computed perturbatively
- The hadronic matrix elements are dominated by non-perturbative QCD
 - QCD factorization (as expected) doesn't work well, because of the large Λ_{QCD}/m_c corrections
 - From first principle: Lattice QCD (in the not so near future)

Hadronic Matrix Elements

We have to evaluate

$$\langle f | H_{\rm w} | D \rangle = \frac{G_F}{\sqrt{2}} V V^* \frac{C_j}{\langle f | O_j | D \rangle} + \dots$$

- The Wilson coefficients can be computed perturbatively
- The hadronic matrix elements are dominated by non-perturbative QCD
 - QCD factorization (as expected) doesn't work well, because of the large Λ_{QCD}/m_c corrections
 - From first principle: Lattice QCD (in the not so near future)
- Models of calculations can be useful to estimate order of magnitudes
 - Factorization & Final state Interactions
 - Flavour symmetries (SU(3)_F, Isospin, U-spin, etc.)

This occurs when the decay amplitudes for CP conjugate processes into final states f and \overline{f} are different in modulus

This occurs when the decay amplitudes for CP conjugate processes into final states f and \overline{f} are different in modulus

$$|\mathscr{A}(M^0 \to f)| \neq |\mathscr{A}(\bar{M}^0 \to \bar{f})|$$

in our case $f = \bar{f}$

A nonzero direct CP asymmetry is present only when the decay amplitude is

 $\mathscr{A} = T e^{\iota \delta_T} + P e^{\iota \delta_P}$

This occurs when the decay amplitudes for CP conjugate processes into final states f and \overline{f} are different in modulus

$$|\mathscr{A}(M^0 \to f)| \neq |\mathscr{A}(\bar{M}^0 \to \bar{f})|$$

in our case $f = \bar{f}$

A nonzero direct CP asymmetry is present only when the decay amplitude is

$$\mathscr{A} = T e^{\iota \delta_T} + P e^{\iota \delta_P}$$

the CP conjugate amplitude is

 $\bar{\mathscr{A}} = T^* e^{\imath \delta_T} + P^* e^{\imath \delta_P}$

This occurs when the decay amplitudes for CP conjugate processes into final states f and \overline{f} are different in modulus

$$|\mathscr{A}(M^0 \to f)| \neq |\mathscr{A}(\bar{M}^0 \to \bar{f})|$$

in our case $f = \bar{f}$

A nonzero direct CP asymmetry is present only when the decay amplitude is

$$\mathscr{A} = T e^{i\delta_T} + P e^{i\delta_P}$$

the CP conjugate amplitude is

$$\bar{\mathscr{A}} = T^* e^{i\delta_T} + P^* e^{i\delta_P}$$

and the CP asymmetry is:

$$a_{\rm CP} = \frac{|\mathscr{A}|^2 - |\bar{\mathscr{A}}|^2}{|\mathscr{A}|^2 + |\bar{\mathscr{A}}|^2}$$

Pietro Santorelli (Università di Napoli)

This occurs when the decay amplitudes for CP conjugate processes into final states f and \overline{f} are different in modulus

$$|\mathscr{A}(M^0 \to f)| \neq |\mathscr{A}(\bar{M}^0 \to \bar{f})|$$

in our case $f = \bar{f}$

A nonzero direct CP asymmetry is present only when the decay amplitude is

$$\mathscr{A} = T e^{i\delta_T} + P e^{i\delta_P}$$

the CP conjugate amplitude is

$$\bar{\mathscr{A}} = T^* e^{i\delta_T} + P^* e^{i\delta_P}$$

and the CP asymmetry is:

$$a_{\mathrm{CP}} = \frac{|\mathscr{A}|^2 - |\bar{\mathscr{A}}|^2}{|\mathscr{A}|^2 + |\bar{\mathscr{A}}|^2} = \frac{2\,\Im(\mathsf{T}^*\,\mathsf{P})\,\sin(\delta_{\mathsf{T}} - \delta_{\mathsf{P}})}{|\mathsf{T}|^2 + |\mathsf{P}|^2 + 2\,\Re(\mathsf{T}^*\,\mathsf{P})\,\cos(\delta_{\mathsf{T}} - \delta_{\mathsf{P}})}$$

Pietro Santorelli (Università di Napoli)

This occurs when the decay amplitudes for CP conjugate processes into final states f and \overline{f} are different in modulus

$$|\mathscr{A}(M^0 \to f)| \neq |\mathscr{A}(\bar{M}^0 \to \bar{f})|$$

in our case $f = \bar{f}$

A nonzero direct CP asymmetry is present only when the decay amplitude is

$$\mathscr{A} = T e^{\iota \delta_T} + P e^{\iota \delta_P}$$

the CP conjugate amplitude is

$$\bar{\mathscr{A}} = T^* e^{i\delta_T} + P^* e^{i\delta_P}$$

and the CP asymmetry is:

$$a_{\rm CP} = \frac{|\mathscr{A}|^2 - |\mathscr{\bar{A}}|^2}{|\mathscr{A}|^2 + |\mathscr{\bar{A}}|^2} = \frac{2\,\Im(T^*\,P)\,\sin(\delta_T - \delta_P)}{|T|^2 + |P|^2 + 2\,\Re(T^*\,P)\,\cos(\delta_T - \delta_P)} \approx 2\Im\left(\frac{P}{T}\right)\sin(\delta_T - \delta_P)$$

Pietro Santorelli (Università di Napoli)

New Physics • The ratio $\left|\frac{P}{T}\right| \approx \frac{\alpha_s}{\pi} \Rightarrow$ $a_{CP} \sim 10^{-4} \div 10^{-5}$ • A lot of models

- Composite Higgs
- L-R simmetries
- extra-dimensions
- ...

