

$B_{(s)} ightarrow J/\psi hh$ Decays

Sevda Esen on behalf of LHCb Collaboration Heidelberg University • QCD@Work 2014, Giovonazzo

Possible measurements of $B_{(s)} \rightarrow J/\psi hh$

- CP Violating weak phase ϕ_s
- Amplitude analyses: resonance structures
- Lifetime measurements: effective lifetime
- Branching fractions

 $J/\psi \rightarrow \mu^+\mu^-$ leaves clear signal in hadronic collider

- relatively low background
- easy to trigger
- large signal

LHCb data set: 1 fb⁻¹ $@\sqrt{7}$ TeV 2 fb⁻¹ $@\sqrt{8}$ TeV

IP resolution : $20\mu m$ for high p_T tracks

Track $\sigma_p/p : 0.4\% - 0.6\%$

- A weak phase ϕ_s arising from interference between B_s^0 decays w and w/o mixing to a final state *CP* eigenstates.
- $\begin{array}{c} \phi_{dec} \\ \bar{B}^0_s & f \\ \phi_{mix} & \bar{B}^0_s & -\phi_{dec} \end{array}$
- Precise prediction in SM for $b \rightarrow c\bar{c}s$ transitions, e.g, (neglecting penguins contributions):

$$\phi_s^{SM} = \phi_{mix} - 2\phi_{dec} = -2arg(-rac{V_{ls}V_{lb}^*}{V_{cs}V_{cb}^*}) pprox (-0.0363 \pm 0.0016)$$
rad CKMfitter PRD 84 (2011) 033005

- Expected $\phi_s = \phi_s^{SM} + \phi_s^{NP} \Rightarrow$ precise measurement of ϕ_s is sensitive test of NP in B_s^0 sector
- good candidates: $B_s^0 \rightarrow J/\psi K^+ K^-$ and $J/\psi \pi^+ \pi^-$

- B_s^0 or \bar{B}_s^0 ? \Rightarrow need to know the production flavour Effective flavour tagging power: $\approx 4\%$
- Time and angular acceptance
 - \Rightarrow Either directly estimated or calibrated from data
- Resolution effects
 - \Rightarrow per-event decay time error estimate \sim 40 50 fs
 - \Rightarrow negligible angular resolution \sim 2 20 mrad

100

5300

5400

$B_s \rightarrow J/\psi \pi^+ \pi^-$ with 3 fb⁻¹ data

- 27100 ± 200 signal candidates
- time acceptance from $B^0 \rightarrow J/\psi K^{*0}$

20 MeV

Combi 1000

50

- $\Delta \Gamma_s$ from $B_s^0 \rightarrow J/\psi \phi$
- largest systematic uncertainty: resonance model
- 6D maximum likelihood fit

LHCb

 $m(J/\psi\pi^+\pi^-)$ [MeV]

$B_s \rightarrow J/\psi K^+ K^-$ with 1 fb⁻¹ data

- 27600 signal candidates
- 4D maximum likelihood fit to background subtracted data

 $\phi_{s} = (0.07 \pm 0.09 \pm 0.01) \text{ rad}$ $\Delta\Gamma_{s} = (0.100 \pm 0.016 \pm 0.003) \text{ ps}^{-1}$ to be updated...

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

arXiv: 1404.5673 1\$/17

B-Hadron Lifetime Measurements

Useful fundamental information

Measured the effective lifetimes of the exclusive decays:

$$egin{aligned} B^0_s &
ightarrow J/\psi\phi, \, B^0
ightarrow J/\psi K^{*0}, \, B^0
ightarrow J/\psi K^0_S, \ B^+ &
ightarrow J/\psi K^+ ext{ and } \Lambda^0_b
ightarrow J/\psi \Lambda \end{aligned}$$

- Lifetime ratios to test HQE theory
- \Rightarrow at lowest order the b-quark decay governs the lifetime
- \Rightarrow many systematics cancel
- Determination of $\Delta \Gamma_d / \Gamma_d$ from the effective lifetimes of $B^0 \rightarrow J/\psi K^{*0}$ and $B^0 \rightarrow J/\psi K_S^0$,

- Two-dimensional maximum likelihood fit to $m(J/\psi X)$ and time
- Main challenge: controlling detector acceptance, reconstruction and selection efficiencies.
- Decay time resolution 40-50 fs for fully reconstructed decays

Results JHEP 04 (2014) 114

$ au_{B^+ \rightarrow J/\psi K^+}$	$1.637 \pm 0.004 \pm 0.003$	
$ au_{B^0 \rightarrow J/\psi K^{*0}}$	$1.524 \pm 0.006 \pm 0.004$	
$ au_{B^0 \to J/\psi K_c^0}$	$1.499 \pm 0.013 \pm 0.005$	
$\tau_{\Lambda^0_L \to J/\psi\Lambda}$	$1.415 \pm 0.027 \pm 0.006$	
$\tau_{B^0_s \to J/\psi\phi}$	$1.480 \pm 0.011 \pm 0.005$	
$\tau_{B^+}/\tau_{B^0\to J/\psi K^{*0}}$	$1.074 \pm 0.005 \pm 0.003$	
$\tau_{B^0_s}/\tau_{B^0\to J/\psi K^{*0}}$	$0.971 \pm 0.009 \pm 0.004$	
$ au_{\Lambda_b^0}/ au_{B^0\to J/\psi K^{*0}}$	$0.929 \pm 0.018 \pm 0.004$	
$ au_{B^+}/ au_{B^-}$	$1.002 \pm 0.004 \pm 0.002$	
$ au_{\Lambda_{b}^{0}}/ au_{\bar{\Lambda}_{s}^{0}}$	$0.940 \pm 0.035 \pm 0.006$	
$\tau_{B^0 \to J/\psi K^{*0}}/\tau_{\bar{B}^0 \to J/\psi \bar{K}^{*0}}$	$1.000 \pm 0.008 \pm 0.009$	
$\frac{\Delta\Gamma_d}{\Gamma_d} = -0.044 \pm 0.025 \pm 0.011$ Prediction: $(42 \pm 8) \times 10^{-10}$		

arXiv:hep-ph/1102.4274

- Large variety of measurements in the B sector only limited number of them can be shown in 15 minutes
- Improved constraints but still room for NP.
- Some measurements still on partial data sample, many still statistically dominated
- ϕ_s from $B_s^0 \rightarrow J/\psi \phi$ to be updated with 3fb⁻¹

Current Unofficial LHCb Average = $(70 \pm 54 \pm 8)$ mrad $(B_s^0 \rightarrow J/\psi \pi^+\pi^- \text{ w/ 3fb}^{-1} + B_s^0 \rightarrow J/\psi K^+K^- \text{ w/ 1fb}^{-1})$

All is consistent w/ SM; NP is hiding well...