QCD@Work 16-19 June 2014, Giovinazzo

OVERVIEW OF RECENT ALICE RESULTS

Roberta Arnaldi INFN Torino for the ALICE Collaboration

QCD@Work 16-19 June 2014, Giovinazzo

OUTLINE

A selection of recent ALICE Pb-Pb and p-Pb results on:

- Global observables
- Jet quenching
- Heavy-flavour production
- Quarkonia production

Is p-Pb just a "control" experiment?

HEAVY-ION PHYSICS

QCD predicts a phase transition from hadronic matter to a deconfined phase (at high temperatures)

QGP at μ ~0 similar to early Universe (~ few first μ s)

Heavy-ion collisions provide experimental access to the QCD matter

First signal of QGP formation at SPS and RHIC

LHC: detailed investigation of QGP properties

DATA SAMPLES

System	√s _{nn} (TeV)	Year	Integrated luminosity	Physics goal
Pb-Pb	2.76	2010	~10 µb⁻¹	Study of hot and dense QGP matter
		2011	~100 µb⁻¹	
p-Pb	5.02	2012	~0.8 μb⁻¹	Investigate cold
		2013	~15 nb⁻¹ p-Pb	nuclear matter effects and much more
			~15 nb⁻¹ Pb-p	

In addition (not covered in this talk) pp collisions at $\sqrt{s} = 0.9$, 2.76, 7, 8 TeV

- reference for Pb-Pb and p-Pb
- genuine pp physics program

FOCUS ON p-Pb COLLISIONS!

Tool to investigate Cold Nuclear Matter effects → Reference for Pb-Pb collisions

First measurements show that in p-Pb physics there are hints of collective effects as

- Double ridge structure
- Non-zero $v_2 + v_2$ mass ordering

High multiplicity p-Pb similar to Pb-Pb → Is there a link between p-Pb and Pb-Pb?

WHAT CAN WE LEARN FROM p-Pb AND Pb-Pb COLLISIONS?

Soft probes

Observables: multiplicity, energy density, collective flow

→ Access to the global properties of the system

Hard probes

Observables: jets, EW bosons, heavy-flavour, quarkonia

→ Access to initial and final state effects, access to transport properties

ALICE @ THE LHC

GLOBAL PROPERTIES

Pb-Pb GLOBAL PROPERTIES

From identical boson interferometry:

Freeze-out volume ~ 2 x V_{RHIC}

Pb-Pb GLOBAL PROPERTIES

Fireball has larger volume and it's longer lived

Denser and hotter system!

p-Pb source radius

Comparison of source radii in pp, p-Pb and Pb-Pb can provide infos on the role of

initial conditions vs

similar freeze-out radius in p-Pb and pp

First extraction of femtoscopic radii with 3 π cumulants

For a given multiplicity:

- p-Pb radii 5-15% larger than in pp
- Pb-Pb radii 35-45% larger than in p-Pb

p-Pb and pp can be reproduced by initial conditions from saturation (GLASMA) (p-Pb may accommodate also hydro)

Pb-Pb requires hydro-dynamical phase

hydrodynamical evolution

 \rightarrow larger freeze-out radius,

p-Pb more similar to Pb-Pb

COLLECTIVE FLOW

Initial spatial anisotropy of the overlap region of colliding nuclei

→ anisotropy in momentum space through interactions of produced particles

Measured by the elliptic flow parameter (v_2) extracted from the Fourier decomposition of particle azimuthal distributions relative to the reaction plane

$$\frac{dN}{Nd\phi} \sim 1 + 2v_2 \cos\left(2(\phi - \Psi_{RP})\right) + higher harmonics (v_3, v_4, ...)$$

v₂ provides a measurement of collectivity → constraints the properties of deconfined medium

- Large mean free path → particles stream out isotropically, no memory of initial asymmetry (ideal gas)
- Small mean free path → large density and pressure gradients, larger momentum anisotropy (ideal liquid)

V2 OF IDENTIFIED PARTICLES

Identified particle v_2 {SP} (π^{+-} , K⁺⁻, K⁰, p, ϕ , Λ , Ξ , Ω)