New Physics

The ratio

$$\left|\frac{P}{T}\right| \approx \frac{\alpha_s}{\pi} \Rightarrow$$

$$a_{CP} \sim 10^{-4} \div 10^{-4}$$

- A lot of models
 - Composite Higgs
 - L-R simmetries
 - extra-dimensions
 - ...

Standard Model

- The ratio |P/T| could be large as in the case of $\Delta I = 1/2$ in the K decays
- The FSI could be large

 $a_{CP} \sim 10^{-2}$

Golden, Grinstein (1989); Brod, Kagan, Zupan (2012); Brod, Grossman, Kagan, Zupan (2012); Bhattacharya, Gronau, Rosner (2012); Franco, Mishima, Silvestrini (2012);

 \Rightarrow

New Physics

The ratio

$$\left|\frac{P}{T}\right| \approx \frac{\alpha_s}{\pi} \Rightarrow$$

$$a_{CP} \sim 10^{-4} \div 10^{-5}$$

- A lot of models
 - Composite Higgs
 - L-R simmetries
 - extra-dimensions
 - ...

Standard Model

- The ratio |P/T| could be large as in the case of $\Delta I = 1/2$ in the K decays
- The FSI could be large

 $a_{CP} \sim 10^{-2}$

Golden, Grinstein (1989); Brod, Kagan, Zupan (2012); Brod, Grossman, Kagan, Zupan (2012); Bhattacharya, Gronau, Rosner (2012); Franco, Mishima, Silvestrini (2012);

Obviously, New Physics could be responsible of a |P/T| enhancement

 \Rightarrow

see, for example, talk by Buras

In the limit of SU(3) flavour symmetry

$$A(D^0 o K^+ K^-) = -A(D^0 o \pi^+ \pi^-)$$
 \Rightarrow $a_{CP}(K^+ K^-) = -a_{CP}(\pi^+ \pi^-)$

In the limit of SU(3) flavour symmetry

$$A(D^0 o K^+ K^-) = -A(D^0 o \pi^+ \pi^-)$$
 $A_{CP}(K^+ K^-) = -a_{CP}(\pi^+ \pi^-)$

Thus $Br(D^0 \to \pi^+\pi^-)$ should be larger than $Br(D^0 \to K^+K^-)$ (Phase space differences). Experimentally

$$Br(D^0 \to \pi^+\pi^-) = (1.402 \pm 0.026) \times 10^{-3}$$

$$Br(D^0 \to K^+K^-) = (3.96 \pm 0.08) \times 10^{-3}$$

In the limit of SU(3) flavour symmetry

$$A(D^0 \to K^+ K^-) = -A(D^0 \to \pi^+ \pi^-)$$
 $A_{CP}(K^+ K^-) = -a_{CP}(\pi^+ \pi^-)$

Thus $Br(D^0 \to \pi^+\pi^-)$ should be larger than $Br(D^0 \to K^+K^-)$ (Phase space differences). Experimentally

$$Br(D^0 \to \pi^+ \pi^-) = (1.402 \pm 0.026) \times 10^{-3}$$

$$Br(D^0 \to K^+ K^-) = (3.96 \pm 0.08) \times 10^{-3}$$

Moreover

In the limit of SU(3) flavour symmetry

$$A(D^0 \to K^+ K^-) = -A(D^0 \to \pi^+ \pi^-)$$
 \rightarrow $a_{CP}(K^+ K^-) = -a_{CP}(\pi^+ \pi^-)$

Thus $Br(D^0 \to \pi^+\pi^-)$ should be larger than $Br(D^0 \to K^+K^-)$ (Phase space differences). Experimentally

$$Br(D^0 \to \pi^+ \pi^-) = (1.402 \pm 0.026) \times 10^{-3}$$

$$Br(D^0 \to K^+ K^-) = (3.96 \pm 0.08) \times 10^{-3}$$

Moreover

May 2014 LHCbarXiv:1405.2797[hep-ex]HFAGJune 2014 $a_{CP}(\pi^+\pi^-) = (-0.20 \pm 0.19 \pm 0.10)\%$ $a_{CP}(\pi^+\pi^-) = (+0.05 \pm 0.15)\%$ $a_{CP}(K^+K^-) = (-0.06 \pm 0.15 \pm 0.10)\%$ $a_{CP}(K^+K^-) = (-0.16 \pm 0.12)\%$

In the limit of SU(3) flavour symmetry

$$A(D^0 \to K^+ K^-) = -A(D^0 \to \pi^+ \pi^-)$$
 \rightarrow $a_{CP}(K^+ K^-) = -a_{CP}(\pi^+ \pi^-)$

Thus $Br(D^0 \to \pi^+\pi^-)$ should be larger than $Br(D^0 \to K^+K^-)$ (Phase space differences). Experimentally

$$Br(D^0 \to \pi^+ \pi^-) = (1.402 \pm 0.026) \times 10^{-3}$$

$$Br(D^0 \to K^+ K^-) = (3.96 \pm 0.08) \times 10^{-3}$$

Moreover

May 2014 LHCbarXiv:1405.2797[hep-ex]HFAGJune 2014 $a_{CP}(\pi^+\pi^-) = (-0.20 \pm 0.19 \pm 0.10)\%$ $a_{CP}(\pi^+\pi^-) = (+0.05 \pm 0.15)\%$ $a_{CP}(K^+K^-) = (-0.06 \pm 0.15 \pm 0.10)\%$ $a_{CP}(K^+K^-) = (-0.16 \pm 0.12)\%$

Large SU(3) Violation

Pietro Santorelli (Università di Napoli)

On the " ΔA_{CP} saga'

• We assume that SU(3)_F breaking effects are due to FSI

- We assume that SU(3)_F breaking effects are due to FSI
- We evaluate *bare* amplitudes using SU(3)_F symmetry (less model dependent than factorization)

Buccella, Lusignoli, Pugliese, P.S., Phys. Rev. D88 (2013), 074011

- We assume that SU(3)_F breaking effects are due to FSI
- We evaluate *bare* amplitudes using SU(3)_F symmetry (less model dependent than factorization)

Buccella, Lusignoli, Pugliese, P.S., Phys. Rev. D88 (2013), 074011

• The D⁰ is a U-spin singlet

- We assume that SU(3)_F breaking effects are due to FSI
- We evaluate *bare* amplitudes using SU(3)_F symmetry (less model dependent than factorization)

Buccella, Lusignoli, Pugliese, P.S., Phys. Rev. D88 (2013), 074011

- The D⁰ is a U-spin singlet
- The effective Hamiltonian

 $H_w = H_{\Delta U=1} + H_{\Delta U=0} =$

- We assume that SU(3)_F breaking effects are due to FSI
- We evaluate *bare* amplitudes using SU(3)_F symmetry (less model dependent than factorization)

Buccella, Lusignoli, Pugliese, P.S., Phys. Rev. D88 (2013), 074011

- The D⁰ is a U-spin singlet
- The effective Hamiltonian

$$H_{w} = H_{\Delta U=1} + H_{\Delta U=0} = \underbrace{\sin \theta_{C} \cos \theta_{C}}_{\sim \lambda} \tilde{H}_{\Delta U=1} + \underbrace{V_{ub} V_{cb}^{*}}_{\sim \lambda^{3} \cdot \lambda^{2}} \tilde{H}_{\Delta U=0}$$

- We assume that SU(3)_F breaking effects are due to FSI
- We evaluate *bare* amplitudes using SU(3)_F symmetry (less model dependent than factorization)

Buccella, Lusignoli, Pugliese, P.S., Phys. Rev. D88 (2013), 074011

- The D⁰ is a U-spin singlet
- The effective Hamiltonian

$$H_{\mathbf{w}} = H_{\Delta U=1} + H_{\Delta U=0} = \underbrace{\sin \theta_{C} \cos \theta_{C}}_{\sim \lambda} \tilde{H}_{\Delta U=1} + \underbrace{V_{ub} \, V_{cb}^{*}}_{\sim \lambda^{3} \cdot \lambda^{2}} \tilde{H}_{\Delta U=0}$$

$$H_{\Delta U=1} = \frac{G_F}{2\sqrt{2}} (V_{us} V_{cs}^* - V_{ud} V_{cd}^*) [C_1 (O_1^s - O_1^d) + C_2 (O_2^s - O_2^d)]$$

$$\simeq \frac{G_F}{\sqrt{2}} \sin \theta_C \cos \theta_C [C_1 (O_1^s - O_1^d) + C_2 (O_2^s - O_2^d)].$$

Pietro Santorelli (Università di Napoli)

There are only two independent combinations of S-wave states having U=1

$$H_{\Delta U=1} \left| D^0 \right\rangle = \frac{a}{|v_1\rangle} + \frac{b}{|v_2\rangle}$$

There are only two independent combinations of S-wave states having U=1

$$H_{\Delta U=1} \left| D^0 \right\rangle = \frac{a}{|v_1\rangle} + \frac{b}{|v_2\rangle}$$

where

$$\begin{aligned} |v_1\rangle &= \frac{1}{2} \Big\{ |\mathcal{K}^+ \, \mathcal{K}^- > + |\mathcal{K}^- \, \mathcal{K}^+ > - |\pi^+ \, \pi^- > - |\pi^- \, \pi^+ > \Big\} \\ |v_2\rangle &= \frac{\sqrt{3}}{2\sqrt{2}} \Big\{ |\pi^0 \, \pi^0 > - |\eta_8 \, \eta_8 > - \frac{1}{\sqrt{3}} \left(|\pi^0 \, \eta_8 > + |\eta_8 \, \pi^0 > \right) \Big\} \end{aligned}$$