 \rightarrow allows for precision measurements

- add constraints to initial conditions, particle production mechanisms
- probes the freeze-out conditions of the system
- checks the number of constituents quarks scaling

Low p_{T} :

mass ordering → attributed to interplay between radial and elliptic flow

Qualitative description with hydrodynamical calculations + hadronic cascade model \rightarrow small η /s favoured

High p_{T} :

particles tend to group into mesons and baryons

V_2 of identified particles: ϕ

ALICE

ϕ (heavy meson) is of particular interest as testing ground for mass ordering and baryon-meson grouping

Mass (and not number of constituent quarks) is main driver for v_2 in central Pb-Pb \rightarrow consistent with hydrodynamic picture

Scaling with number of quark constituents violated by 20%, in particular in central collisions

HADRON-HADRON CORRELATIONS IN P-Pb

Two particles $(\Delta \eta, \Delta \phi)$ correlations are a tool to explore particle production mechanisms: unexpected observation of an underlying azimuthal anisotropy in high-multiplicity p-Pb collisions

Double ridge described by both color glass condensate (initial state effect) or hydro (final state effect) (PLB719 (2013) 29)

Remaining correlation: two twin long-range structures (double ridge)

HADRON-HADRON CORRELATIONS IN p-Pb

\rightarrow h - π , K, p correlations

16

 \mathbf{v}_2 extracted from two-particles correlations

- Mass ordering at low p_{T}
- Crossing at p_T~2GeV/c

Qualitatively similar to Pb-Pb and consistent with hydro-predictions

CENTRALITY IN p-Pb

Centrality determination in p-Pb is challenging!

- looser correlation between N_{part} and impact parameter
- looser correlation between N_{part} and multiplicity

Fluctuations might induce a bias in the centrality determination

CENTRALITY IN p-Pb

Event selection based on Pb-going neutron energy released in ZDC \rightarrow minimizes the bias

 N_{part} and N_{coll} obtained assuming one out of:

- forward $dN_{ch}/d\eta \sim N_{part}^{Pb} = N_{part} 1$
- mid-rapidity $dN_{ch}/d\eta \sim N_{part}$
- high- $p_{\rm T}$ yields ~ $N_{\rm Coll}$
- Q_{pA} instead of R_{pA} due to potential bias from the centrality estimator, not related to nuclear effects

$$Q_{pA}^{i} = \frac{\mathrm{d}N_{pA}/\mathrm{d}p_{T}}{\langle N_{coll} \rangle_{i} \,\mathrm{d}N_{pp}/\mathrm{d}p_{T}}$$

Flat Q_{pPb} at high p_T for all event activity classes

HARD PROBES

HARD PROBES: HIGH P_{T} PARTICLES

20

High p_{T} particles originate from hard parton scattering:

early formation time

interaction with the medium

effects

Tool to probe the dense medium formed in A-A collisions

PRL110 (2013)082302

HARD PROBES: HIGH P_{T} PARTICLES

High p_{T} particles originate from hard parton scattering:

early formation time

interaction with the medium

Tool to probe the dense medium formed in A-A collisions

R

р

$$R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$$

if $R_{AA} = 1 \rightarrow$ no nuclear effects
if $R_{AA} \neq 1 \rightarrow$ (hot or cold) medium
effects
$$R_{pA} \text{ consistent with 1 up to 50 GeV/c}$$

p-Pb results consistent with binary
scaling (in Pb-Pb collisions, binary
scaling is observed only for

S(observables not affected by QCD matter, as direct photons and vector bosons)

arXiv:1405.2737

HARD PROBES: JETS

Jets are spray of particles created in collisions by hard scattering followed by hadronization. Jet fragmentation is modified by the medium \rightarrow jet quenching:

- Suppression of jet yield
- Broadening of jet shape
- di-jet imbalance

Strong suppression of jet yields in most central Pb-Pb collisions (down to 30 GeV/c)

 \rightarrow Moderate increase of R_{AA} with increasing p_{T}

Dependence on centrality class

Jet energy is moved from high to low p_{T} and from small to large angles (with respect to the jet axis)

ALICE low- p_{T} reach allows to recover most of jet fragments

HARD PROBES: JETS

Jets are spray of particles created in collisions by hard scattering followed by hadronization. Jet fragmentation is modified by the medium \rightarrow jet quenching:

- Suppression of jet yield
- Broadening of jet shape
- di-jet imbalance

No modification of jet cross section in p-Pb relative to pp

→ no significant cold nuclear matter effects observed in jet measurements in p-Pb

(pp reference for R_{pPb} at $\sqrt{s_{NN}} = 5.02$ TeV obtained scaling the 7TeV pp spectrum with PYTHIA)

Heavy flavor abundantly produced at LHC \rightarrow allow precision measurements

 D^0 , D^+ and $D^{*+} R_{AA}$ agree within uncertainties

Strong suppression of prompt D mesons in central collisions \rightarrow up to a factor of 5 for $p_{\rm T} \sim 10 {\rm GeV}$ Suppression observed in central Pb-Pb due to strong final state effects induced by hot partonic matter 25

MASS ORDERING OF ENERGY LOSS

D consistent with π within errors but improved accuracy needed to conclude (consistency described by theory taking into account different p_{T} shapes and fragmentation functions)

- from B decay [p_T range (~10GeV/c) tuned to have $\langle p_T(D) \rangle \sim \langle p_T(B) \rangle$]
- In agreement with expectations: $R_{AA}(B) > R_{AA}(D)$ 26

MASS ORDERING OF ENERGY LOSS

D consistent with π within errors but improved accuracy needed to conclude (consistency described by theory taking into account different p_{T} shapes and fragmentation functions)

Charm vs beauty

pQCD models including mass dependent radiative and collisional en. loss predicts a difference similar to the one observed in data

HEAVY FLAVOR: ELLIPTIC FLOW

Due to the large mass, b and c quarks should take longer time to be influenced by the collective expansion of the medium ($\rightarrow v_2^{b} < v_2^{c}$)

Heavy-flavor v_2 measurements probe:

- Low p_{T} : collective motion, thermalization of heavy-quarks
- High $\rho_{\rm T}$: path-length dependence of heavy-quark energy loss

Non-zero v_2 observed in semi-central Pb-Pb collisions (hint of increase from central to semi-central collisions)

 v_2 (D) ~ charged particle v_2

Confirm significant interaction of charm quarks with the medium \rightarrow suggest collective motion of low p_T charm quarks in the expanding firebase

HEAVY FLAVOR: ELLIPTIC FLOW

Due to the large mass, b and c quarks should take longer time to be influenced by the collective expansion of the medium $\rightarrow v_2^{b} < v_2^{c}$

Heavy-flavor v_2 measurements probe:

- Low p_{T} : collective motion, thermalization of heavy-quarks
- High p_{T} : path-length dependence of heavy-quark energy loss

Challenging description, for theory, of nuclear modification and charm flow measurements together

QUARKONIA

Comparison with PHENIX: ALICE results show weaker centrality dependence and smaller suppression for central events

31

QUARKONIA IN p-Pb and Pb-Pb

ALICE

 \rightarrow strongly affected by the hot medium: suppression vs. recombination

See Indranil Das's talk

p-Pb:

 J/ψ production is strongly modified also in p-Pb because of cold nuclear matter effects

 \rightarrow R_{pA} decreases towards forward y in agreement with shadowing and coherent energy-loss models

QUARKONIA IN p-Pb and Pb-Pb

Quarkonium is one of the main signatures for QGP formation

 \rightarrow strongly affected by the hot medium: suppression vs. recombination

See Indranil Das's talk

p-Pb vs Pb-Pb:

(Rough) extrapolation of CNM effects, evaluated in p-Pb, to Pb-Pb

 \rightarrow evidence of hot matter effects in Pb-Pb!

ALICE PAST & FUTURE

Heavy-ion data	System	√s _{NN} (TeV)	Year	Integrated luminosity
from RUN1:	Pb-Pb	2.76	2010	~10 µb⁻¹
			2011	~100 µb ⁻¹
	p-Pb	5.02	2013	~30nb ⁻¹

Euture: 2017 2019 2024 2025 2026 202 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q1 Q2 03 04 01 03 04 01 02 03 01 02 03 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q4 Q2 Run 2 Run 3 LS 3 Run 4

RUN2 (2015-2017): complete the heavy-ion program:

- improved detectors, readout and trigger
- higher LHC energy ($\sqrt{s} = 13$ TeV for pp, 5.1TeV for PbPb)
- pp, p-Pb, Pb-Pb runs with much larger statistics!