There are only two independent combinations of S-wave states having U=1

$$H_{\Delta U=1} \left| D^0 \right\rangle = \frac{a}{|v_1\rangle} + \frac{b}{|v_2\rangle}$$

where

$$\begin{split} |v_1\rangle &= & \frac{1}{2}\Big\{|\mathcal{K}^+ \, \mathcal{K}^- > + |\mathcal{K}^- \, \mathcal{K}^+ > - |\pi^+ \, \pi^- > - |\pi^- \, \pi^+ > \Big\} \\ |v_2\rangle &= & \frac{\sqrt{3}}{2\sqrt{2}}\Big\{|\pi^0 \, \pi^0 > - |\eta_8 \, \eta_8 > - \frac{1}{\sqrt{3}} \left(|\pi^0 \, \eta_8 > + |\eta_8 \, \pi^0 > \right)\Big\} \end{split}$$

$$\mathcal{A}(D^{0} \to \mathcal{K}^{+}\mathcal{K}^{-}) = \left\langle \mathcal{K}^{+}\mathcal{K}^{-} \middle| \mathcal{H}_{\Delta U=1} \middle| D^{0} \right\rangle = \frac{a}{\langle \mathcal{K}^{+}\mathcal{K}^{-} \middle| v_{1} \rangle + \frac{b}{\langle \mathcal{K}^{+}\mathcal{K}^{-} \middle| v_{2} \rangle}$$

$$\mathcal{A}(D^{0} \to \pi^{+}\pi^{-}) = \left\langle \pi^{+}\pi^{-} \right| \mathcal{H}_{\Delta U=1} \left| D^{0} \right\rangle = \frac{a}{\langle} \pi^{+}\pi^{-} \left| \right. \mathbf{v}_{1} \right\rangle + \frac{b}{\langle} \pi^{+}\pi^{-} \left| \right. \mathbf{v}_{2} \right\rangle$$

Pietro Santorelli (Università di Napoli)

More interestingly the two independent combinations of *S*-wave states having U=1 can be written in terms of two representations of SU(3)

$$\begin{split} |8, U = 1\rangle &= \frac{\sqrt{3}}{2\sqrt{5}} \quad \Big\{ \quad |K^{+}K^{-} > + |K^{-}K^{+} > -|\pi^{+}\pi^{-} > -|\pi^{-}\pi^{+} > \\ &- \quad \left[|\pi^{0}\pi^{0} > -|\eta_{8}\eta_{8} > -\frac{1}{\sqrt{3}}(|\pi^{0}\eta_{8} > +|\eta_{8}\pi^{0} >) \right] \Big\}, \\ |27, U = 1\rangle &= \frac{1}{\sqrt{10}} \quad \Big\{ \quad |K^{+}K^{-} > + |K^{-}K^{+} > -|\pi^{+}\pi^{-} > -|\pi^{-}\pi^{+} > \\ &+ \quad \frac{3}{2} \left[|\pi^{0}\pi^{0} > -|\eta_{8}\eta_{8} > -\frac{1}{\sqrt{3}}(|\pi^{0}\eta_{8} > +|\eta_{8}\pi^{0} >) \right] \Big\}. \end{split}$$

More interestingly the two independent combinations of *S*-wave states having U=1 can be written in terms of two representations of SU(3)

$$\begin{split} |8, U = 1\rangle &= \frac{\sqrt{3}}{2\sqrt{5}} \quad \Big\{ \quad |K^{+}K^{-} > + |K^{-}K^{+} > -|\pi^{+}\pi^{-} > -|\pi^{-}\pi^{+} > \\ &- \left[|\pi^{0}\pi^{0} > -|\eta_{8}\eta_{8} > -\frac{1}{\sqrt{3}}(|\pi^{0}\eta_{8} > +|\eta_{8}\pi^{0} >) \right] \Big\}, \\ |27, U = 1\rangle &= \frac{1}{\sqrt{10}} \quad \Big\{ \quad |K^{+}K^{-} > + |K^{-}K^{+} > -|\pi^{+}\pi^{-} > -|\pi^{-}\pi^{+} > \\ &+ \quad \frac{3}{2} \left[|\pi^{0}\pi^{0} > -|\eta_{8}\eta_{8} > -\frac{1}{\sqrt{3}}(|\pi^{0}\eta_{8} > +|\eta_{8}\pi^{0} >) \right] \Big\}. \end{split}$$

$$\langle 8, U = 1 | H_{\Delta U = 1} | D^0 \rangle \propto T - \frac{2}{3}C$$
$$\langle 27, U = 1 | H_{\Delta U = 1} | D^0 \rangle \propto T + C$$

More interestingly the two independent combinations of *S*-wave states having U=1 can be written in terms of two representations of SU(3)

$$\begin{split} |8, U = 1\rangle &= \frac{\sqrt{3}}{2\sqrt{5}} \quad \Big\{ \quad |\mathcal{K}^{+}\mathcal{K}^{-} > + |\mathcal{K}^{-}\mathcal{K}^{+} > -|\pi^{+}\pi^{-} > -|\pi^{-}\pi^{+} > \\ &- \quad \left[|\pi^{0}\pi^{0} > -|\eta_{8}\eta_{8} > -\frac{1}{\sqrt{3}}(|\pi^{0}\eta_{8} > +|\eta_{8}\pi^{0} >) \right] \Big\}, \\ |27, U = 1\rangle &= \frac{1}{\sqrt{10}} \quad \Big\{ \quad |\mathcal{K}^{+}\mathcal{K}^{-} > + |\mathcal{K}^{-}\mathcal{K}^{+} > -|\pi^{+}\pi^{-} > -|\pi^{-}\pi^{+} > \\ &+ \quad \frac{3}{2} \left[|\pi^{0}\pi^{0} > -|\eta_{8}\eta_{8} > -\frac{1}{\sqrt{3}}(|\pi^{0}\eta_{8} > +|\eta_{8}\pi^{0} >) \right] \Big\}. \end{split}$$

$$\langle 8, U = 1 | H_{\Delta U = 1} | D^0 \rangle \propto T - \frac{2}{3}C$$

$$\langle 27, U = 1 | H_{\Delta U = 1} | D^0 \rangle \propto T + C$$

$$A(D^0 \to K^+ K^-) = \alpha \left(T - \frac{2}{3}C\right) + \beta (T + C)$$

$$A(D^0 \to \pi^+ \pi^-) = \gamma \left(T - \frac{2}{3}C\right) + \delta (T + C)$$

Final State Interactions in SCS D Decays

The necessary SU(3) breaking is determined by the final state interactions, described as the effect of resonances in the scattering of the final particles.

Final State Interactions in SCS D Decays

The necessary SU(3) breaking is determined by the final state interactions, described as the effect of resonances in the scattering of the final particles.

In other words, strong phases are generated by the resonances responsible for rescattering of final states.

Final State Interactions in SCS D Decays

The necessary SU(3) breaking is determined by the final state interactions, described as the effect of resonances in the scattering of the final particles.

In other words, strong phases are generated by the resonances responsible for rescattering of final states.

The possible resonances have SU(3) and isospin quantum numbers (8, I = 1), (8, I = 0) and (1, I = 0). Moreover, the two states with I = 0 can be mixed, yielding two resonances:

$$|f_0 \rangle = \sin \phi |8, l = 0 \rangle + \cos \phi |1, l = 0 \rangle \\ |f'_0 \rangle = -\cos \phi |8, l = 0 \rangle + \sin \phi |1, l = 0 \rangle$$

The mixing angle ϕ and the strong phases δ_0 , δ'_0 and δ_1 are our model parameters, together with the two independent weak decay amplitudes

Final State Interactions in SCS D Decays (1)

$$\begin{split} \mathcal{A}(D^{0} \to \pi^{+}\pi^{-}) &= \left(T - \frac{2}{3}C\right) \left\{ -\frac{3}{10} \left(e^{i\delta_{0}} + e^{i\delta_{0}'}\right) + \left(-\frac{3}{10}\cos(2\phi) + \frac{3}{4\sqrt{10}}\sin(2\phi)\right) \left(e^{i\delta_{0}'} - e^{i\delta_{0}}\right) \right\} \\ &- \left(T + C\right) \frac{2}{5} , \\ \mathcal{A}(D^{0} \to K^{+}K^{-}) &= \left(T - \frac{2}{3}C\right) \left\{ \frac{3}{20} \left(e^{i\delta_{0}} + e^{i\delta_{0}'}\right) + \left(\frac{3}{20}\cos(2\phi) + \frac{3}{4\sqrt{10}}\sin(2\phi)\right) \left(e^{i\delta_{0}'} - e^{i\delta_{0}}\right) \\ &+ \frac{3}{10} e^{i\delta_{1}} \right\} \\ &+ \left(T + C\right) \frac{2}{5} . \end{split}$$

Final State Interactions in SCS D Decays (1)

$$\begin{split} \mathcal{A}(D^{0} \to \pi^{+}\pi^{-}) &= \left(T - \frac{2}{3}C\right) \left\{ -\frac{3}{10} \left(e^{i\delta_{0}} + e^{i\delta_{0}'}\right) + \left(-\frac{3}{10}\cos(2\phi) + \frac{3}{4\sqrt{10}}\sin(2\phi)\right) \left(e^{i\delta_{0}'} - e^{i\delta_{0}}\right) \right\} \\ &- \left(T + C\right) \frac{2}{5} , \\ \mathcal{A}(D^{0} \to K^{+}K^{-}) &= \left(T - \frac{2}{3}C\right) \left\{ \frac{3}{20} \left(e^{i\delta_{0}} + e^{i\delta_{0}'}\right) + \left(\frac{3}{20}\cos(2\phi) + \frac{3}{4\sqrt{10}}\sin(2\phi)\right) \left(e^{i\delta_{0}'} - e^{i\delta_{0}}\right) \right. \\ &+ \left. \frac{3}{10} e^{i\delta_{1}} \right\} \\ &+ \left(T + C\right) \frac{2}{5} . \end{split}$$

SU(3) limit

$$\sin \phi = 1 \quad \delta_0 = \delta_1$$

$$\langle 1, I = 0 | H_{\Delta U=1} | D^0 \rangle = 0 \Rightarrow \beta'_0$$

Final State Interactions in SCS D Decays (1)

$$\begin{split} \mathcal{A}(D^{0} \to \pi^{+}\pi^{-}) &= \left(T - \frac{2}{3}C\right) \left\{ -\frac{3}{10} \left(e^{i\delta_{0}} + e^{i\delta_{0}'}\right) + \left(-\frac{3}{10}\cos(2\phi) + \frac{3}{4\sqrt{10}}\sin(2\phi)\right) \left(e^{i\delta_{0}'} - e^{i\delta_{0}}\right) \right\} \\ &- \left(T + C\right) \frac{2}{5} , \\ \mathcal{A}(D^{0} \to K^{+}K^{-}) &= \left(T - \frac{2}{3}C\right) \left\{ \frac{3}{20} \left(e^{i\delta_{0}} + e^{i\delta_{0}'}\right) + \left(\frac{3}{20}\cos(2\phi) + \frac{3}{4\sqrt{10}}\sin(2\phi)\right) \left(e^{i\delta_{0}'} - e^{i\delta_{0}}\right) \right. \\ &+ \left. \frac{3}{10} e^{i\delta_{1}} \right\} \\ &+ \left(T + C\right) \frac{2}{5} . \end{split}$$