RUN3+4 (~2020): major detectors upgrade

- operate ALICE at high rate (increased by a factor 100!), preserving unique tracking and PID
- improvements in vertexing capability and low p_T tracking (new ITS and TPC readout)
- focus on rare probes (heavy flavor, quarkonia, low-mass dileptons, jets...)

CONCLUSIONS

Large wealth of results both in Pb-Pb and in p-Pb collisions from Run-1 !

Pb-Pb:

Different probes (soft, hard) allow to access to the medium properties (temperature, density, transport properties...)

Significant progress in precision: v_2 of identified particles, heavy-flavour, quarkonium...

p-Pb:

Not only a "control" experiment to compare to Pb-Pb!

Tool to investigate cold nuclear matter effects

Existence of collective effects at high multiplicities also in small systems (like pp and p-Pb)!

 Many results would benefit from more data to sharpen the conclusions: Waiting for Run-2 and future ALICE upgrade!
35

BACKUP SLIDES

NUCLEAR MODIFICATION FACTOR: PID

12

p_ (GeV/c)

2

10

12

p_ (GeV/c)

0.3 < y_{cms} < 0.3 for p

12

p_ (GeV/c)

HEAVY FLAVOR: IN & OUT OF PLANE

D R_{AA} measured in and out of plane (in 30-50% centrality class) is sensitive to

- path-length dependence of parton energy loss at high p_T
- collectivity at low p_{T}

HADRON-HADRON CORRELATIONS IN p-Pb

h - π, K, p correlations

- Mass ordering at low p_{T}
- Crossing at p_T~2GeV/c
- Qualitatively similar to Pb-Pb

Double ridge seen also in the correlation of heavy-flavour decay electrons with hadrons

Suggesting that the mechanism generating the double ridge is at work also for heavy-flavor

ALIC

HARD PROBES R_{pPb}

To summarize: do hard probes scale with the number of binary collisions (N_{coll}) in p-Pb? $R_{pA} = \frac{dN_{pA}/d\rho_{T}}{\langle N_{coll} \rangle dN_{pp}/d\rho_{T}}$

 $R_{\rm pA}$ consistent with unity for:

 High p_T charged particles (above 10GeV/c)

HARD PROBES R_{pPb}

To summarize: do hard probes scale with the number of binary collisions (N_{coll}) in p-Pb?

 $R_{\rm pA}$ consistent with unity for:

 $R_{\rm pA} = \frac{{\rm d}N_{\rm pA}/{\rm d}\rho_{\rm T}}{\langle N_{\rm coll}\rangle {\rm d}N_{\rm pp}/{\rm d}\rho_{\rm T}}$

- High p_T charged particles (above 10GeV/c)
- Charged jets up to 100 GeV/c

HARD PROBES R_{DPb}

To summarize: do hard probes scale with the number of binary collisions (N_{coll}) in p-Pb?

 R_{pA} consistent with unity for:

 $R_{\rm pA} = \frac{{\rm d}N_{\rm pA}/{\rm d}\rho_{\rm T}}{\langle N_{\rm coll}\rangle {\rm d}N_{\rm pp}/{\rm d}\rho_{\rm T}}$

- High p_T charged particles (above 10GeV/c)
- Charged jets up to 100 GeV/c
- D⁰, D⁺, D^{*+} mesons at midrapidity

arXiv:1405.3452

HARD PROBES R_{pPb}

To summarize: do hard probes scale with the number of binary

collisions (N_{coll}) in p-Pb?

ALI-PREL-76455

ALIC

HARD PROBES R_{DPb}

To summarize: do hard probes scale with the number of binary collisions (N_{coll}) in p-Pb? $R_{pA} = \frac{dN_{pA}/d\rho_{T}}{\langle N_{coll} \rangle dN_{pp}/d\rho_{T}}$

44

HARD PROBES R_{DPb}

45

 For several hard probes binary scaling is observed in pA:
> suppression in Pb-Pb is a final state effect!