R	е	S	U.	lts
	0	0	9	110

	Parameters	$\Gamma(D^0 ightarrow K_{ m S} K_{ m S})$	- 0.0420 (0.042 0.010)
SU(3) limit	C/T = -0.53	$\overline{\Gamma(D^0 o K^+ K^-)}$	$= 0.0429 (0.043 \pm 0.010)$
$\sin \phi = 1$ $\delta_0 = \delta_1$	$\phi = 22^{\circ}$	$rac{\Gamma(D^0 o \pi^+ \pi^-)}{\Gamma(D^0 o K^+ K^-)}$	$= 0.354 (0.354 \pm 0.010)$
$\langle 1, I = 0 H_{\Delta U = 1} D^0 \rangle = 0 \Rightarrow \delta'_0$	$egin{array}{rcl} \delta_0&=&148^\circ\ \delta_0'&=&53^\circ \end{array}$	$\Gamma(D^0 o \pi^0 \pi^0) \over \Gamma(D^0 o K^+ K^-)$	$= 0.202 (0.202 \pm 0.013)$
	δ_1 = 83°	$igg rac{A_2(D^0 o \pi^+\pi^-)}{A_0(D^0 o \pi^+\pi^-)} igg $	$= 0.40 (0.41 \pm 0.01)$

The second amplitude *P* is provided by

 $\langle f | H_{\Delta U=0} | D^0 \rangle$

where

$$H_{\Delta U=0} = -\frac{G_{F}}{\sqrt{2}} V_{ub} V_{cb}^{*} \left\{ \underbrace{\sum_{i=3}^{6} C_{i} O_{i}}_{\text{Penguins}} + \underbrace{\frac{1}{2} \left[C_{1} (O_{1}^{s} + O_{1}^{d}) + C_{2} (O_{2}^{s} + O_{2}^{d}) \right]}_{\text{Tree } (T', C') \text{ Penguin Contraction}} \right\}$$

Note that

$$|T'/T| = |C'/C| = \left|\frac{V_{ub} V_{cb}^*}{\sin \theta_C \cos \theta_C}\right| \simeq 10^{-4}$$

$$\mathscr{A}(\mathsf{K}^+\mathsf{K}^-)\simeq\mathsf{T}\mathsf{f}_{\mathsf{T}}(\delta_i,\phi,\mathsf{C}/\mathsf{T})+\mathsf{P}\mathsf{f}_{\mathsf{P}}(\delta_i,\phi)$$

Pietro Santorelli (Università di Napoli)

$$\mathscr{A}(\mathsf{K}^+\mathsf{K}^-)\simeq\mathsf{T}\mathsf{f}_{\mathsf{T}}(\delta_i,\phi,\mathsf{C}/\mathsf{T})+\mathsf{P}\mathsf{f}_{\mathsf{P}}(\delta_i,\phi)$$

thus

$$a_{CP}(K^{+}K^{-}) \simeq \frac{2 T \Im(P) \Im(f_{T} f_{P}^{*})}{T^{2} |f_{T}|^{2}} + \dots = +1.5 \frac{\Im(P)}{T}$$
$$a_{CP}(\pi^{+}\pi^{-}) = -3.4 \frac{\Im(P)}{T}$$

$$\mathscr{A}(\mathsf{K}^+\mathsf{K}^-)\simeq\mathsf{T}\mathsf{f}_{\mathsf{T}}(\delta_i,\phi,\mathsf{C}/\mathsf{T})+\mathsf{P}\mathsf{f}_{\mathsf{P}}(\delta_i,\phi)$$

thus

$$a_{CP}(K^{+}K^{-}) \simeq \frac{2 T \Im(P) \Im(f_{T} f_{P}^{*})}{T^{2} |f_{T}|^{2}} + \dots = +1.5 \frac{\Im(P)}{T}$$
$$a_{CP}(\pi^{+}\pi^{-}) = -3.4 \frac{\Im(P)}{T}$$

$$\frac{\Im(P)}{T} = \frac{|V_{ub} V_{cb}|}{\sin \theta_C \cos \theta_C} \sin \gamma \frac{\langle K^+ K^- | \sum_{i=3}^6 C_i Q_i + \frac{1}{2} [C_1 \{Q_1^s + Q_1^d\} + C_2 \{Q_2^s + Q_2^d\}] | D^0 \rangle}{\langle K^+ K^- | C_1 (Q_1^s - Q_1^d) + C_2 (Q_2^s - Q_2^d) | D^0 \rangle} = 6.3 \, 10^{-4} \frac{\hat{P}_1}{\hat{T}_1} + \frac{\hat{P}_2 [C_1 \{Q_1^s + Q_1^d\} + C_2 \{Q_2^s + Q_2^d\}] | D^0 \rangle}{\langle K^+ K^- | C_1 (Q_1^s - Q_1^d) + C_2 (Q_2^s - Q_2^d) | D^0 \rangle} = 6.3 \, 10^{-4} \frac{\hat{P}_2}{\hat{T}_1} + \frac{\hat{P}_2 [C_1 \{Q_1^s + Q_1^d\} + C_2 \{Q_2^s + Q_2^d\}] | D^0 \rangle}{\langle K^+ K^- | C_1 (Q_1^s - Q_1^d) + C_2 (Q_2^s - Q_2^d) | D^0 \rangle} = 6.3 \, 10^{-4} \frac{\hat{P}_2}{\hat{T}_1} + \frac{\hat{P}_2 [C_1 \{Q_1^s + Q_1^d\} + C_2 \{Q_2^s + Q_2^d\}] | D^0 \rangle}{\langle K^+ K^- | C_1 (Q_1^s - Q_1^d) + C_2 (Q_2^s - Q_2^d) | D^0 \rangle} = 6.3 \, 10^{-4} \, \frac{\hat{P}_2}{\hat{T}_1} + \frac{\hat{P}_2 [C_1 \{Q_1^s + Q_1^d\} + C_2 \{Q_2^s + Q_2^d\}] | D^0 \rangle}{\langle K^+ K^- | C_1 (Q_1^s - Q_1^d) + C_2 (Q_2^s - Q_2^d) | D^0 \rangle} = 6.3 \, 10^{-4} \, \frac{\hat{P}_2}{\hat{T}_2} + \frac{\hat{P}_2 [C_1 \{Q_1^s + Q_1^d\} + C_2 (Q_2^s - Q_2^d) | D^0 \rangle}{\langle K^+ K^- | C_1 (Q_1^s - Q_1^d) + C_2 (Q_2^s - Q_2^d) | D^0 \rangle} = 6.3 \, 10^{-4} \, \frac{\hat{P}_2}{\hat{T}_2} + \frac{\hat{P}_2 [C_1 \{Q_1^s + Q_1^d\} + C_2 (Q_2^s - Q_2^d) | D^0 \rangle}{\langle K^+ K^- | C_1 (Q_1^s - Q_1^d) + C_2 (Q_2^s - Q_2^d) | D^0 \rangle} = 6.3 \, 10^{-4} \, \frac{\hat{P}_2}{\hat{T}_2} + \frac{\hat{P}_2 [C_1 \{Q_1^s + Q_1^d\} + C_2 (Q_2^s - Q_2^d) | D^0 \rangle}{\langle K^+ K^- | C_1 (Q_1^s - Q_1^d) + C_2 (Q_2^s - Q_2^d) | D^0 \rangle} = 6.3 \, 10^{-4} \, \frac{\hat{P}_2 [C_1 \{Q_1^s + Q_2^d\} + C_2 (Q_2^s - Q_2^d) | D^0 \rangle}{\langle K^+ K^- | C_1 (Q_2^s - Q_2^d) + C_2 (Q_2^s - Q_2^d) | D^0 \rangle}$$

$$\mathscr{A}(\mathsf{K}^+\mathsf{K}^-)\simeq\mathsf{T}\mathsf{f}_{\mathsf{T}}(\delta_i,\phi,\mathsf{C}/\mathsf{T})+\mathsf{P}\mathsf{f}_{\mathsf{P}}(\delta_i,\phi)$$

thus

$$a_{CP}(K^+K^-) \simeq rac{2 T \Im(P) \Im(f_T f_P^*)}{T^2 |f_T|^2} + \dots = +1.5 rac{\Im(P)}{T}$$

 $a_{CP}(\pi^+\pi^-) = -3.4 rac{\Im(P)}{T}$

$$\frac{\Im(P)}{T} = \frac{|V_{ub} V_{cb}|}{\sin \theta_c \cos \theta_c} \sin \gamma \frac{\langle K^+ K^- | \sum_{i=3}^6 C_i Q_i + \frac{1}{2} [C_1 \{Q_1^s + Q_1^d\} + C_2 \{Q_2^s + Q_2^d\}] | D^0 \rangle}{\langle K^+ K^- | C_1 (Q_1^s - Q_1^d) + C_2 (Q_2^s - Q_2^d) | D^0 \rangle} = 6.3 \, 10^{-4} \frac{\hat{P}}{\hat{T}}$$

$$\Delta A_{\rm CP} = 3.03 \ 10^{-3} \ \frac{\hat{P}}{\hat{T}}$$

 $\left|\frac{\hat{P}}{\hat{T}}\right| \approx 1$

With

we obtain the central value of the world average result

$$\mathscr{A}(\mathsf{K}^+\mathsf{K}^-)\simeq\mathsf{T}\mathsf{f}_{\mathsf{T}}(\delta_i,\phi,\mathsf{C}/\mathsf{T})+\mathsf{P}\mathsf{f}_{\mathsf{P}}(\delta_i,\phi)$$

thus

$$a_{CP}(K^+K^-) \simeq rac{2 T \Im(P) \Im(f_T f_P^*)}{T^2 |f_T|^2} + \dots = +1.5 rac{\Im(P)}{T}$$

 $a_{CP}(\pi^+\pi^-) = -3.4 rac{\Im(P)}{T}$

$$\frac{\Im(P)}{T} = \frac{|V_{ub} V_{cb}|}{\sin \theta_c \cos \theta_c} \sin \gamma \frac{\langle K^+ K^- | \sum_{i=3}^6 C_i Q_i + \frac{1}{2} [C_1 \{Q_1^s + Q_1^d\} + C_2 \{Q_2^s + Q_2^d\}] | D^0 \rangle}{\langle K^+ K^- | C_1 (Q_1^s - Q_1^d) + C_2 (Q_2^s - Q_2^d) | D^0 \rangle} = 6.3 \, 10^{-4} \frac{\hat{P}}{\hat{T}}$$

$$\Delta A_{\rm CP} = 3.03 \ 10^{-3} \ \frac{\hat{P}}{\hat{T}}$$

 $\left|\frac{\hat{P}}{\hat{T}}\right| \approx 1$

With

we obtain the central value of the world average result

Conclusions

We analyzed the Singly-Cabibbo-Suppressed decays of the neutral D mesons in the framework of a model that ascribes all of the large SU(3) violations to final state interactions.

The values of the strong phases are in principle suitable to predict consistent CP violations in the decay amplitudes.

We were able to give a good description of decay branching ratios

The experimental situation regarding the CP violating asymmetries seems to be rather clear: there is no significant CP violation in the SCS decays at the level of 10^{-3} .

Nevertheless, we think interesting to have shown that large asymmetries can be obtained, considering the uncertainties of long distance contributions, even without invoking New Physics.

Backup Slides

HFAG World Averages

Year	Experiment	CP Asymmetry in the decay mode D0 to π + π -	[Γ(D0)-Γ(D0bar)]/[Γ(D0)+Γ(D0bar)]
2014	LHCb	R. Aaij et al. (LHCb Collab.), arXiv:1405.2797 (2014).	$-0.0020 \pm 0.0019 \pm 0.0010$
2012	BELLE	B.R. Ko et al. (BELLE Collab.), arXiv:1212.1975 (2012).	$+0.0055 \pm 0.0036 \pm 0.0009$
2012	CDF	T. Aaltonen et al. (CDF Collab.), Phys. Rev. D 85, 012009 (2012).	+0.0022 ± 0.0024 ± 0.0011
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	$-0.0024 \pm 0.0052 \pm 0.0022$
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.019 \pm 0.032 \pm 0.008$
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$+0.048 \pm 0.039 \pm 0.025$
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.049 \pm 0.078 \pm 0.030$
•		COMBOS average	$+0.0005 \pm 0.0015$

Year	Experiment	CP Asymmetry in the decay mode D0 to K+K-	$[\Gamma(D0)-\Gamma(D0bar)]/[\Gamma(D0)+\Gamma(D0bar)]$
2014	LHCb	R. Aaij et al. (LHCb Collab.), arXiv:1405.2797 (2014).	-0.0006 ± 0.0015 ± 0.0010
2012	BELLE	B.R Ko et al. (BELLE Collab.), arXiv: 1212.1975 (2012).	$-0.0032 \pm 0.0021 \pm 0.0009$
2012	CDF	T. Aaltonen et al. (CDF Collab.), Phys. Rev. D 85, 012009 (2012).	-0.0024 ± 0.0022 ± 0.0009
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	+0.0000 ± 0.0034 ± 0.0013
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.000 \pm 0.022 \pm 0.008$
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$-0.001 \pm 0.022 \pm 0.015$
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.010 \pm 0.049 \pm 0.012$
1994	E687	P.L. Frabetti et al. (E687 Collab.), Phys. Rev. D 50, 2953 (1994).	+0.024 ± 0.084
•		COMBOS average	-0.0016 ± 0.0012

$H_{\Delta U=0}$

In this case, there are three independent symmetric states of two pseudoscalar mesons:

$$\begin{split} & \frac{1}{2} \Big\{ |\mathcal{K}^{+} \, \mathcal{K}^{-} > + |\mathcal{K}^{-} \, \mathcal{K}^{+} > + |\pi^{+} \, \pi^{-} > + |\pi^{-} \, \pi^{+} > \Big\} ; \\ & \frac{1}{4} \Big\{ 3 |\pi^{0} \, \pi^{0} > + |\eta_{8} \, \eta_{8} > + \sqrt{3} \left(|\pi^{0} \, \eta_{8} > + |\eta_{8} \, \pi^{0} > \right) \Big\} ; \\ & \frac{1}{\sqrt{3}} \Big\{ \frac{1}{4} |\pi^{0} \, \pi^{0} > + \frac{3}{4} |\eta_{8} \, \eta_{8} > - \frac{\sqrt{3}}{4} \left(|\pi^{0} \, \eta_{8} > + |\eta_{8} \, \pi^{0} > \right) + |\mathcal{K}^{0} \, \bar{\mathcal{K}^{0}} > + |\bar{\mathcal{K}^{0}} \, \mathcal{K}^{0} > \Big\} \end{split}$$

that give rise to three amplitudes transforming as 27, 8 and 1 under SU(3) (for the $Q_{1(2)}$ part) and to two amplitudes transforming as 8 and 1 (for the penguin part)